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Abstract: In-air signatures are promising applications that have been investigated extensively in
the past decades; an in-air signature involves gathering datasets through portable devices, such as
smartwatches. During the signing process, individuals wear smartwatches on their wrists and sign
their names in the air. The dataset we used in this study collected in-air signatures from 22 participants,
resulting in a total of 440 smartwatch in-air signature signals. The dynamic time warping (DTW)
algorithm was applied to verify the usability of the dataset. This paper analyzes and compares
the performances of multiple convolutional neural networks (CNN) and the transformer using
median-sized smartwatch in-air signatures. For the four CNN models, the in-air digital signature
data were first transformed into visible three-dimensional static signatures. For the transformer, the
nine-dimensional in-air signature signals were concatenated and downsampled to the desired length
and then fed into the transformer for time sequence signal multi-classification. The performance
of each model on the smartwatch in-air signature dataset was thoroughly tested with respect to
10 optimizers and different learning rates. The best testing performance score in our experiment was
99.8514% with ResNet by using the Adagrad optimizer under a 1× 10−4 learning rate.

Keywords: artificial intelligence; sensors; in-air signature recognition; time sequence; convolutional
neural networks (CNN); transformer; pattern recognition; optimizers

1. Introduction

With the development of embedded sensors in various portable devices, in-air sig-
nature recognition has made a lot of progress in recent years [1]. The main ideology for
in-air signature signing involves using external devices, such as mobile phones [2,3], smart
watches [4], high-speed cameras [5,6], and leap motion controllers [7,8] to capture the digi-
tal signals of the in-air signatures and analyze the information to recognize the identities of
individuals. The in-air signature has been studied a lot because it is traceless, contactless,
and secure [9,10], showing great strength compared with the other identification meth-
ods. Given the advantages of the in-air signature, various time-series models, such as
the transformer [11], RNN [12], and LSTM [4] have been applied to the in-air signature
recognition. With the development of image recognition technologies, the convolutional
neural network (CNN) has been evolving at a fast speed [13]. Nevertheless, there is rarely
any research on the performance evaluations of the convolutional neural networks for
median-sized in-air signature recognition; the main reason is that in-air signatures are
time-series signals and CNN generally takes in the image information [8]. To address this
problem, one of the novelties of our experiment involved using the three-dimensional
restoration of the in-air signature converted from digital signals as the CNN model in-
put. The results show that ResNet has the highest classification accuracy in the CNN
model group at 99.8514% and other CNN models show consistent effective performance
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on median-sized in-air signature datasets while the transformer [11] is not suitable for
median-sized in-air signature time sequence multi-classification tasks and shows over-
fitting in different degrees over 50 repetitions. In our research, we used the smartwatch
in-air signature dataset [4] consisting of 22 participants and 440 in-air signatures (with
220 being genuine and 220 being forgeries). The convolutional neural network models and
the representative time sequence model, the transformer, were tested on the median-sized
in-air signature dataset based on a smartwatch. We implemented the DTW algorithm
[14] to verify the usability of the smartwatch dataset first, and from there, the experiment
took two different branches. For convolutional neural network models, in-air signature
signals were first converted to static 3D restorations as images; four CNN models, i.e.,
LeNet [15], AlexNet [16], VGG [17], and ResNet [18], were implemented and tested for
the smartwatch in-air signature dataset. For the time sequence model, the smartwatch
nine-dimensional in-air signature dataset goes through normalization, concatenation, and
downsampling, and then the dataset is fed into the transformer for classification, which
works as the baseline case for comparison. This paper is organized in the following manner.
In the introduction section, the research procedure, experiment setup, and recent represen-
tative research on in-air signature recognition are discussed. In the materials and methods
section, the dynamic time warping (DTW) algorithm is used to analyze the smartwatch
in-air signatures. The proposal for the restoration of in-air signature section includes
coverage of the system architecture, methodology for restoring in-air signatures, and a
comparative study of CNN models. In the results section, we demonstrate the performance
of ResNet together with the performance comparison of convolutional neural networks
and the transformer with respect to different optimizers. In this section, the fine-tuned
ResNet model is nominated and a comparison of different models is presented. Finally,
we summarize our research and discuss the research limitations and future directions. To
best replicate the experiment’s procedure, the computer configuration used in the research
is listed in Table 1. One of the novelties of our experiment involves converting the time
sequence in-air signature signals into a visible three-dimensional signature representation
based on the in-air signature trajectory restoration. Finger movement trajectory restoration
is widely used in medical studies for patients with amyotrophic lateral sclerosis (ALS)
disease [19]. In research by Ziqian Xie et al. [20], electrocorticography (ECoG) signals were
obtained to investigate neural reactions while patients conducted finger movements. Finger
trajectory was learned using CNN [21] and LSTM [22] models. Similarly, in the study by
Gert Pfurtscheller et al. [23], the neural reactions of patients during the movements could
be observed based on EEG, which could be used as the database for training models. In our
experiment, which is different from medical research fields using EEG, the in-air signature
signals can be recorded by the accelerometer and gyroscope sensors embedded inside the
smartwatch and the in-air signature trajectories can be restored based on the derivation of
the acceleration signals (as covered later in the data processing section).

Table 1. Computer configurations.

Computer Configurations

Item Property

Processor 12th Gen Intel(R) Core(TM) i7-12700KF 3.61 GHz

Installed RAM 32.0 GB (31.8 GB usable)

System type 64-bit operating system, x64-based processor

GPU NVIDIA GeForce RTX 3080

In the study by Jameel Malik et al. [5], the researchers proposed a new method
called 3DAirSig, which mainly uses multidimensional dynamic time warping (MD-DTW);
they collected 600 signature samples taken from the participants. Similar to the study
by Guerra et al. [24], in this experiment, the 3D spatial signals of the signatures were
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taken into consideration. The signal analysis was in real-time, and a convolutional neural
network was used to track the finger trajectories. The experiment shows an equal error rate
(EER) of 0.46%. Hamed Ketabdar et al. designed the software called MagiSign [2] for the
experiment. The software is based on the magnetic sensor embedded in the mobile phones
and the participants can accomplish the signing registration process by using the mag-
net to draw their signatures around the mobile phone. Javier Guerra-Casanova et al. [25]
collected in-air signatures from 50 participants to form an in-air signature dataset, and
6 participants mimicked the signing processing of the 50 participants to form a forgery
dataset. The researchers used the DTW algorithm and LCS algorithm for the recognition,
and the DTW algorithm outperformed the LCS, which gave 2.80% EER. In the study by
Wee How Khoh et al. [26], the researchers collected signatures from 100 participants via
a Microsoft Kinect sensor, and a self-designed algorithm was applied to the experiment
to find the area of the palm location; the experiment used motion history image (MHI)
to classify the in-air signatures from those participants and it achieved 90.4% accuracy.
Shixuan et al. [27] investigated the effect of orientation on sensors and proposed an adap-
tive orientation method to learn and detect the pattern of data from different dimensions
and process the sensor data separately based on each orientation. The ability and sensitivity
of modern sensors to work as biometric confirmation have also been verified by Attaullah
Buriro et al.’s research [28], in which multi-layer perceptrons (MLPs) were implemented to
recognize the user’s identity through embedded sensors in portable devices. In the study
by Abena Primo et al. [29], the effects of the spatial positions of portable devices were
investigated through supervised learning, which helped improve the adaptability of in-air
signatures in real applications. In the study by S.K. Behera et al. [8], the convolutional
neural network was used to recognize the in-air signatures into the correct category. The
researchers used the leap motion software to generate the trajectory of the in-air signatures.
In the research, 700 signatures were collected for the classification. The experiment showed
a 4% improvement in accuracy compared to the LSTM model and HMM. To fit the signals
into the convolutional model, the signatures were first converted into one-dimensional data.
Among all the techniques used in the in-air signature recognition field, S.K. Behera et al.’s
approach [8] is the closest to our method. Instead of working on one-dimensional data,
such as Behera et al., we used the restored signature images for the convolutional neural
networks (CNNs). The comparative study in the CNN subsection will cover the CNN
models we used for the experiment.

2. Materials and Methods

In-air signatures have made significant progress in the industry because of their
contactless nature, which means that have an advantage over handwritten signatures.
In the dataset that we used [4], 22 participants signed their names in the air using a
smartwatch application. The technical characteristics are shown in Table 2. During the
signing process, participants wore the smartwatches on their wrists and finishes their
signatures. Traditionally, the LSTM model [22], the transformer [11], and RNN [12] have
been used for processing and recognizing the time series models. In our experiment, we
compared the performances of the convolutional neural networks and transformer in terms
of classifying in-air signatures. Moreover, we applied the DTW algorithm to verify the
usability of the dataset. The experiment procedure is shown in Figure 1. We applied
10 different optimizers and learning rates to fine-tune the model to its best performance.
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Table 2. The smartwatch technical characteristics used in the experiment.

Apple Watch Series 6 Configuration

Properties Specifications

Chip

S6 SiP with 64-bit dual-core processor

W3 (Apple wireless chip)

U1 chip (Ultra Wideband)

Connectivity

LTE and UMTS

GPS + Cellular models

Wi-Fi 802.11b/g/n 2.4 GHz and 5 GHz

Sensor
Accelerometer (up to 32 g-forces with fall detection)

Gyroscope

Figure 1. Experiment System architecture for a smartwatch’s in-air recognition. Please note the data
collection phase using swift was conducted by Li [4] in his previous research. The convolutional layer
experiment section is based on AlexNet [16], LeNet [15], VGG [17], and ResNet [18]. The transformer
experiment section is based on the original transformer paper [11].

2.1. Data Acquisition

Given the various handwritten signature datasets listed by Mohammad Saleem et al. [30],
a publicly available dataset for in-air signatures is rare. In our experiment, the dataset was
conducted by Li [4] in his experiment on in-air signature biometrics based on the LSTM model.
The smartwatch data formats are shown in Table 3, which are part of the data gathered for one
participant. For each participant, nine raw data features were collected from the accelerometer,
gyroscope, and device attitude data based on the internal sensor embedded in the smartwatch.
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Table 3. Smartwatch in-air signature data format.

Smartwatch Data Format

WatchGyroX WatchGyroY WatchGyroZ WatchAccX WatchAccY WatchAccZ WatchAttX WatchAttY WatchAttZ

0.02570195 −0.03224608 −0.0120639 −0.01228451 −0.00830266 0.00186165 0.21137402 0.21104763 −0.75536253

0.02712557 −0.03940424 −0.0088675 −0.00624303 −0.00330171 0.00035724 0.2120575 0.21096044 −0.75540958

0.03478016 −0.0445323 −0.0054437 −0.00450777 0.00784102 −0.00614287 0.21283413 0.21098173 −0.75545861

0.05405451 −0.04379743 −0.01255126 −0.00808688 0.01724837 −0.0044408 0.21344206 0.21110055 −0.75555888

... ... ... ... ... ... ... ... ...

2.2. Data Analysis

As shown in Figure 2, during the collection process of the smartwatch in-air signatures,
all of the data gathered from the accelerometer and gyroscope were time-series signals; the
three dimensions were x, y, and z-axis data. The time stamps are shown as deep blue to
red colors, with blue representing an earlier time stamp and red representing a later time
stamp. Figure 2 depicts the 10 genuine signatures of the same participant. The dynamic
time warping algorithm (DTW) [14] can be used to verify the validity of the dataset. The
DTW algorithm can detect distances among various time-series signals [6,31]. The distance
measurement does not simply follow the Euclidean distance. The traditional Euclidean
distance can only measure the static distance between two points while the DTW algorithm
can be used to measure the distance of signals of different lengths. The DTW algorithm has
many variations [32] and is widely applied to various time-series signal applications [33],
including natural language processing [34].

cp(X, Y) :=
L

∑
`=1

c(xn`
, ym`

) (1)

As shown in Algorithm 1 [35], the DTW [14] algorithm can create one-to-many align-
ments among two different signals as shown in Figure 3, in which the two signals are
of different lengths. Those two accelerometer signals are samples taken from the same
participant but of different categories, genuine signatures, and forgery signatures. The
blue and the orange lines represent the fluctuations of two signals while the yellow line
connecting the two signals is the alignment between the valley and peaks of two signatures.

Figure 2. Smartwatch accelerometer data of 10 genuine signature signals from the same participant.
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Figure 3. Dynamic Time Warping Alignment of two signature signals. The blue line and the orange
line represent two signatures respectively while the yellow line shows alignment.

Algorithm 1 Dynamic time warping [35]

Require: u = {u1, u2, . . . , uTu}, v = {v1, v2, . . . , vTv}
g(0, 0) = 0
g(1, 1) = d(u1, v1) · wD
for i in [1 . . . Tu] do

g(i, 0) = ∞
end for
for j in [1 . . . Tv] do

g(0, j) = ∞
end for
for i in [1 . . . Tu] do

for j in [1 . . . Tv] do
g(i, j) = min(g(i, j− 1) + d

(
ui, vj

)
· wV , g(i− 1,

j− 1) + d
(
ui, vj

)
· wD, g(i− 1, j) + d

(
ui, vj

)
· wH)

end for
end for
return D(u, v) = k(w) · g(Tu, Tv) . DTW-distance

The dynamic time warping cost matrix can be constructed as shown in Figure 4. The
right and the top parts of the figure show the two in-air signatures; one of the signatures is
from the genuine category of the participant while the other is from the forgery category of
the participant. The dynamic time warping cost matrix shows the graduate changing from
a dark blue color to a light yellow color; the dark blue color represents a lower alignment
cost between the specific segments of the two matrices while the yellow color represents a
high cost of alignment. Following the lower cost of the matrix, a warping path, shown as
the red-colored line in the figure, goes from the origin to the last element of the matrix, and
the total cost for the wrapping path can be calculated based on Formula (1) [36], in which
cp represents the total cost while c represents the local cost. The last element of the matrix
presents the accumulative alignment cost of the smartwatch’s in-air signatures, and the
specific cost value is shown at the top-right corner of the figure.
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Figure 4. Dynamic time warping cost matrix of two signature signals.

Based on the DTW algorithm, for each participant, we can analyze the statistical
correlations of the genuine and forgery categories based on the DTW distances. The DTW
distance can be calculated based on Formula (2) [36], in which p∗ represents the optimal
warping path. As shown in Figure 5, the genuine category and the forgery category of the
same participant show a large distribution variance and this large variance applies to all
22 participants. Those large variances between different categories provide us with statisti-
cal support for using the convolutional neural network to classify the given signatures into
the correct classifications.

DTW(X, Y) := cp∗(X, Y)

= min{cp(X, Y)

| p is an (N, M)-warping path }
(2)

Figure 5. The genuine and forged in-air signature DTW distance comparisons of the smartwatch.
PXR represents the DTW distance of the genuine signatures of participant X, and PXF represents the
DTW distance of the forgery signatures of participant X. The yellow dots demonstrates the specific
DTW alignment costs among the two signatures.

3. Proposal of Restoration of In-Air Signature

This section consists of three subsections. In Section 3.1, the details of the system architec-
ture are discussed. In Section 3.2, the methodology of the in-air signature restoration is covered.
In Section 3.3, the structure of the models used in our experiment is briefly introduced, including
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four CNN models (LeNet [15], AlexNet [16], VGG [17], and ResNet [18]) and a time sequence
model (the transformer) [11], which works as the baseline for the CNN models.

3.1. System Architecture

As shown in Figure 1 (note that some of the symbols in graphs are from Flaticon.
The graph created was based on draw.io.), the system architecture of the experiment is
illustrated in detail, including the structure of different convolutional neural networks. For
each participant with the smartwatch worn on the wrist, the time-stamped in-air signature
data information will be recorded based on the software developed through Swift [4,37].
With those in-air signature digital signals, we used the DTW algorithm [14] to verify the
usability. After the data processing stage and restoration code, in-air signatures will be
restored into visible three-dimensional in-air signature images. A transformation into
desirable pixels will be conducted for different convolutional neural networks, respectively,
as shown in Figure 6.

Figure 6. Gray-scale in-air signature of a 32 by 32 transformation and the three-channel RGB in-air
signature of a 224 by 224 transformation.

The real and forged in-air signatures after restoration will be labeled and marked into
different classes. Subsequently, four different CNN models, including LeNet, AlexNet,
VGG, and ResNet, are applied to the restored smartwatch in-air signature dataset. The
structure of each convolutional neural network will be discussed in detail in Section 3.3, as
shown in Figures 7–9.

Figure 7. LeNet-5 structure.
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Figure 8. AlexNet structure.

Figure 9. VGG-16 structure (D configuration).

3.2. Methodology

One of the novelties of our experiment involved restoring the in-air signature into three-
dimensional visible trajectories from the sensor embedded in the smartwatch, which can
be used for classification using various convolutional neural networks. The accelerometer
and the gyroscope sensors were embedded in the smartwatch generate acceleration signals
in meters per square, and we tested the signature trajectory restoration based on the first
derivative, the velocity signals, with respect to time, and the second derivative, the location
signals, with respect to time. Even though the location signals, the second derivative, were
supposed to give a better restoration of the trajectory by intuition, the noise was enlarged
by a large degree, and the real meaningful location signals were overwhelmed by the
noises. During the collection phase of the signature, noises were inevitably added to the
signature signals. Nevertheless, the first deviation of the in-air signatures, velocity vectors,
can best restore the in-air signature trajectories while minimizing the effects of the noises
after testing.

In this way, the time series signals can be restored into visible signatures and this static
reconstruction of signatures can also capture the time features. As shown in Figure 10, the
area of the signature in a deeper blue represents a longer time spent in this area during
the signing process. The three-dimensional in-air signatures were transformed into the
desirable pixels for different CNN models as shown in Figure 6.
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Figure 10. The in-air signature three-dimensional static restoration of a smartwatch.

Unlike the traditional accelerometer-based in-air signature recognition, once the in-air
signature restoration was constructed, using the more developed convolutional neural
network could better solve the classification problem and improve recognition accuracy.
Meanwhile, as a comparison baseline for convolutional models, the nine-dimensional time-
series in-air signature digital signals were used directly after normalization, concatenation,
and downsampling for the transformer. In our experiment, multiple optimizers were used
for the fine-tuning purpose; these optimizers were Adadelta [38], Adagrad [39], Adam [40],
AdamW [41], Adamax [40], ASGD [42], Ftrl [43], NAdam [44], RAdam [45], RMSprop [46],
and SGD [47].

3.3. Comparative Study of CNN

LeNet [15] was one of the earliest proposed image recognition convolutional neural net-
works; it was first used for letter recognition. The LeNet structure, as shown in Figure 7, can be
broken down into three fully linked layers, two sub-sampling layers, and two convolutional
layers. (The LeNet concept is from [15] and the figure was created based on NN-SVG). One
channel, six kernels, a stride of one, and a kernel size of five make up the first convolutional
layer. Using a pool size of 2 and a stride of 2, we can construct the first pooling layer. The
second convolutional layer has a stride of 1, 16 channels, 32 kernels, and a kernel size of 5. A
pool size of 2 and a stride of 2 are likewise employed by the second pooling layer. The first
fully connected layer, which follows the LeNet structure, is 32 × 5 × 5 to 120. The second fully
linked layer is 120 to 84.

The AlexNet [16] model structure is illustrated in Figure 8. (The AlexNet concept
is from the original paper [16] and the figure was created based on NN-SVG.) For the
original AlexNet structure, two GPUs are used, and the top and bottom parts are identical
structures. It mainly contains 5 convolutional layers and 3 max-pooling layers.

VGG [17] was first proposed in 2014, which illustrates 6 different structures of the
VGG with subtle differences; the mostly used configuration is the D structure. Figure 9
shows the convolutional layer, max pooling layer, and fully connected layer, which give a
better illustration of the structure. (The VGG concept is from the original paper [17] and
the figure is finished based on NN-SVG). By substituting the large-size kernels with much
smaller 3 by 3 kernels, which have the same receptive field, VGG can minimize the number
of parameters [17]. We have 16 layers in the D architecture, comprising 3 fully connected
layers and 13 convolutional layers. For the convolutional layers, the stride is 1 and the
padding is 1. The max-pooling size and stride both equal 2. In a manner similar to AlexNet,
we use 224 by 224 RGB input signature images, which are then passed into two 3 by 3 kernel
layers with 64 kernels, max-pooling, two 3 by 3 kernel layers with 128 kernels, max-pooling,
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three 3 by 3 kernel layers with 256 kernels, max-pooling, three 3 by 3 kernel layers with
512 kernels, and a max-pooling layer. There are finally three fully connected layers.

ResNet [18], which employs extremely deep convolutional neural networks, was ini-
tially suggested in 2015. To address the degradation issue, it suggested using residual
blocks, and to speed up training, it proposed using batch normalization rather than a
dropout. The residual block sums up the input matrix through the shortcut together with
the feature matrix following convolution before passing it into the ReLU activation func-
tion [48]. A much deeper convolutional neural network may be used without deterioration
because of the residual block. For ResNet, batch normalization can be used to adjust the
feature map distribution after the convolution, which satisfies the average to be zero and the
variance to be one. The transformer [11] consists of multiple sets of encoders and decoders.
Each of the encoders has the same structure but does not share the same parameters. For the
encoder, it consists of input embedding, multi-head attention, and a feed-forward network.
For the decoder, it consists of masked multi-head attention, multi-head attention, and a
feed-forward network. In our experiment, the performance of the transformer is mainly
used as the baseline reference for the rest of the convolutional neural network models.

4. Results

In this section, we first present the result of the four convolutional neural networks
with respect to various learning rates and optimizers. Then the performance of the trans-
former is demonstrated as the baseline comparison. In the end, we discuss the performance
comparison of the CNN and transformer and the best-fine-tuned result in our experiment.

4.1. Convolutional Neural Network (CNN) Result

As a preliminary experiment, we tested the multi-class classification on the LeNet
first. The mean and standard deviations were calculated for the image set. The restored
signature was first transformed to the necessary pixel size and gray-scale pictures as seen
in Figure 6 because LeNet [15] only accepts 32 by 32 one-channel gray-scale images. We
had 22 participants and 44 categories; thus, the final fully connected layer was 84 to 44, as
shown in Figure 7. For training and testing, the model employed cross-entropy loss and
ReLU activation functions [48].

For AlexNet [16], similar to the LeNet, the mean, and standard deviations were cal-
culated for the signature image set. However, AlexNet took in three-channel images, so
the mean and standard deviations are in a list format, which is [0.88680416, 0.9199834,
0.95062685] for the mean and [0.22626287, 0.16366783, 0.103204496] for the standard de-
viations. Different from LeNet, AlexNet took in three-channel colored images of 224 by
224 pixels as shown in Figure 6. The model used in this experiment is identical to the
original structure, except for the last output layer. The original paper had 1000 categories,
it changed to 44 to fit the smartwatch in-air signature dataset.

The VGG [17] structure was modified from 1000 for the last fully connected layer that
was initially used for ImageNet [49], which contained 1000 classes and 44 classifications.
The size of the input did not change as it traveled through the convolutional layer but it
was cut in half by the max-pooling layer since the max-pooling size was two and the stride
size is two.

To better fine-tune the model, here are the results for each model with respect to
the learning rate. The cross-entropy loss and stochastic gradient descent (SGD) [47] were
chosen for each model, and we ran 1000 epochs for each model. For each epoch, the batch
size was selected to be 5 to best minimize the loss oscillation. Given the dataset is relatively
small, the model used hold-out validation with 50% for training and 50% for testing to
reduce the possible bias in the testing process. As shown in Table 4, to evaluate the effect of
the learning rate on the model and dataset, we kept the loss function fixed to cross-entropy
loss and the optimizer fixed to be stochastic gradient descent (SGD); the bold numbers
show the highest testing score for each of the learning rates with the corresponding model.
The highest testing score was 99.77% for ResNet with a learning rate of 1× 10−4, which
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is reasonable because ResNet uses a much deeper network and batch normalization to
adjust the distribution of the feature map. Additionally, the best testing scores for AlexNet
and VGG all exist in the 1× 10−4 learning rate field. Leslie N. Smith’s research [50] also
supports that for a relatively small dataset, choosing a lower learning rate can be more
suitable for the model. The accuracy is expected to be lower if we expand our dataset,
which is also one of the problems in this proposed recognition method if we want to apply
the technique to industries. If more users are registered into the recognition system, and
more classification categories are needed to be created, it may result in an unbalanced
dataset with lower accuracy [51].

Table 4. All of the models use cross-entropy for the loss and stochastic gradient descent (SDG) for
the optimizer. The bold value for the test score represents the best learning rate for performance.
All of the loss values are in scientific notation while the scores are in percentage values, where “Inf”
represent a very large loss value.

Model Performance with Respect to Learning Rate

Cross-Entropy & SDG Learning Rate

Model Criteria lr = 1× 10−1 lr = 1× 10−2 lr = 1× 10−3 lr = 1× 10−4

LeNet

Train Loss 2.78× 10−5 2.32× 10−4 2.15× 10−3 3.52× 100

Train Score (%) 98.5995 98.0359 87.6746 24.3396

Test Loss 8.94× 10−6 1.91× 10−4 2.15× 10−3 1.86× 100

Test Score (%) 99.4086 99.0645 98.8136 46.2164

AlexNet

Train Loss Inf 9.71× 10−1 3.02× 10−3 9.13× 10−3

Train Score (%) 2.2718 84.3845 98.1127 97.8732

Test Loss Inf 1.69× 100 3.04× 10−3 6.04× 10−3

Test Score (%) 2.2727 81.7914 97.6605 99.2946

VGG

Train Loss Inf 1.70× 10−3 7.83× 10−3 8.05× 10−3

Train Score (%) 2.2727 87.4872 98.7905 98.1264

Test Loss Inf 2.56× 10−2 6.85× 10−3 2.74× 10−3

Test Score (%) 2.2727 93.5286 98.1041 99.3759

ResNet

Train Loss 3.95× 10−1 2.14× 10−2 7.55× 10−4 1.13× 10−3

Train Score (%) 84.8318 96.0959 99.4000 98.9268

Test Loss 3.14× 10−1 1.08× 10−2 7.47× 10−3 7.79× 10−4

Test Score (%) 83.6241 98.9127 99.4386 99.7723

Transformer
(Baseline)

Train Loss 3.78× 100 2.69× 10−1 2.27× 100 3.47× 100

Train Score (%) 0.0356 0.9609 0.5872 0.1103

Test Loss 3.86× 100 5.27× 100 3.78× 100 3.93× 100

Test Score (%) 0.0000 0.0282 0.0704 0.0423

With the learning rate fixed to 1× 10−4 and the loss function fixed to cross-entropy
loss, Table 5 shows the model performance with respect to different optimizers, in which
10 optimizers are tested for the performance. We ran 1000 epochs for each optimizer and a
batch size of 5 to best evaluate the optimizer performance. As shown in Table 5, the training
loss, train score, test loss, and test score were evaluated with respect to the optimizers. The
10 optimizers covered in the experiment were Adadelta [38], Adagrad [39], Adam [40],
AdamW [41], Adamax [40], ASGD [42], NAdam [44], RAdam [45], RMSprop [46], and
SGD [47].
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Table 5. All of the models used cross-entropy loss and kept the learning rate fixed at 1× 10−4. The
performance of each model (with respect to 10 different optimizers) was tested to fine-tune the
performance within 1000 epochs. All of the loss values are in scientific notation while the scores are
in percentage values. Please note that for the ASGD/Ftrl column, the Ftrl optimizer [43] was solely
used for the transformer as ASGD [42] is not supported by Keras [52]. ASGD was used for the rest of
the optimizers in the ASGD/Ftrl column, as it is supported by PyTorch [53].

Model Performance with Respect to Optimizers

lr = 1× 10−4 & Cross-Entropy Optimizers

Model Criteria Adadelta Adagrad Adam AdamW Adamax ASGD/Ftrl NAdam RAdam RMSprop SGD

LeNet

Train Loss 3.71× 100 3.57× 100 7.15× 10−8 1.65× 10−6 0.00× 100 3.33× 100 1.91× 10−7 0.00× 100 0.00× 100 3.52× 100

Train Score (%) 5.0468 28.7778 98.1396 97.9845 93.0550 12.0159 98.0236 97.0636 97.9309 24.3396

Test Loss 3.69× 100 3.32× 100 8.01× 10−6 4.26× 10−5 1.91× 10−7 2.38× 100 1.53× 10−5 2.15× 10−7 4.08× 10−5 1.86× 100

Test Score (%) 3.8445 12.1927 98.4664 98.4068 92.9855 34.8241 98.1705 98.4814 96.4250 46.2164

AlexNet

Train Loss 1.31× 100 2.13× 10−3 0.00× 100 0.00E× 100 0.00× 100 2.22× 10−2 0.00× 100 0.00× 100 3.89× 10−2 9.13× 10−3

Train Score (%) 55.5791 98.0123 97.7586 97.7295 98.8518 89.1786 97.8955 97.4246 97.4186 97.8732

Test Loss 2.51× 10−1 6.72× 10−3 0.00× 100 0.00× 100 1.67× 10−7 4.10× 10−3 0.00× 100 0.00× 100 0.00× 100 6.04× 10−3

Test Score (%) 70.4927 98.2100 98.5827 98.7150 99.4232 97.4268 98.5796 98.5955 98.1386 99.2946

VGG

Train Loss 1.51× 10−1 1.00× 10−3 0.00× 100 8.13× 10−6 0.00× 100 7.09× 10−3 0.00× 100 0.00× 100 7.67× 10−1 8.05× 10−3

Train Score (%) 81.4840 98.8759 97.8546 98.1414 99.0646 94.1918 98.2309 97.9536 97.8327 98.1264

Test Loss 6.63× 10−2 1.03× 10−3 0.00× 100 0.00× 100 0.00× 100 2.29× 10−3 0.00× 100 0.00× 100 7.87× 10−7 2.74× 10−3

Test Score (%) 88.2750 99.4282 99.0191 99.1255 99.5205 98.3523 99.1636 99.1818 98.4050 99.3759

ResNet

Train Loss 5.95× 10−2 4.29× 10−3 2.02× 10−4 4.41× 10−6 2.96× 10−6 5.41× 10−2 1.32× 10−5 7.04× 10−5 3.10× 10−7 1.13× 10−3

Train Score (%) 85.6623 99.6332 99.1150 99.0900 99.7636 97.6668 99.1091 98.9477 99.0100 98.9268

Test Loss 1.73× 10−2 3.11× 10−3 4.03× 10−5 1.44× 10−5 3.57× 10−5 3.42× 10−2 2.72× 10−6 4.10× 10−4 3.45× 10−5 7.79× 10−4

Test Score (%) 96.3550 99.8514 99.6814 99.6777 99.8427 99.5318 99.6905 99.6505 99.6600 99.7723

Transformer
(Baseline)

Train Loss 3.73× 100 5.77× 10−1 3.77× 100 3.78× 100 1.04× 100 1.30× 100 3.31× 100 1.12× 100 1.24× 101 2.69× 10−1

Train Score (%) 0.0463 0.9288 0.0356 0.0249 0.8683 0.7331 0.6228 0.7758 0.5089 0.9609

Test Loss 3.97× 100 4.20× 100 3.89× 100 3.84× 100 4.37× 100 3.88× 100 1.24× 101 1.19× 101 1.94× 101 5.27× 100

Test Score (%) 0.0000 0.08451 0.0000 0.0000 0.1268 0.1127 0.0704 0.0563 0.0704 0.0282

LeNet, as an old-fashioned convolutional neural network, shows a slightly worse
performance compared with other models. Figure 11 shows the loss curve for LeNet with
respect to each of the optimizers. The largest train loss optimizer for the LeNet is Adagrad
with a value of 3.57× 100; the smallest train loss optimizers for the LeNet are Adamax,
RAdam, and RMSprop, with a value of 0.00× 100. The largest test loss optimizer for the
LeNet is Adagrad with a value of 3.69× 100 and the smallest train loss optimizer for the
LeNet is Adamax with a value of 1.91× 10−7. The best train score optimizer for LeNet is
Adam, with a score of 98.1396% and the worst train score optimizer for LeNet is Adadelta,
with a score of 5.0468%. The best test score optimizer for LeNet is RAdam, with a score of
98.4814% and the worst test score optimizer for LeNet is Adadelta, with a score of 3.8445%.
The results show that the RAdam optimizer has a better performance in combination with
the LeNet, which can be supported by the study by Ke Cui et al. [54]. In their experiment,
the combination of the RAdam optimizer and LeNet was chosen for currency recognition
through transfer learning, in which the accuracy improved from 95% to 99.97%.

As a traditional CNN, AlexNet is one of the most powerful networks in the field of
conventional convolutional neural networks. Figure 12 shows the loss curve for AlexNet
with respect to each of the optimizers. The largest train loss optimizer for the AlexNet is
Adadelta with a value of 1.31× 100 and the smallest train loss optimizers for AlexNet are
Adam, AdamW, Adamax, NAdam, and RAdam, with a value of 0.00× 100. The largest test
loss optimizer for AlexNet is Adadelta, with a value of 2.51× 10−1, and the smallest train
loss optimizers for the AlexNet are Adam, AdamW, NAdam, RAdam, and RMSprop, with
a value of 0.00× 100. The best train score optimizer for AlexNet is Adamax, with a score
of 98.8518% and the worst train score optimizer for AlexNet is Adadelta, with a score of
55.5791%. The best test score optimizer for AlexNet is Adamax, with a score of 99.4232%,
and the worst test score optimizer for AlexNet is Adadelta, with a score of 70.4927%. The
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superior performance of the combination of AlexNet and Adamax can be supported by
the study conducted by N. A. M. Ariff et al. [55]. The study compares the performance of
AlexNet with the assistance of Adam and Adamax on 20 audio files. In this experiment,
the combination of AlexNet and Adamax shows a greater performance than the normal
Adam optimizer.

Figure 11. The loss curve of LeNet with respect to 10 different optimizers. Both the learning loss and
testing loss for each optimizer are covered in the graph. The two zoom-in areas are (x1, x2) = (0, 1000),
(y1, y2) = (3, 4); (x1, x2) = (0, 300), (y1, y2) = (0, 2).
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Figure 12. The loss curve of AlexNet with respect to 10 different optimizers. Both the learning loss
and testing loss for each optimizer are covered in the graph. The zoom-in area is (x1, x2) = (0, 100),
(y1, y2) = (0, 4).

VGG serves as the foundation for modern convolutional neural networks and has
shown excellent performance in our in-air signature dataset. Figure 13 shows the loss curve
for VGG with respect to each of the optimizers. The largest train loss optimizer for the VGG
is Adadelta with a value of 1.51× 10−1, and the smallest train loss optimizers for the VGG
are Adam, Adamax, NAdam, and RAdam, with a value of 0.00× 100. The largest test loss
optimizer for the VGG is Adadelta, with a value of 6.63× 10−2, and the smallest train loss
optimizers for the VGG are Adam, AdamW, Adamax, NAdam, and RAdam, with a value
of 0.00× 100. The best train score optimizer for VGG is Adamax, with a score of 99.0646%
and the worst train score optimizer for VGG is Adadelta, with a score of 81.4840%. The best
test score optimizer for VGG is Adamax, with a score of 99.5205%, and the worst test score
optimizer for VGG is Adadelta, with a score of 88.2750%. The combination of the VGG and
Adamax for image classification is popular in research; for example, in the medical study
by Lorencin Ivan et al. [56], the VGG-16 structure is used for bladder cancer diagnosis. The
combination of VGG-16 and the Adamax optimizer can successfully detect bladder cancer
images with an accuracy of 0.98.
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Figure 13. The loss curve of VGG with respect to 10 different optimizers. Both the learning loss and testing
loss for each optimizer are covered in the graph. The zoom-in area is (x1, x2) = (0, 100), (y1, y2) = (0, 4).

ResNet is one of the most powerful convolutional neural networks in the decades and
it works as the foundation for variations of modern CNNs. Figure 14 shows the loss curve
for ResNet with respect to each of the optimizers. The largest train loss optimizer for the
ResNet is ASGD, with a value of 5.41× 10−2, and the smallest train loss optimizer for the
ResNet is RMSprop, with a value of 3.10× 10−7. The largest test loss optimizer for the
ResNet is ASGD, with a value of 3.42× 10−2, and the smallest train loss optimizer for the
ResNet is NAdam, with a value of 2.72× 10−6. The best train score optimizer for ResNet
is Adamax, with a score of 99.7636%, and the worst train score optimizer for ResNet is
Adadelta, with a score of 85.6623%. The best test score optimizer for ResNet is Adagrad,
with a score of 99.8514%, and the worst test score optimizer for ResNet is Adadelta, with a
score of 96.3550%. In the study by Yang Jie et al. [57], the comparison between different
CNN structures in combination with various optimizers was conducted for weed detection,
in which the combination of the ResNet and Adagrad outperformed other optimizers with
an accuracy of 0.98. The research can be used as statistical support for the performance of
the ResNet and Adagrad combination.
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Figure 14. The loss curve of ResNet with respect to 10 different optimizers. Both the learning loss
and testing loss for each optimizer are covered in the graph. The zoom-in area is (x1, x2) = (0, 100),
(y1, y2) = (0, 4).

4.2. Transformer Result

The transformer is mainly used for language translation [58] and time sequence
forecasting [59], which means it can be used as the baseline model for comparison. While
there is a significant amount of research related to time series forecasting, there is a limited
amount of research on time series classification, particularly for multi-class classification
tasks such as in-air signature recognition. Nevertheless, Ford Car company released a
motor noise classification dataset, which is a binary time sequence classification task [60].
A transformer can be used to classify whether the given motor sound signal contains the
damaged part, and the whole labeling set is marked as “damaged” or “undamaged”. The
dataset (proposed in 2018) includes 3601 training samples and 1320 testing samples with
only 2 classes. There would be 1800 training samples for each class and 660 testing samples
for each class if the classes are balanced. This transformer model can be further developed
into a multi-classification time sequence model for smartwatch in-air signature recognition.
As shown in Figure 15, the original length of 440 concatenated in-air signature signals
is recorded.

Figure 15. The in-air signature nine-dimensional concatenated length of a smartwatch.
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To best exploit the performance of the transformer, the nine-dimensional smartwatch
in-air signature data were downsampled with the corresponding frequency for each dimen-
sion to fit the shortest signal length and concatenated together for each time stamp, which
was of the length 1400. Then each time stamp in-air signature signals were normalized
with respect to the summation of the current time stamp. As shown in Tables 4 and 5, the
transformer works as the baseline model for comparison. The dropout is set to 0.25, and
layer-normalization is specified as 1e−6 for the model to reduce the effect of over-fitting,
but the over-fitting problem exists to a different degree among 50 repetitions, as shown in
Figure 16.

Figure 16. Transformer over-fitting phenomena on smartwatch dataset in 50 repetitions.

The learning curve of the training set shows high accuracy and reaches over 90% for
some optimizers, indicating the model is, in fact, learning pattern knowledge during the
epochs. However, the testing accuracy stays low, which means that this knowledge is
difficult to generalize over new samples. The main reason for this is that the transformer
works on very large amounts of data [59,61,62], and its performance is dependent on
pre-training. For example, BERT uses Wikipedia for the pre-training and it performs well
for the downstream language processing tasks [58]. The transformer is a-complicated
structure with too many parameters involved [63] and over-fitting is expected, given a
small- or medium-sized dataset. For the time sequence recognition model, a simpler
model with lower complexity, such as DTW [14] and LSTM [22], would be more desirable.
In Li’s research, LSTM and RNN show effective performances with 0.83% and 0.97%
EER, respectively [4]. In our research, convolutional neural networks can be much easier
to generalize on small- or medium-sized in-air signature datasets without pre-training.
Additionally, using CNN for in-air signature recognition is popular for a moderately sized
dataset [5,64,65]. In Behera’s research [8], the experiment uses self-designed CNN for
in-air signature recognition; a moderately sized dataset (50 participants) was used for the
experiment. The results showed 4% improvement compared with the time sequence model,
such as the LSTM model.

5. Discussion

The experiment shows that the optimizer has a significant influence on loss and
accuracy in median-sized in-air signature classification tasks. After fine-tuning the learning
rate and optimizer, we can obtain the best testing performance score. Table 6 shows the
best configuration for each of the models when applied to the smartwatch in-air signature
dataset. The ResNet model with a learning rate of 1× 10−4 and Adagrad as the optimizer
gives the best performance of 99.8514% for the smartwatch in-air signature testing dataset.
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Table 6. The table shows the best performance configuration that was tested in this experiment
for each model and the corresponding testing score in percentage. Please note that the experiment
does not enumerate every combination of parameters exhaustively. In theory, there is still a possible
combination that gives a better performance for each model.

Final Configuration for Each Model

LeNet AlexNet VGG ResNet Transformer
(Baseline)

Learning Rate 1× 10−1 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Optimizer SGD Adamax Adamax Adagrad Adamax

Test Score (%) 99.4086 99.4232 99.5205 99.8514 0.1268

Figures 17 and 18 show the learning and loss curves for four models in 1000 Epochs.
The ResNet is the gray colored line, from which we could observe that ResNet shows a
much better tendency compared with the rest of the models.

Figure 17. Learning curve comparisons for the LeNet training process, LeNet testing process, AlexNet
training process, AlexNet testing process, VGG training process, VGG testing process, ResNet training
process, and ResNet testing process.
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Figure 18. Loss curve comparisons for the LeNet training process, LeNet testing process, AlexNet
training process, AlexNet testing process, VGG training process, VGG testing process, ResNet training
process, and ResNet testing process.

6. Future Research

In-air signature recognition using the in-air signatures of only 22 participants is a
relatively small dataset; this should be expanded in the near future and a comparison
among the real handwritten signature will be conducted. The statistical ablation study
would be very helpful in investigating further. We could statistically observe which part
of the CNN provides better performance for the in-air signature dataset by removing
certain blocks within the CNN. Analyzing statistically or mathematically the relatively
high-performance CNN originating from the layer or sub-structure would be a great
direction for future research. More time sequence models and convolution neural networks
should be tested. Moreover, wearable intelligent gloves can be used to detect the in-air
signature signals as well, and Raspberry Pi [66] can be used to build this device from
scratch; we could have the flexibility and freedom of choosing the more reliable sensors,
and the applications can also be expanded to sign language recognition and virtual reality
(VR) [67].

7. Conclusions

In this research, we used the smartwatch in-air signature dataset consisting of 22 partici-
pants with 10 genuine signatures and 10 fake signatures, which were composed of 440 in-air
signatures and 44 classifications. We performed the dynamic time warping algorithm (DTW)
to verify the usability of the dataset. The nine-dimensional raw data went through normal-
ization, concatenation, and downsampling as the data pre-processing for transformers, but it
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showed different degrees of overfitting for various combinations of optimizers and learning
rates. We performed three-dimensional static restoration of the in-air signature data from
the smartwatch to fit convolutional neural network models. Four convolutional models,
including the LeNet, AlexNet, VGG, and ResNet, were tested with respect to 10 optimizers,
including Adadelta, Adagrad, Adam, AdamW, Adamax, ASGD, NAdam, RAdam, RMSprop,
and SGD. In our experiment, the best testing performance achieved a successful prediction
rate of 99.8514% for the identity category of the in-air signature signer using ResNet with the
Adagrad optimizer and a learning rate of 1× 10−4.
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CNN convolutional neural network
DTW dynamic time warping
MD-DTW multidimensional dynamic time warping
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EER equal error rate
MHI motion history image
EcoG electrocorticography
ALS amyotrophic lateral sclerosis
MLP multi-layer perceptron
SDG stochastic gradient descent
Pi Raspberry Pi
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1. Oğuz, A.; Ertuğrul, Ö.F. Human identification based on accelerometer sensors obtained by mobile phone data. Biomed. Signal

Process. Control 2022, 77, 103847. [CrossRef]
2. Ketabdar, H.; Moghadam, P.; Naderi, B.; Roshandel, M. Magnetic signatures in air for mobile devices. In Proceedings of the 14th

International Conference on Human-Computer Interaction with Mobile Devices and Services Companion, San Francisco, CA,
USA, 21–24 September 2012; pp. 185–188.

3. Rehman, W.U.; Laghari, A.; Memon, Z.U. Exploiting smart phone accelerometer as a personal identification mechanism. Mehran
Univ. Res. J. Eng. Technol. 2015, 34, 21–26.

4. Li, G.; Sato, H. Sensing in-air signature motions using smartwatch: A high-precision approach of behavioral authentication. IEEE
Access 2022, 10, 57865–57879. [CrossRef]

http://doi.org/10.1016/j.bspc.2022.103847
http://dx.doi.org/10.1109/ACCESS.2022.3177905


Appl. Sci. 2023, 13, 3958 22 of 24

5. Malik, J.; Elhayek, A.; Ahmed, S.; Shafait, F.; Malik, M.I.; Stricker, D. 3dairsig: A framework for enabling in-air signatures using a
multi-modal depth sensor. Sensors 2018, 18, 3872. [CrossRef]

6. Fang, Y.; Kang, W.; Wu, Q.; Tang, L. A novel video-based system for in-air signature verification. Comput. Electr. Eng. 2017,
57, 1–14. [CrossRef]

7. Guerra-Segura, E.; Ortega-Pérez, A.; Travieso, C.M. In-air signature verification system using leap motion. Expert Syst. Appl. 2021,
165, 113797. [CrossRef]

8. Behera, S.K.; Dash, A.K.; Dogra, D.P.; Roy, P.P. Air signature recognition using deep convolutional neural network-based
sequential model. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20–24 August 2018; pp. 3525–3530.

9. Wang, H.; Lymberopoulos, D.; Liu, J. Sensor-based user authentication. In Wireless Sensor Networks; Abdelzaher, T., Pereira, N.,
Tovar, E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 168–185.

10. Laghari, A.; Waheed-ur-Rehman; Memon, Z.A. Biometric authentication technique using smartphone sensor. In Proceedings of the
2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 12–16 January
2016; pp. 381–384.

11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

12. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. Parallel Distrib. Process. 1986,
1, 318–363.

13. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef]

14. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech,
Signal Process. 1978, 26, 43–49. [CrossRef]

15. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

17. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
19. Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral

sclerosis. Lancet 2011, 377, 942–955. [CrossRef]
20. Xie, Z.; Schwartz, O.; Prasad, A. Decoding of finger trajectory from ecog using deep learning. J. Neural Eng. 2017, 15, 11. [CrossRef]
21. Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift

in position. Biol. Cybern. 1980, 36, 193–202. [CrossRef]
22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
23. Pfurtscheller, G.; Müller, G.R.; Pfurtscheller, J.; Gerner, H.J.; Rupp, R. ’Thought’—Control of functional electrical stimulation to

restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 2003, 351, 33–36. [CrossRef]
24. Guerra-Casanova, J.; Sánchez-Ávila, C.; de Santos-Sierra, A.; Bailador, G. A robustness verification system for mobile phone

authentication based on gestures using linear discriminant analysis. In Proceedings of the 2011 Third World Congress on Nature
and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; pp. 157–162.

25. Guerra-Casanova, J.; Ávila, C.S.; Bailador, G.; de-Santos-Sierra, A. Time series distances measures to analyze in-air signatures to
authenticate users on mobile phones. In Proceedings of the 2011 Carnahan Conference on Security Technology, Barcelona, Spain,
18–21 October 2011; pp. 1–7.

26. Khoh, W.H.; Pang, Y.H.; Teoh, A.B. In-air hand gesture signature recognition system based on 3-dimensional imagery. Multimed.
Tools Appl. 2019, 78, 6913–6937. [CrossRef]

27. Wang, S.; Yuan, J.; Wen, J. Adaptive phone orientation method for continuous authentication based on mobile motion sensors.
In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA,
4–6 November 2019; pp. 1623–1627.

28. Buriro, A.; Crispo, B.; Delfrari, F.; Wrona, K. Hold and sign: A novel behavioral biometrics for smartphone user authentication. In
Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 276–285.

29. Primo, A.; Phoha, V.V.; Kumar, R.; Serwadda, A. Context-aware active authentication using smartphone accelerometer measure-
ments. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH,
USA, 23–28 June 2014; pp. 98–105.

30. Saleem, M.; Kovari, B. Survey of signature verification databases. In Proceedings of the MultiScience-XXXIII. microCAD
International Multidisciplinary Scientific Conference, Miskolc, Hungary, 23–24 May 2019.

31. Bailador, G.; Sanchez-Avila, C.; Guerra-Casanova, J.; de Santos Sierra, A. Analysis of pattern recognition techniques for in-air
signature biometrics. Pattern Recognit. 2011, 44, 2468–2478. [CrossRef]

32. Yeo, K.; Yin, O.S.; Han, P.Y.; Kwee, W.K. Real time mobile application of in-air signature with fast dynamic time warping (fastdtw).
In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur,
Malaysia, 19–21 October 2015; pp. 315–320.

http://dx.doi.org/10.3390/s18113872
http://dx.doi.org/10.1016/j.compeleceng.2016.11.010
http://dx.doi.org/10.1016/j.eswa.2020.113797
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/S0140-6736(10)61156-7
http://dx.doi.org/10.1088/1741-2552/aa9dbe
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/S0304-3940(03)00947-9
http://dx.doi.org/10.1007/s11042-018-6458-7
http://dx.doi.org/10.1016/j.patcog.2011.04.010


Appl. Sci. 2023, 13, 3958 23 of 24

33. Muscillo, R.; Conforto, S.; Schmid, M.; Caselli, P.; D’Alessio, T. Classification of motor activities through derivative dynamic time
warping applied on accelerometer data. In Proceedings of the Conference proceedings: Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; Volume 2007, pp. 4930–4933.

34. Mantena, G.; Achanta, S.; Prahallad, K. Query-by-example spoken term detection using frequency domain linear prediction and
nonsegmental dynamic time warping. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 946–955. [CrossRef]

35. Furlanello, C.; Merler, S.; Jurman, G. Combining feature selection and dtw for time-varying functional genomics. IEEE Trans.
Signal Process. 2006, 54, 2436–2443. [CrossRef]

36. Müller, M. Information Retrieval for Music and Motion; Springer: Berlin/Heidelberg, Germany, 2007.
37. Schaller, M.; Gonnet, P.; Draper, P.W.; Chalk, A.B.; Bower, R.G.; Willis, J.; Hausammann, L. SWIFT: SPH with Inter-Dependent

Fine-Grained Tasking; Astrophysics Source Code Library: Online, 2018; ascl:1805.020.
38. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
39. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.

2011, 12, 2121–2159.
40. Diederik, K.; Jimmy, B. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
41. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
42. Polyak, B.T.; Juditsky, A.B. Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 1992, 30, 838–855.

[CrossRef]
43. McMahan, B. Follow-the-regularized-leader and mirror descent: Equivalence theorems and l1 regularization. In Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
Volume 15, pp. 525–533.

44. Dozat, T. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th International Conference on Learning
Representations, San Juan, Puerto Rico, 2–4 May 2016; pp. 1–4.

45. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv 2019,
arXiv:1908.03265.

46. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
47. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings

of the 30th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, Atlanta, GA, USA,
17–19 June 2013; Dasgupta, S., McAllester, D., Eds.; PMLR: Cambridge, MA, USA, 2013; Volume 28, pp. 1139–1147.

48. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136. [CrossRef]
49. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
50. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. 2015. Available online: https://arxiv.org/abs/1506.01186

(accessed on 10 February 2023).
51. Kaur, H.; Pannu, H.S.; Malhi, A.K. A systematic review on imbalanced data challenges in machine learning: Applications and

solutions. ACM Comput. Surv. (CSUR) 2019, 52, 79. [CrossRef]
52. Chollet, François and others; Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 10 February 2023).
53. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Cambridge, MA, USA, 2019; pp. 8024–8035. Available online: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf (accessed on 10 February 2023).

54. Cui, K.; Zhan, Z.; Pan, C. Applying radam method to improve treatment of convolutional neural network on banknote identifi-
cation. In Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou,
China, 18–20 March 2020; pp. 468–476.

55. Ariff, N.A.M.; Ismail, A.R. Study of adam and adamax optimizers on alexnet architecture for voice biometric authentication
system. In Proceedings of the 2023 17th International Conference on Ubiquitous Information Management and Communication
(IMCOM), Seoul, Republic of Korea, 3–5 January 2023; pp. 1–4.

56. Lorencin, I. Urinary bladder cancer diagnosis using customized vgg-16 architectures. Sarcoma 2022, 10, 11.
57. Yang, J.; Bagavathiannan, M.; Wang, Y.; Chen, Y.; Yu, J. A comparative evaluation of convolutional neural networks, training

image sizes, and deep learning optimizers for weed detection in alfalfa. Weed Technol. 2022, 36, 512–522. [CrossRef]
58. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
59. Wu, N.; Green, B.; Ben, X.; O’Banion, S. Deep transformer models for time series forecasting: The influenza prevalence case. arXiv

2020, arXiv:2001.08317.
60. Wichard, J.D. Classification of Ford Motor Data. Computer Science. 2008. Available online: https://www.semanticscholar.org/

paper/Classification-of-Ford-Motor-Data-Wichard/7a7b1674a126db6836337cf9164c0522465f76fc#related-papers (accessed on
10 February 2023).

61. Wu, S.; Xiao, X.; Ding, Q.; Zhao, P.; Wei, Y.; Huang, J. Adversarial sparse transformer for time series forecasting. In Advances in
Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.:
Cambridge, MA, USA, 2020; Volume 33, pp. 17105–17115.

http://dx.doi.org/10.1109/TASLP.2014.2311322
http://dx.doi.org/10.1109/TSP.2006.873715
http://dx.doi.org/10.1137/0330046
http://dx.doi.org/10.1007/BF00342633
https://arxiv.org/abs/1506.01186
http://dx.doi.org/10.1145/3343440
https://github.com/fchollet/keras
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1017/wet.2022.46
https://www.semanticscholar.org/paper/Classification-of-Ford-Motor-Data-Wichard/7a7b1674a126db6836337cf9164c0522465f76fc#related-papers
https://www.semanticscholar.org/paper/Classification-of-Ford-Motor-Data-Wichard/7a7b1674a126db6836337cf9164c0522465f76fc#related-papers


Appl. Sci. 2023, 13, 3958 24 of 24

62. Cai, L.; Janowicz, K.; Mai, G.; Yan, B.; Zhu, R. Traffic transformer: Capturing the continuity and periodicity of time series for
traffic forecasting. Trans. GIS 2020, 24, 736–755. [CrossRef]

63. Zhai, X.; Kolesnikov, A.; Houlsby, N.; Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12104–12113.

64. Sasipriyaa, N.; Natesan, P.; Mohana, R.; Gothai, E.; Venu, K.; Mohanapriya, S. Design and simulation of handwritten detection via
generative adversarial networks and convolutional neural network. Mater. Today Proc. 2021, 47, 6097–6100. Available online:
https://www.sciencedirect.com/science/article/pii/S2214785321036002 (accessed on 10 February 2023). [CrossRef]

65. Ghosh, S.; Ghosh, S.; Kumar, P.; Scheme, E.; Roy, P.P. A novel spatio-temporal siamese network for 3d signature recognition.
Pattern Recognit. Lett. 2021, 144, 13–20. [CrossRef]

66. Upton, E.; Halfacree, G. Raspberry Pi User Guide; John Wiley & Sons: Hoboken, NJ, USA, 2014.
67. Schuemie, M.J.; Straaten, P.V.D.; Krijn, M.; Van Der Mast, C.A. Research on presence in virtual reality: A survey. Cyberpsychol.

Behav. 2001, 4, 183–201. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/tgis.12644
https://www.sciencedirect.com/science/article/pii/S2214785321036002
http://dx.doi.org/10.1016/j.matpr.2021.05.024
http://dx.doi.org/10.1016/j.patrec.2021.01.012
http://dx.doi.org/10.1089/109493101300117884

	Introduction
	Materials and Methods
	Data Acquisition
	Data Analysis

	Proposal of Restoration of In-Air Signature
	System Architecture
	Methodology
	Comparative Study of CNN

	Results
	Convolutional Neural Network (CNN) Result
	Transformer Result

	Discussion
	Future Research
	Conclusions
	References

