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Abstract: The synthesis of a 90% Ni/Al2O3 catalyst via solution combustion synthesis with various
fuels was studied in this work. Catalysts with a high content of the active component (i.e., nickel)
were obtained as a result of the combustion of Ni(NO3)2·6H2O and Al(NO3)3·9H2O mixtures with
fuel. The fuels, such as hexamethylenetetramine, glycine, urea, starch, citric acid, and oxalic acid,
were investigated. The synthesis was carried out in a furnace, with the temperature being raised
from room temperature to 450 ◦C at a rate of 1 ◦C per min. The paper evaluates the efficiency of fuels
and their effect on the structure and properties of catalysts, as well as their catalytic activity. The
catalyst was used for the synthesis of hydrogen and carbon nanofibers by methane decomposition at
1 bar and 550 ◦C. The catalysts were tested in a vertical flow reactor without preliminary reduction.
The obtained samples of catalysts and carbon nanomaterials were studied by transmission electron
microscopy, low-temperature nitrogen adsorption, and X-ray diffraction. The highest activity of the
catalyst was obtained when citric acid was used as a fuel. The specific yields of hydrogen and carbon
nanofibers were 17.1 mol/gcat and 171.3 g/gcat, respectively. Catalytic decomposition of methane led
to the formation of cup-stacked carbon nanofibers.

Keywords: methane; carbon nanofibers; hydrogen; solution combustion; fuel; carbon nanomaterials

1. Introduction

The processing of C1–C4 hydrocarbons is currently a relevant and efficient technology
for producing hydrogen from various sources (associated petroleum gas, natural gas,
methane, industrial mixtures of hydrocarbons in the petrochemical industry, oil refining,
etc.). One promising approach is the catalytic decomposition of the hydrocarbons in the
mixture (CH4 → C + H2, ∆H◦ = 74.8 kJ/mol). The process under consideration can be
carried out at a variety of pressures and temperatures, producing two main products:
hydrogen and carbon. The process is usually carried out over nanoparticle catalysts. The
latter represent the metals of the iron subgroup of the periodic table. The advantages of the
technology are its simplicity and the absence of carbon dioxide emissions in the reaction
products. A COx-free process is one of the main advantages of hydrogen production
compared to steam reforming [1]. In addition to the formation of hydrogen, a by-product
of the reaction is carbon nanofibrous material [2]. The disadvantage is the deactivation of
the catalyst, which occurs due to the deposition of solid reaction products (carbon) on the
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active sites of the catalyst. Sometimes, COx-free hydrogen can also be produced by the
decomposition of ammonia [3].

The structure and physical or chemical properties of carbon nanomaterials depend
on the synthesis parameters (temperature and pressure), the composition of the reaction
gas mixture (methane, propane, a mixture of hydrocarbons, etc.), the catalyst preparation
technique, and the composition of catalyst. The activity of a catalyst directly depends on its
chemical nature and composition, so the main components of the catalyst for the process
under consideration are the metals of the iron subgroup (for example, the metals Ni, Co, and
Fe). In addition, alloying the catalyst with Cu or other metals in a small amount makes it
possible to increase catalytic activity by an order of magnitude [4]. The metals are most often
evenly distributed on the oxide substrate (for example, Al2O3 [5], SiO2 [6], MgO [7], and
ZrO2 [8]). Sometimes, the concentration of the active component (i.e., metal) in the catalyst
is high enough compared to content of substrate. This composition of the catalytic system
leads to the formation of granulated carbon nanofibrous material, representing the granules
consisting of densely packed carbon nanofibers (CNFs) [9,10]. In some articles, this material
is called nanofibrous carbon [11–13]. Initially, the research was devoted to the investigation
of CNFs’ synthesis and properties [14]. Then, the study was directed to the co-production
of hydrogen and CNFs [15]. Carbon nanomaterials (namely, carbon nanofibers and carbon
nanotubes), produced using a CVD COx-free approach to methane decomposition, can be
used in various fields of application, for example, catalysis [16,17], supercapacitors [18,19],
adsorption [20], polymer composites [21–24], gas sensors [10,25,26], etc.

There are many synthesis techniques of catalysts for the co-production of hydrogen
and carbon nanomaterials via the decomposition of C1–C4 hydrocarbons. For example,
sol-gel synthesis [27], mechanical activation [28], solution combustion synthesis [29], co-
precipitation [30], electroexplosive synthesis [31], etc. Solution combustion synthesis has
many good points when it comes to making catalysts for breaking down methane. The
advantage of solution combustion synthesis (SCS) of catalysts for hydrogen production is
a one-step process of preparation [29,32]. A majority of methods for catalyst preparation
contain a greater number of steps compared to SCS.

In [33], a combination of hexamethylenetetramine and citric acid (so-called “mixed
fuel”) was used for the synthesis of CoCu, CoNi, CoFe, and FeNi nanomaterials. The
microwave-assisted method was used for the production of Co nanoparticles using various
fuels (citric acid, glycine, urea, and hexamethylenetetramine) [34]. However, despite the
amount of research devoted to the solution combustion synthesis of nanoparticles, the
results of their application in the creation of catalysts for methane decomposition are poorly
presented, especially when considering methane conversion, hydrogen yield, and carbon
nanomaterials formed over these catalysts.

This work was devoted to the SCS of a Ni/Al2O3 catalyst for the production of carbon
nanofibers and hydrogen in a vertical flow reactor at a relatively low temperature (550 ◦C)
and atmospheric pressure. A comparison of different fuels (hexamethylenetetramine,
glycine, urea, starch, citric acid, and oxalic acid) and their effects on the efficiency of
hydrogen production was carried out. SCS was carried out in a furnace by means of
heating at a constant rate (1 ◦C per min). The analysis of texture properties, crystallite size,
and phase composition of catalysts synthesized by SCS was performed.

2. Materials and Methods

Catalysts with a high content of the active component (i.e., nickel), 90Ni-10Al2O3
(wt.%), were obtained by SCS. Salts of metals Ni(NO3)2·6H2O and Al(NO3)3·9H2O, weigh-
ing 13.3757 g and 2.2075 g, respectively, were dissolved in distilled water (100 mL) until a
homogeneous solution was obtained. Then, a fuel (also called the reducing agent) weigh-
ing 1.5 g was introduced into the resulting two-component solution, which was then
dissolved until a homogeneous three-component solution, Ni(NO3)2–Al(NO3)3–H2O–fuel,
was formed. Next, the catalyst precursor (mixture) was calcined according to a given
program in a SNOL 6.7/1300 muffle furnace. The calcination was carried out using the
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programmable heating approach. The heat treatment was carried out by heating the sample
from room temperature to 723 K (450 ◦C) at a heating rate of 1 ◦C per min, as a result
of which the three-component solution was gradually dehydrated until a concentrated
gel-like paste was formed. In the area of the sample, a stable front of a combustion wave
arises in the solution as a result of the redox reactions, with the subsequent formation of
nanoparticles of NiO and Al2O3. The heating was performed in air. The catalysts syn-
thesized after calcination were crushed to a particle size fraction of 100–200 µm and then
tested in a laboratory vertical quartz reactor.

The process of catalyst preparation by SCS is shown in Figure 1.
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Figure 1. Preparation technique of Ni/Al2O3 catalyst using solution combustion synthesis.

Table 1 shows the experimental data on the synthesized catalyst samples, which
were obtained using the following reducing agents: urotropin (hexamethylenetetramine,
C6H12N4) (HMTA), glycine (C2H5NO2), urea (CO(NH2)2), starch (C6H10O5)n), citric acid
(C6H8O7), and oxalic acid (C2H2O4).

Table 1. Summary data on the synthesized catalyst samples.

Sample Fuel Excess
(ϕ)

Parameters of Catalyst
Preparation in Furnace

Results of Synthesis
(450 ◦C, 1 atm)

Temperature of
Calcination, K

Heating Rate V,
K/min

Total Time of
Reaction t, h

Specific Yield of
Hydrogen (YH2),

mol/gcat

Specific Yield
of CNFs (YC),

g/gcat

HMTA 0.70

723 1

12.7 9.5 69.1

Glycine 0.33 23.5 15.4 154.7

Urea 0.27 31.7 11.3 100.9

Starch 0.41 31.7 12.8 95.7

Citric acid 0.26 26.2 17.1 171.3

Oxalic acid 0.06 20.4 11.9 120.9

The reaction of SCS with the catalyst takes place in three stages. The first is carried out
at stoichiometric equilibrium yst = 0. The second case takes place when one has the lack of
fuel in relation to stoichiometric equilibrium yst < 0. In some cases, there can be an excess
of the concentration of fuel compared to stoichiometric equilibrium one yst > 0.

ϕ = y/yst, (1)

where y is the real molar ratio of fuel to catalyst and is the fuel excess. Fuel excess coefficient:
the deviation of the mixture’s fuel content from the stoichiometric amount (ϕ = 1). The
value of fuel excess was set on the basis of reaching the constant weight of the mixture of
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nickel and aluminum nitrates with fuel in order to keep the total weight of catalyst placed
in the crucible constant before heating and SCS began. According to this, the weight of the
initial mixture placed in a crucible before stating the SCS was the same. The fuel excess
values for each fuel are shown in Table 1. The assumption of a constant weight of mixture
was chosen according to preliminary experiments, which were taken at ϕ = 1 for each fuel.
The majority of the time, the Ni(NO3)2·6H2O-Al(NO3)3·9H2O-fuel mixture experienced
strong adiabatic heating, resulting in the explosive release of liquid and severe overheating
of the mixture. Because of this effect, the results of catalysts were difficult to reproduce,
and the weight of the Ni(NO3)2·6H2O-Al(NO3)3·9H2O-fuel mixture was assumed to be the
same in all cases, with the only difference being the amount of the fuel.

The synthesized samples of catalysts were tested in a vertical catalytic quartz reactor,
the schematic diagram of which is shown in Figure 2.
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Figure 2. Scheme of catalytic setup for testing the decomposition of methane: 1—gas vessel;
2—reducing valve; 3—mass flow controller; 4—furnace; 5—catalyst; 6—vertical reactor; 7—gas
chromatograph; 8—PC.

The reactor consists of the following units: gases (CH4 and Ar) were fed into the flow
through the quartz reactor (6) from cylinders (1) through pressure-reducing valves (2).
Argon was fed only at the beginning of furnace heating; after reaching the temperature of
synthesis (550 ◦C), pure methane was fed into the reactor and the argon was switched off.
The gas flow rate was maintained at a given level by automatic mass flow controllers (3).
The unreduced catalyst (5), with a weight of 12 mg, was loaded inside the reactor. The
reactor was heated to a temperature of 550 ◦C in a resistance furnace (4). The synthesis
was carried out at atmospheric pressure (1 atm). The catalyst was heated to its operating
temperature in an inert gas flow (Ar), upon reaching which the gas was replaced by methane
(CH4). A methane–hydrogen mixture at the outlet of the reactor was taken for analysis
in continuous mode. The passing of reaction was analyzed using a Khromos GC-1000-7
(Dzerzhinsk, Russia) gas chromatograph. The specific yield of carbon and hydrogen was
calculated using the mass balance and data from gas chromatography.

xCH4 = (CH2/(200 − CH2)) · 100, (2)

YC = (mC −mcat)/mcat, (3)

YH2 = (GCH4 · xCH4 · t)/(V · 100), (4)

where xCH4 is the conversion of methane, vol. %; CH2 is the concentration of hydrogen,
vol.%; YC is the specific yield of carbon, g/gcat; mC is the weight of carbon formed, g; mcat is
the weight of catalyst, g; YH2 is specific yield of hydrogen, mol/gcat; GCH4 = 100 L/(h·gcat);
xCH4 is the average conversion of methane, vol.%; t is the time until reaching full deactiva-
tion of the catalyst, h; V = 22.4 is the molar volume of gas, mol/L.
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The phase composition of the synthesized samples was studied using X-ray diffraction
(XPD) on a DRON-3 diffractometer (CuKα radiation, λ = 0.15406 nm). The crystallite size
was calculated using Scherrer equation:

L = (k · λ)/(B · cosθ), (5)

where L is the size of crystallite, Å; k = 0.9 is a constant value; B is FWHM, radians; θ is the
diffraction angle, ◦.

HTREM (high resolution transmission electron microscopy) images were obtained
using JEM-2200FS transmission electron microscope (JEOL Ltd., Tokyo, Japan) equipped
with a Cs-corrector.

Low-temperature nitrogen adsorption (Quantachrome NOVA 1000e, Boynton Beach,
FL, USA) was used to study the catalyst and carbon nanofibers that were made. The
samples were preliminarily degassed at 100 ◦C for 3 h in order to remove the adsorbed
gases and water. Full adsorption and desorption isotherms were plotted at 77 K and
relative pressures P/P0 0.005–0.995. The specific surface area was calculated according to
the Brunauer–Emmett–Teller (BET) method. The Barrett–Joyner–Hallenda (BJH) method
was used to obtain the pore size distribution.

3. Results

The summary of the results obtained during the decomposition of methane over
catalysts prepared by SCS using various fuels is presented in Table 1.

All the samples tested were not reduced. The majority of the data reported on methane
decomposition was obtained using catalysts after hydrogen reduction [4,27,35,36]. The
advantage of the catalysts under investigation, obtained by solution combustion synthesis,
is that they need no reduction [15,37]. This has a positive effect on the duration of the
chemical process by shortening its operation and making it more economically attractive
for scale-up. A gradual reduction of catalyst occurred due to the formation of hydrogen
as a result of the reaction. The maximum activity was shown by unreduced catalysts
reaching the H2 concentration at a level of 17–33%. The highest yield of hydrogen was
achieved for an SCS catalyst prepared using citric acid (17.1 mol/gcat). Figure 3a shows
the dynamics of changes in the hydrogen concentration over the period until reaching the
deactivation of the synthesized catalyst samples. The conversion of methane is shown in
Figure 3b. The majority of catalysts converted at a rate of 17–19%. Catalysts synthesized
using starch and urea as fuels possessed initial conversion levels of 14.5% and 9.4%,
respectively. Their lifetime, however, was longer when compared to other fuel-based
solution combustion synthesized samples. The delayed formation of carbon on the surface
of the catalyst induces the extension of the time of operation (i.e., lifetime) of the latter
during methane decomposition.

This catalyst had a relatively short total reaction time until deactivation, but the
concentration of hydrogen formed was 28–29% for the first 16 h, then dropped. The initial
conversion of methane possessed a lower value than is typical for a single-component
nickel catalyst. Similar values were reached after 100–150 min of hydrogen and carbon
synthesis over 50% Ni/Al2O3 and 50% Ni–5% Cu/Al2O3, which were prepared using the
impregnation method [38]. The higher concentration of hydrogen was achieved for the
glycine-based catalyst (30% for 8 h), after which it started to decrease. The longest time of
catalyst operation was detected for starch and urea, but initially the hydrogen concentration
was low compared to other fuels, such as HMTA, glycine, citric acid, and oxalic acid. It
is worth noting that four fuels (i.e., HMTA, glycine, citric acid, and oxalic acid) possessed
almost the same initial concentration of hydrogen formed during the first hour of reaction.
The hydrogen concentration gradually decreases until the catalyst is saturated with solid
reaction products (namely CNFs), as a result of which a sharp decrease in catalytic activity
occurs within 2–3 h, leading to its deactivation. XRD patterns of catalysts are shown
in Figure 4.
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Figure 4. XRD patterns of catalysts synthesized.

After solution combustion synthesis, the NiO phase (JCPDS no. 00-047-1049) formed,
which was shown by the position and intensity of the diffraction peaks for the catalysts.
There was a significant problem during the thermodynamic calculations and estimation of
fuel excess: the degree of polymerization of starch, since it is a polymer. The additional
research on starch application in the solution combustion synthesis of nickel-based catalysts
will be presented in the next paper.

Figure 5 shows that XRD patterns of CNFs made over SCS catalysts only showed the
carbon phase (JCPDS no. 01-075-1621). Since there are not many nickel nanoparticles in the
sample, there was no Ni phase in the XRD patterns of the CNFs that were synthesized. The
intense (001) basal plane reflection in CNFs is clearly seen in diffraction patterns (Figure 5).
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Figure 5. XRD patterns of carbon nanomaterials formed over solution combustion synthesized
catalysts (450 ◦C, 1 atm) ((002) reflection of carbon phase is shown in the figure).

Table 2 shows summary of low temperature nitrogen adsorption data and XRD data.

Table 2. Summary data on the properties of catalysts and CNFs.

Sample Fuel Excess (ϕ)

Properties of Catalysts * Properties of CNFs

XRD BET XRD BET

Lav (NiO), nm Ssp, m2/g Vtotal, cm3/g Lpore, nm Lav, nm Ssp, m2/g Vtotal, cm3/g Lpore, nm

HMTA 0.70 39.5 11 0.05 19.6 39.4 51 0.12 9.7

Glycine 0.33 16.6 153 0.50 13.1 21.4 61 0.24 15.5

Urea 0.27 37.2 51 0.21 16.7 22.9 86 0.16 7.8

Starch 0.41 35.8 81 0.27 13.5 17.7 86 0.17 8.0

Citric acid 0.26 20.9 94 0.23 9.9 21.9 80 0.16 7.9

Oxalic acid 0.06 40.2 49 0.30 24.4 25.9 74 0.14 7.6

* Lav—average crystallite size (according to XRD). Ssp—specific surface area. Vtotal—total pore volume.
Lpore—average pore diameter.

It has been experimentally established that the type of fuel affects the characteristics
of synthesized catalyst samples, so the surface area of the catalysts increases in the range of
49–153 m2/g for different fuels. According to the error of BET surface area measurements
(the error of the analyzer was 5%), the surface area of all catalysts differs significantly
when compared to each other. In some cases, a low surface area (HMTA-based catalyst,
11 m2/g) was obtained since the temperature of combustion was high enough to lead to
the enlargement of nanoparticles. This is also caused by higher fuel excess coefficients,
among other factors that were investigated.

The highest surface area was obtained for glycine fuel. The data on surface area
is in agreement with XRD data. This sample showed the lowest average crystallite size
(16.6 nm) among all catalysts. One of the largest crystallites and the lowest surface area were
detected for the HMTA-based catalyst. The relatively high temperature during solution
combustion, which causes the coarsening of nanoparticles, is most likely to blame for this.
All catalysts were fully mesoporous. There was only one exclusion: the catalyst prepared
using glycine, which possessed 5.8% of micropores (153 m2/g was the total surface area;
9 m2/g was the surface area of micropores). Two samples with high concentrations of
hydrogen were glycine- and citric acid-based catalysts. These samples showed a relatively
stable concentration of hydrogen over time and a relatively long lifetime of the catalyst.
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They possessed relatively high surface areas (153 and 94 m2/g, respectively), low crystallite
sizes (16.6 and 20.9 nm, respectively), and low average pore diameters (13.1 nm and 9.9 nm,
respectively). This factor has a direct effect on catalysis.

The surface area of CNFs synthesized over SCS catalysts was in the range of 51–86 m2/g.
It is difficult to find a clear relationship between the surface area of the catalyst and
the CNFs formed. All CNFs contained micropores, excluding glycine, which consisted
entirely of mesopores. It can be caused by full carbon formation and a longer lifetime
of the catalyst during the reaction. The samples contained micropores as follows (the
fraction of micropores in total surface area is presented in brackets): HMTA 5 m2/g (9.8%);
urea 21 m2/g (24.4%); starch 20 m2/g (23%); citric acid 23 m2/g (28.75%); oxalic acid
12 m2/g (16%).

Figure 6 shows typical TEM images of the SCS catalysts. The samples were represented
by catalytic nanoparticles forming dense aggregates.
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The synthesized catalyst samples possessed a homogeneous structure of catalytic
nanoparticles, in which the NiO phase is uniformly distributed. Al2O3 can be considered
as a promoting additive, not as substrate, since its amount is low enough compared to
Ni. Usually, the quantity of Al2O3 is higher compared to content of active component (Ni
or Ni-Cu) [38,39], but in our case the SCS was directed to synthesis of catalyst with high
concentration of nickel. According to elemental analysis, the catalyst mainly contains nickel
and oxygen. According to TEM data (Figure 6a–c), the size of the catalyst particles ranged
from 10 to 20 nm. The crystallite size of the NiO phase in catalysts based on oxalic acid fuel
showed the highest value compared to other fuels, which is in agreement with TEM images
(Figure 6c). The crystallite size of this catalyst was close to values obtained for HMTA-based
catalysts. This effect can be caused by high temperatures as a result of solution combustion
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in the case of the application of high-energy fuels. This causes nanoparticles to grow in
size, as well as crystallite sizes to grow in size.

Figure 7 shows TEM images of CNFs formed over solution combustion-based catalysts.
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The carbon nanomaterial that was made had a porous structure made of tightly woven
nanofibers that were between 100 and 150 nm in diameter. Micrographs showed that the
sample also contains a small amount of catalyst nanoparticles, which are the active sites of
the catalyst. CNFs had an almost “fishbone” structure [40]. The surface of the CNFs had a
significant roughness. Because the reaction was continued until the catalyst was completely
deactivated, the Ni nanoparticles were completely covered with a carbon shell (Figure 7d).
Typically, for materials based on Ni-containing catalysts for methane decomposition and
operating until complete deactivation, the metal nanoparticles are completely covered
with carbon shells, and there are no carbon-free places on the surface of nanoparticles (as
confirmed by X-ray photoelectron spectroscopy in [9] for similar material).

The results of experiments using different types of reducing agents were compared
to data that had already been published (Table 3). Compared to other ways of making
catalysts, the samples that were made by this method performed better in terms of surface
area, pore volume, and average pore size. As one can see, combustion is a more efficient
way to make the nickel catalyst on an alumina substrate with small crystallites and a higher
specific area than the impregnation method. The latter is a very frequently used method
for the preparation of nickel-containing catalytic systems on Al2O3 or SiO2 substrates.
Moreover, all the articles mentioned in Table 3 were applied to the two main steps of
catalyst preparation. To begin, the alumina was primarily prepared using the sol-gel
method. Then, these nickel-based catalysts were prepared via the wet impregnation
method. These facts support the main advantage of SCS-based catalysts being the one-step
preparation approach.
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Table 3. A comparison of data on texture properties of catalysts synthesized using various methods.

Catalyst Preparation Technique Lav(NiO), nm Ssp, m2/g Vtotal, cm3/г Lpore, nm Ref.

90Ni/10Al2O3
solution combustion

synthesis (citric acid fuel) 20.9 94 0.23 9.97
This work

90Ni/10Al2O3
solution combustion

synthesis (glycine fuel) 16.6 153 0.50 13.12

90Ni/10Al2O3
solution combustion

synthesis (HMTA fuel) 46.3 107 0.25 20.96 [15]

90Ni/SiO2 impregnation 40 – – – [41]
60Ni-10Al2O3 impregnation 26.6 66.1 0.13 7.2 [42]
60Ni-10Al2O3 impregnation 36.9 58.7 0.67 3.92 [43]
50Ni/Al2O3 impregnation 24.5 89 0.2 7.93 [38]

Table 4 shows a comparison of data regarding how effective catalysts are at making
carbon and hydrogen. The data on conversion and yield of carbon formed were presented
for a relatively low temperature (550 ◦C); therefore, the conversion of hydrogen was lower
compared to some articles [6,38,43]. Usually, the research on methane decomposition is
carried out in a mixture of CH4 and N2. In this work, we used pure methane to somehow
reach the real conditions of catalyst operation on a laboratory scale. The significant draw-
back of the data reported for catalysts obtained using different techniques is the low time
of the process carried out, e.g., 360 min [6], 180 min [8], and 650 min [38]. In some papers,
the yield of carbon was low enough and in some cases did not reach at least 10 g/gcat [8],
which is also caused by low time of reaction.

Table 4. A comparison of data reported for various catalysts used for methane decomposition and
their efficiency in terms of formation of carbon and hydrogen.

Ref. Catalyst Preparation
Technique Inlet Gas Parameters

of Process

Conversion of
Hydrogen

x, %
Initial/Maximum

Yield of
Carbon Yc,

g/gcat

[6] Ni/SiO2 wet impregnation (1:4) CH4/N2 550 ◦C 19/28 -
[38] Ni-Cu/Al2O3 wet impregnation (3:7) CH4/N2 750 ◦C 84/85 -
[42] 50% Ni/Al2O3 wet impregnation (3:7) CH4/N2 625 ◦C, 1 bar n/a/54 -

[15] 90%Ni/Al2O3
solution combustion

synthesis Pure CH4 535 ◦C, 1 bar n/a 268.3

[44] 3%Ni-15%Fe/MgO co-precipitation (1.5:1) CH4/N2 700 ◦C, 64/73 -

This work 90%Ni/Al2O3
solution combustion

synthesis Pure CH4 550 ◦C, 1 bar 16/18 171.3

4. Conclusions

The paper discusses high-percentage 90% Ni/Al2O3 catalysts that were made by
burning different fuels in a solution. It has been established that the type of fuel affects the
catalytic activity significantly. According to the results of the catalytic reaction, citric acid
possessed the maximum specific yield of hydrogen and carbon nanofibers. The longer time
of reaction was shown by starch and urea as fuels, despite their low methane conversion.
The highest surface area of SCS-based catalysts was achieved in the case of glycine as fuel
(153 m2/g), which corresponded to the lowest pore diameter among other catalysts. The
highest hydrogen and carbon nanofiber yields were obtained for catalysts with the use of
citric acid (17.1 mol/gcat, 171.3 g/gcat).
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