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Abstract: License plate recognition (LPR) is an integral part of the current intelligent systems that are
developed to locate and identify various objects. Unfortunately, the LPR is a challenging task due to
various factors, such as the numerous shapes and designs of the LPs, the non-following of standard
LP templates, irregular outlines, angle variations, and occlusion. These factors drastically influence
the LP appearance and significantly challenge the detection and recognition abilities of state-of-the-art
detection and recognition algorithms. However, recent rising trends in the development of machine
learning algorithms have yielded encouraging solutions. This paper presents a novel LPR method to
address the aforesaid issues. The proposed method is composed of three distinct but interconnected
steps. First, a vehicle that appears in an input image is detected using the Faster RCNN. Next, the LP
area is located within the detected vehicle by using morphological operations. Finally, license plate
recognition is accomplished using the deep learning network. Detailed simulations performed on the
PKU, AOLP, and CCPD databases indicate that our developed approach produces mean license plate
recognition accuracy of 99%, 96.0231%, and 98.7000% on the aforesaid databases.

Keywords: Faster RCNN; license plate recognition; object detection

1. Introduction

With the growth of big data, object detection and recognition have attracted excellent
interest in research communities. This is because it can be used for a wide range of
real-world applications, such as medical imaging, augmented reality, sports applications,
independent driving, and video surveillance [1–6]. Particularly, the license plate recognition
(LPR) is getting more attention due to its widespread applications in various fields, for
instance, traffic monitoring, toll collection, and criminal searches [7,8]. Although many of
the LPR systems, for instance [9,10], are available in the literature, most of them have been
validated and tested on a pre-defined LP specification. Few of these works are also capable
of processing multiple LPs. The LPR systems can be categorized into two major categories,
which are (i) traditional LPR and (ii) deep learning-based LPR systems. Traditional methods
process limited features and utilize hand-crafted features, for example, contours, colors,
and edges, to locate the LP. Deep learning-based techniques automatically learn robust
features from the data and have recently produced promising results. Deep learning-based
techniques consider LP detection as object detection and analyze the recognition as an
optical character recognition (OCR) process. Since the number of characters processed by
any LPR method is limited, character recognition is also considered an object detection
process, so that LP detection and recognition are handled simultaneously. To develop and
analyze a LPR algorithm that can deal with multi-style license plate recognition, there are
several challenges, as briefly described below.
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Lack of Standard LPs: Standardizing the LPs is a significant challenge throughout the
world. For instance, license plates in Macao, China, have to meet a strict standard, as shown
in Figure 1a [11], whereas the LP of Hong Kong usually has 1–8 characters and Macao
LPs are composed of five to six characters, as shown in Figure 1b,c, respectively. General
observation in Figure 1a indicates that the first column has an entirely different appearance
than the second column. Similarly, the second and third columns have huge contrast and
appearance variations. Few of the plates have yellowish and greenish backgrounds, while
few have colorless backgrounds. Moreover, the distance between the characters on the
plates shown in the first column takes up much less space than those in the third column.
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Lack of LP Outlines: Many times, the license plates have no outlines, which makes it
an extremely difficult task to classify. This task becomes more challenging when the color
of the vehicle is the same as that of the LPs. One such example is indicated in Figure 1b.
The top image shown in Figure 1b contains a black background and white ground on a
black vehicle. Moreover, the bottom vehicle shown in Figure 1b shows a LP case that has a
white background due to the white color of the car and a black front ground. These two
cases may appear trivial, but for any machine learning algorithm, the aforedescribed task
is not easy. The algorithm should be capable enough to distinguish such cases accurately.

The appearance of LPs: Another challenge in LP localization and recognition is to
accurately handle the appearance and occlusion challenges of license plates installed at
various locations on a vehicle. If a vehicle has more than one license plate, then characters
get matched with the background of other plates, which makes it difficult to distinguish LP
character regions. A few cases of this challenge are shown in Figure 1c. Figure 1c depicts
two license plates with total complement variations on the top vehicle. Moreover, along
with the low-intensity light beam, one plate has a white background with black characters
on the plate region, while the other plate has a black background with white alphabets on
top. In both cases, the vehicle color appears blackish–green. In each of these cases, it poses
a significant challenge to any recognition algorithm.

Therefore, one of the aims of this research is to design an accurate LP recognition
technique with the capability to handle diverse license plates. Fortunately, numerous
research groups have compiled numerous LP datasets. Few of the databases also contain
clear vehicle images in different environments and road conditions. We aimed to contribute
to the field with this manuscript, as highlighted below.

• Inspired by recent trends in machine learning, a robust LP recognition method is
proposed in this paper that accurately recognizes various license plates. Particularly,
our developed system uses an intelligent combination of Faster RCNN to detect
various vehicles, morphological image processing methods to locate the LP area, and
finally, the deep learning-based method to recognize the detected license plate. The
systemic application of various modules enables us to achieve a reliable and accurate
LP recognition method.
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• We consider the license plate as an object for detection and recognition tasks. The
output of our created approach for detecting vehicles is a rectangle encompassing
the vehicle and license plate region. In contrast, for the license plate recognition task,
our system displays the vehicle license plate alphabets and characters above the real
license plate once it has been located in the image.

• Our developed technique supports different types of plates from PKU, AOLP, and
CCPD datasets. Our obtained results indicate that our developed method effectively
recognizes the LPs of these databases. Moreover, our developed technique is intelligent,
as it systematically achieves the aforedescribed tasks.

This manuscript is organized as follows: In Section 2, recent license plate recognition
techniques are briefly listed. In Section 3, our proposed method is described in detail. Our
findings during simulations are listed in Section 4, followed by the conclusions, which also
hint at the future extension of this work.

2. Related Work

This section details recent related works on license plate recognition. In [11], a region-
based license plate detection method is discussed that initially shifts mean to filter and
segment a color vehicle image to get candidate regions. These candidate regions are then
analyzed to decide whether a candidate region contains a license plate. Since this method
focuses on regions, so it is more robust to interference characters. In [12], the proposed
method uses the YOLOv2 to detect vehicles. This work uses a CNN-based method that
they refer to as WPOD-NET for LP detection. Meanwhile, a modified YOLO architecture
recognizes the LP characters. However, this work also uses character segmentation, which
makes this method a bit more complex than the compared methods. In [13], an improved
YOLO architecture is deployed for character recognition. This work is tested on the SSIG
dataset, which has 2000 images. In [14], a technique is developed that customizes the
YOLO network to detect LPs from images that are captured in different conditions, such
as different weathers, varying lighting, and other factors. The authors conclude that the
YOLO can strike a balance between precision and recall. However, the YOLO is not suitable
for detecting angular or small objects. Therefore, its performance in scenarios where the
vehicle is far away from the camera needs to be further checked.

In [15], a framework to detect and recognize license plates is discussed for complex
scenes, which is based on mask region convolutional neural networks. The evaluation
of this framework is further enhanced on four publicly available datasets for different
countries. Moreover, this method is tested on diverse range of images, which are captured
from multiple scenes, such as varying orientations, poor image quality, blurred images,
and complex backgrounds. In [16], a convolutional filter of size 3 × 3 is used in deep
networks to analyze the increasing depth of the architecture by using 16 to 19 layers to
process the 24 × 24 pixel colored image. This work also introduces a pre-processing step
by subtracting the average RGB value from each individual pixel. This paper reports
significant improvements to ConvNets in the realm of image recognition as a result. In
addition, this work also uses a large number of 3× 3 convolutional filters that fit well on the
investigated datasets only. In [17], initially, candidate regions are selected through a sparse
network using winnows classification, followed by filtration through CNN. An interesting
novelty introduced in this work is the minimization of training and target domains in an
unsupervised manner. However, this work also considers artificially generated synthetic
LP images. In [18], the developed method utilizes thin–plate spline transformation and
adaptively rectifies a textual LP image. Moreover, a recognition model predicts a character
sequence immediately from the rectified image. This work only considers qualitative results
on several images. In [19], a 2D attention-based encoder–decoder architecture is developed.
This method extracts features by applying the ResNet CNN architecture. The 2D model
introduced is capable of accommodating text with different layouts, arbitrary shapes, and
different angles. Their reported results are encouraging, and their development reduces
data bias and increases model generalization capacity. This method is simple; however, its
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generalization to standard datasets has not been explored. In a previous study [20], the
authors used CycleWGAN to create LP images to improve the performance of recognition.
Their work simultaneously generates images of different conditions. Meanwhile, a modified
version of the CTC is used to recognize the LP. Their work simultaneously generates images
of different conditions. Meanwhile, a modified version of the CTC is used to recognize
the LP.

In [21], an end-to-end irregular LPR (EILPR) is proposed using plate-level annotations
during training. In the EILPR method, a coarse-to-fine approach is implemented that
extracts the LP features for sequence recognition. This work assumes the fact that a LP
may generate a perspective bias in the image; therefore, to cater to this fact, an automatic
perspective alignment network (APAN) is introduced to extract the fine license plate
features. To classify the international license plates, a location–aware 2D attention-based
recognition network is used. In [22], a novel ALPR technique, which is referred to as VSNet,
is developed. The VSNet contains two CNNs that are combined in a cascading manner.
Meanwhile, an integration block is introduced that extracts the spatial features. With vertex
supervisory information, authors develop a vertex-evaluation module in VertexNet such
that a LP can be repaired as the input images of SCR-Net. A horizontal encoding algorithm
is used in the SCR-Net to extract left-to-right features and then recognize a license plate.
This work performs well on standard LPs. However, its generalization capability on tilting
and rotating LPs has not been explored.

Additionally, ALPRNet is developed to detect and recognize mixed–style license
plates [23]. Two fully convolutional object detectors are used in the proposed ALPRNet to
classify and recognize LPs. The proposed ALPRNet processes LP and character equally.
In this work, object detectors output bound boxes of LPs along with corresponding la-
bels without the application of the RNN branches of the OCR. This is because this is a
single–stage network-based method. Therefore, its detection accuracy on challenging
datasets has not been explored. In [24], image processing and OCR-based techniques are
merged to recognize the LPs. The image processing methods utilize color conversion,
Otsu’s thresholding, and noise removal. The OCR method uses template matching to
predict the characters of LPs. The authors of this work have not examined the scalability
of this method and have only used basic tools from signal and image processing. In [25],
the proposed LPR method consists of three steps: LP detection, unified character recogni-
tion, and multinational LP layout detection. This work is primarily based on the YOLO
networks. To extract the correct sequence, a layout detection scheme is introduced, which
extracts the sequence of LP numbers from multinational LPs. This study is extensively
tested on standard Koran and Taiwan LPs. In [26], the developed LPR method uses a joint
combination of adaptive boosting and the LDA to extract features. The CNNC is then
used to separate the LP region from irrelevant samples. This work is segmentation-free.
However, its recognition capability on real-world images has not been explored. In [27], the
developed algorithm uses a distinct, fine-tuned YOLO-v3 platform to extract LP characters
from input images. During the training and testing stages, a wide range of LP images
have been analyzed. However, this system is fully annotated and consumes over 100 ms to
accomplish the task of LP recognition. In addition, an intriguing review article is released
that summarizes the many approaches currently utilized to detect various objects [28].

In [29], researchers introduced a robust vehicle detection method using a multi-scale
deep convolutional neural network. This work utilizes a standard Gaussian mixture proba-
bility hypothesis density filter along with hierarchical data associations (HDA) that isolate
detection-to-track and track-to-track associations. Particularly, the cost matrix of various
phases is solved using the Hungarian algorithm. For quick execution, detection informa-
tion, such as bounding boxes and detection scores, is used in the HDA without visual
feature information. Although this is an interesting work, the computational difficulty of
the approach is not covered. In [30], a region proposal network (RPN) is developed that
shares full-image convolutional features with the detection network. The RPN is a fully
convolutional network that forecasts object bounds and scores at various positions. The
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RPN is trained end-to-end to generate high-quality region proposals that are later used by
Fast R-CNN for detection. In this work, the RPN and Fast R-CNN are also merged into a
single network by sharing their convolutional features. For the very deep VGG-16 model,
this system has a frame rate of 5 fps on a GPU, while achieving encouraging object detection
accuracy on several datasets with only 300 proposals per image.

In [31], a wavelet transform based technique to extract license plates from cluttered
images is developed. This method comprises of three major stages, which are (i) extracting
important contrast features through wavelets. Then, finding a reference line in HL subimage
plays an important role to locate the desired license plate region roughly. According,
(ii) decrease the searching region of license plate to speed up the execution time, and
(iii) localization of license plate through manual adjustments. More importantly, the
proposed detection method can locate multiple plates with different orientations in one
image. Since the feature extracted is robust to complex backgrounds, the proposed method
works well in extracting differently illuminated and oriented license plates. The average
accuracy of detection is 92.4%. In [32], authors made use of a combination of the MSER and
the stroke width transform (SWT) to detect and isolate the LP character regions. The license
plates were finally bordered using the probabilistic Hough transform. The authors discuss
that character-based methods are reliable and can lead to a high recall. However, the
other text in the image background has a significant impact on performance. This method
requires multiple cameras before the system is placed for evaluation. In [33], an interesting
license plate recognition system is developed using a sequence of deep CNNs. These CNNs
are trained and fine-tuned so that they are robust under different conditions (for instance,
lighting, occlusion, or tilt) and work across a variety of license plate templates that include
different sizes, backgrounds, or fonts. In [34], a novel line density filter approach was
developed that connects regions with high edge density and removes sparse regions in
each row and column from a binary edge image. This study indicates that edge-based
methods are fast in computation but cannot be applied to complex images because they are
too sensitive to unwanted edges.

In [35], the developed LP method consists of three modules for plate detection, charac-
ter segmentation, and recognition. This method also formulates edge clustering to solve
plate detection for the first time. A bilayer classifier, which is improved with an additional
null class, is empirically proven to be better than previous methods for character recogni-
tion. However, this method is evaluated only on a single dataset, which was also gathered
by the authors themselves. In [36], license plate detection and recognition are tackled in
standard natural scene images via the development of a segmentation-free method. In-
spired by the success of DNNs, these are deployed to learn high-level features in a cascade
framework, which leads to improved performance on both detection and recognition. This
work also trains 37 CNNs to detect all characters in an image, which results in a high recall.
Later, to improve the IoU ratio, bounding box refinement is carried out based on the edge
information of the LPs. This method extracts license plates effectively with both high recall
and precision. Last, a recurrent neural network with long short-term memory (LSTM)
is trained to recognize the sequential features extracted from the whole license plate via
CNNs. For scene and lighting variations, this method needs to be further explored. In [37],
a unified deep neural network is proposed that localizes license plates and recognizes the
letters simultaneously in a single forward pass. This whole network is trained end-to-end
and achieves the LP recognition task in a single network, avoiding intermediate error
accumulation and resulting in faster processing speed. For performance evaluation, a few
datasets that include images captured from various scenes under different conditions are
tested. However, this method does not consider the complexity of the developed method.

In [38], researchers use computer graphic scripts and GANs to generate and augment
a large number of annotated, synthesized LPs with realistic colors, fonts, and character
composition from a small number of real, manually labeled license plate images. In this
work, generated and augmented data are mixed and used as training data for the LP
recognition network modified from the DenseNet. Simulations reveal that the model
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trained from the generated mixed training data has much better generalization ability and
achieves encouraging detection and recognition accuracy on multiple datasets, even with a
very limited number of original real license plates. In [39], a new license plate recognition
technique is developed in the wild. This method comprises a tailored CycleGAN model for
license plate image generation and an elaborately designed image-to-sequence network
for plate recognition. The CycleGAN-based plate generation engine eases the exhausting
human annotation work. In this work, huge amounts of training data are obtained with
a more balanced character distribution and various shooting conditions that boost the
recognition accuracy to a large extent. Moreover, a 2D attentional-based license plate
recognizer with an Xception-based CNN encoder is developed that is capable of recognizing
various LPs with different patterns under various scenarios accurately.

In [40], a new license plate dataset, to which the authors refer as the CCPD, is devel-
oped and tested under different circumstances, for instance, tilt, blur, rotate, or varying
weather conditions. This work is novel in the sense that it provides a single platform for
researchers to investigate the LP’s prevailing issues. In [41], a novel end-to-end method for
LP recognition without initial character segmentation is presented as LPRNet. Particularly,
this method is inspired by recent breakthroughs in the DNNs and works in real-time
with recognition accuracy up to 95% for Chinese license plates: 3 ms/plate on NVIDIAR

GeForceTM GTX 1080 and 1.3 ms/plate on the Intel R CoreTM i7-6700K CPU. The LPR-
Net consists of the lightweight CNN and can be trained end-to-end. The authors of this
work recommend that the LPRNet algorithm may be used to create embedded solutions
for LPR that feature high levels of accuracy even on challenging Chinese license plates.
In [42], a multi-object rectified attention network (MORAN) is proposed for text recogni-
tion. The MORAN consists of a multi-object rectification network and an attention-based
sequence recognition network. The multi-object rectification network is designed to rectify
images that contain irregular text. It decreases the difficulty of recognition and enables the
attention-based sequence recognition network to read irregular text. The attention-based
sequence recognition network focuses on target characters and sequentially outputs the
predictions. Further, to improve the sensitivity of the attention-based sequence recognition
network, a fractional pickup algorithm is also developed for an attention-based decoder
during the training phase. In [43], a novel decoupled attention network (DAN) is developed
that decouples the alignment operation from using historical decoding results. The DAN is
an effective, flexible, reliable, and robust end-to-end text recognizer and consists of three
components: a feature encoder, a convolutional alignment module, and a decoupled text
decoder that generates final predictions by jointly using the feature map and attention
maps. Yu et al. [44] used a wavelet transform at first to get the horizontal and vertical
details of an image. Meanwhile, empirical mode decomposition (EMD) analysis was em-
ployed to deal with the projection data and locate the desired wave crest that indicates the
position of a license plate appearing in any corner of the input image. Different versions of
YOLO [45–47], which give state-of-the-art accuracy for object detection, have been pub-
lished in the last few years.

The attempts outlined above are just a few examples of the numerous object detection
and recognition algorithms that aim to overcome various LP recognition challenges. The
following are a few of the primary reasons that prompted us to create a state-of-the-art
license plate recognition algorithm.

• Most of the above-described methods and works have been carried out on standard
databases that are gathered by researchers at different times under different conditions.
Therefore, it prompted us to develop an algorithm that can reliably handle real-life
images in real time while maintaining high recognition accuracy.

• Our study indicates that the methods, which use RNNs as the OCR, are costly in terms
of execution time. Similarly, segmentation-based methods are mostly dependent on
segmentation performance and highly susceptible to environmental conditions, such as
varying illumination conditions, wild weather, or blurring. Therefore, these methods
result in low recognition accuracy in such conditions. Even a strong recognizer, if
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applied, would produce much lower recognition rates. Therefore, inspired by the
aforementioned fact, we aimed to develop a license plate recognition method that
could perform well under the scenarios described above.

• The PKU dataset, which is also investigated in this study, contains five prominent
classes of vehicles on main highways. These categories cover different day times,
varying weather conditions, multiple vehicles and license plates per image, occlu-
sions, and crosswalks on the main highways. The scenarios mentioned are from
real life, in which the detection and recognition accuracy of any algorithm might be
significantly challenged.

• Many times, the cameras installed on the main highways of various countries in
the world capture vehicle images in which license plates appear at an angle, tilted,
or partially obscured. This motivates us to develop a system that could facilitate
the traffic control and monitoring staff’s ability to reliably recognize any suspicious
license plate.

3. Methodology

Our developed method has three major modules, which are vehicle detection, license
plate detection, and license plate recognition. Figure 2 illustrates the complete flow of our
developed method that achieves the aforementioned tasks. The details of each component
of the developed method are described below.
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3.1. Vehicle Detection

To locate objects, for instance, vehicle detection is a critical phase in developing an
intelligent traffic monitoring system. In the past few years, the computer vision domain
has introduced efficient object detection algorithms. Particularly, Faster RCNN and deep
learning-based vehicle detection methods report high detection accuracy in near real-time
in different environments [29]. Ultimately, these approaches have become a significant part
of autonomous vehicles and self-driving applications. Our research reveals that real-time
processing to locate vehicles, as well as good detection accuracy, are essential requirements
that any object or vehicle detector should meet. We use a fine-tuned version of the Faster
R-CNN [30] to find a vehicle quickly. The reason to detect the vehicle is that it considerably
reduces the area to be explored for the existence of the LP in later stages. The purpose of
using the Faster R-CNN at this stage is that, during the data training phase, it is at least
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nine times more rapid than the standard R-CNN. Moreover, it is 213× faster during the
test phase and yields higher detection accuracy than its counterpart [30].

Algorithm 1 demonstrates the pseudocode of the employed vehicle detection module.
In lines (2) to (17), Faster RCNN is used to locate vehicles’ positions. In lines 3–9, Faster
R-CNN is fine-tuned to obtain the appropriate region of interests (RoIs) to look for the
possible existence of a vehicle in an input image. Therefore, we perform the mini-batch
sampling by empirically choosing 128 region proposal networks (RPNs). To generate the
RPN, a small network is made to slide over the conv feature map, which is output by the
last shared conv layer. This small network takes as input an N × N spatial window of the
input conv feature map. This feature is fed into two siblings’ fully connected layers. We
use N = 2 during our tuning, keeping in mind the fact that the effective receptive field on
the input image is large. As a result, 64 RoIs are extracted from an input image. Moreover,
to describe the foreground of an object mask, we choose an object proposal with an IoU
overlap that contains at least 0.5 ground truth. In lines 10–16 of Algorithm 1, we process an
RGB vehicle image with thirteen conv layers. As a result, a conv feature map (Ψ) is obtained.

Algorithm 1: Pseudocode of the vehicle detection method.

1. Input: colored RGB vehicle image
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expressed by a four-tuple (r, c, h, w), which specifies its top-left corner (r, c) and its width
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) is passed as an input into a sequence of fully connected
(FC) layers. In between, the RoI pooling layer uses max pooling to transform the features
inside a binding region into a small feature map. Moreover, only a few RPN proposals
highly overlap with each other. Therefore, to reduce redundancy, we adopt non-maximum
suppression (NMS) in the proposal regions.

We fix the IoU threshold for NMS ≥ 0.5, which leaves us about 2000 proposal regions
per image with a significant decrease in the number of proposals. After the NMS, the top-N
ranked proposal regions are estimated to detect vehicles and draw a red rectangle around
them. Once the vehicle is located in the input image, we apply our method to locate a LP
within the bounding box that contains the vehicle.
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3.2. The LP Localization

The detected vehicle, confined by a bounding box that is obtained in the last step
of Algorithm 1, is nursed to the LP localization module that aims to detect the LP. Our
developed LP localization method has a few interconnected steps. The LP localization
method processes the RGB image and transforms it into the HSV components as shown in
Equations (1)–(3).

H = cos−1

 1
2 [(R− G) + (R− B)]

2
√
(R− G)2 + (R− B)(G− B)

 (1)

S = 1− 3
R + G + B

[min(R, G, B)] (2)

V =
1
3
(R + G + B) (3)

where H denotes hue, S represents saturation, and V stands for the value components
of the transformed image. Our general observation is that an LP in actuality may have
diversity and huge color variations. Considering this fact, in Algorithm 2, we introduce
colors segmentation from lines 5–13 on each of the HSV components.

During our simulations, we empirically vary the HTlow value from 0.02 to 0.40 and
HThigh from 0.409 to 0.620. Similarly, for the saturation and value channels, their relevant
low and high thresholds are STlow, SThigh, VTlow, and VThigh, respectively, as indicated in
lines 8–11 of Algorithm 2. For STlow, the values are changed from 0.370 to 0.500, whereas
for SThigh, they are changed from 0.909 to 1.10. For the V channel in the HSV image, the
VTlow is set to 0.750 and the VThigh is kept at 1.0. After these thresholds are set, the mask
images are obtained for each of the H, S, and V channels. For the H channel, the Hmask is
set to 1 when the HImage obtained is greater than or equal to the low threshold and less than
or equal to the high threshold. A similar mechanism is applied to obtain the masks of the S
and V channels.

Consequently, a blob image (A) is attained, which is indicated in line (11), which is
analyzed by using morphological operations to enhance LP blobs in a sample space ( z).
Here, dilation (⊕) is applied using Equation (4), which enlarges the features and adds pixel
layers across the regions of associated elements.

A⊕ B =
{

z
∣∣∣(B̂

)
z
⋂

A 6= φ (4)

where B indicates a structuring element through which the blob image is dilated. Mean-
while, the closing (•) operation is applied using Equation (5), in which the license plate blob
image is first dilated by structuring element B and then eroded by B. The closing operation
results in the smoothing of the contour and filling of the holes in the license plate blob.

A • B = (A⊕ B)	 B (5)

When the luminance is unsatisfactory, in Algorithm 2, we suggest illumination rectifi-
cation as shown in lines 17–21. We use the PCA on the detected input vehicle image to fix
the dimming of the image. By applying the PCA, we extract the Luminance and Chromi-
nance channels of the RGB-colored vehicle image. In our work, only the luminance channel
is processed further due to the fact that it contains a large amount of energy. After the mean
of the luminance vector is calculated, we empirically estimate the low and upper limits of
the threshold as shown in lines 19–21 in Algorithm 2. From lines 20–21, the luminance is
adjusted to finally obtain the output image (X′) with a much better luminance that can be
handled later by the developed license plate detection module. We empirically estimate
the low and upper limits of the threshold as shown in line (20) in Algorithm 2. We set the
value of thresholdlow to 0.25 and thresholdhigh to 0.95. From lines 21–22, the luminance is
adjusted to obtain the final neat and clean enhanced output image (X ′).
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Algorithm 2: License plate detection procedure.

1. Input: Vehicle image confined by bounding box
2. For satisfactory luminance, do;
3. begin LP Localization
4. transform the vehicle-detected image to the HSV domain using Equations (1)–(3)
5. do segmentation
6. define HSV threshold limits for every channel
7. obtain mask images
8. If HImage ≥ HTlow and HImage ≤ HThigh then Hmask = 1
9. if SImage ≥ STlow and SImage ≤ SThigh then Smask = 1
10. If VImage ≥ VTlow and VImage ≤ VThigh then Vmask = 1
11. obtain the LP blob image (A)
12. if HSVmasks = 1
13. end segmentation
14. use mathematical morphology by Equations (4) and (5)
15. analyze dimensions through aspect ratio and LP spatial area
16. else
17. use PCA and form a luminance vector
18. calculate the luminance vector mean
19. approximate thresholdhigh and thresholdlow

20. If mean > thresholdhigh → decrease the luminance,
21. else If mean < thresholdhigh → increase the luminance,
22. Obtain improved output image (X′)
23. end LP Localization
24. Output:I′ = LP localization

Once the improved luminance image is obtained, the dimensions of the extracted
regions are examined to locate the existence of a possible license plate. We analyze the
dimensions of the license plate through its spatial area and aspect ratio. Finally, the LP
module draws the green bounding box on connected regions, which outlines the existing
LP in the image.

3.3. The LP Recognition

After a license plate is detected, normally the conventional LP identification methods
segment the plate characters to recognize LP. These steps usually combine image processing
techniques or video sequences, and their calculations depend on the true recognition rate
and the error recognition rate. As discussed earlier, LP recognition is a difficult task due
to the huge variety of plate formats and severely varying outdoor illuminations during
the image acquisition phase. Many methods perform well in standard circumstances, for
instance, controlled illuminations, restricted vehicle speeds, prespecified roads, and static
backgrounds. Several algorithms have been designed to achieve LPR in images. In addition,
issues such as processing time, computational complexity, and recognition rate are also
important parts of the LPR algorithm. Algorithm 3 shows the pseudocode of the proposed
LP recognition algorithm.

As can be seen in Algorithm 3, our developed method contains interconnected steps
and performs miscellaneous operations after the LP bounding box is fed to the recogni-
tion module. Since the area contained by the LP is normally small, for better visibility,
contrast is enhanced using contrast from basic image processing methods. The improved
contrast image is binarized and segmented by applying the morphological operations using
Equations (4) and (5), respectively.
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Algorithm 3: The LP recognition pseudocode.

1. Input: LP bounding box
2. begin operations
3. Enhance contrast and deblur the image for better visibility
4. Binarize the image obtained in the above steps
5. Obtain segmented image (S) through dilation and erosion using Equations (4) and (5)
6. Get Pre-trained model
7. do
8. for S = 1:n
9. Perform prediction on S
10. Build output string
11. end
12. end
13. end operations
14. Output: Recognized LP characters

On the basic pretrained model, the LP characters are predicted to build the possible LP
strings that may appear inside the LP bounding that was processed in the initial stage of the
LP recognition module. Algorithm 3 generally depicts the core theme of the LP recognition
scenario. All the operations used herein, such as contrast, deblurring, and binarizing the
image, are essentially handy for the recognition task.

4. Simulation Results

To simulate, we use a workstation, which has one NVIDIA RTX 2070 GPU along with
an Intel CPU-Corel i7-6700. Simulations are done in Python version 3.6.0. Below, we discuss
in detail the performance of our proposed LP recognition algorithm.

4.1. Training Data Preparations and Model Training

Before our developed method is executed, we initially prepare the data and make
some assumptions to train the model. Algorithm 4 shows the arrangements for preparing
the training data. To extract the LP digits from the input image, basic data processing (DP)
operations are performed from lines 2–13 of Algorithm 4. Most of these DP operations
include desaturating the image through a Gaussian low-pass filter and binarizing the
image. Moreover, the erosion and dilation operations described above are also performed.
Meanwhile, the LP image is converted to 28 × 28 pixel image on which random spatial
transformations are applied that ultimately result in a 28 × 28 dataset with prominent
characters and their classes.

Since then, we have also performed experiments on the CCPD dataset, which has
substantial license plate variations, such as tilted or blurred plates. For the tilted plates,
spatial transformations are applied to the 28 × 28 pixels converted image. This operation
essentially corrects the appearance of the license plate and ultimately makes the algorithm
easier to process. Similarly, for poor image quality in which characters are not fully
visible, characters touch each other due to blur or similar phenomena. In such conditions,
mathematical morphological image processing techniques, such as erosion and dilation as
described in Equations (4) and (5), respectively, become handy. All the operations listed in
Algorithm 4 essentially prepare and result in well-managed, systematic data that is nicely
processed by our developed algorithm during the recognition task.
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Algorithm 4: Training data preparations.

1. Input: Single digits extracted from LPs
2. begin DP
3. Extract Single Digit
4. Use desaturate
5. Use De-Blurring
6. Binarize the image
7. Erode Image
8. Dilate Image
9. Convert to 28 × 28 image = (i)
10. for s = 1:random (n)
11. Perform Random Spatial Transform on (i)
12. Save the image (i) and the character class to a dataset
13. end
14. end DP
15. Output: Dataset of 28 × 28 resolution with character classes

After LP character data is obtained, in the next step, training of the LP recogni-
tion model is performed as shown in Algorithm 5, which takes the 28 × 28 LP charac-
ter image and yields the recognition model with weights. During the first part of the
LP training, a 13-layer CNN is used to build a DNN. This DNN is then applied to a
3 × 3 Conv2D layer along with a 2 × 2 MaxPool layer. As shown in Algorithm 5, the next
stages also apply a dense layer to perform the 50% dropout to obtain the appropriate model.
During the model training, the LP characters are checked and predicted for a small batch
of images. Meanwhile, to obtain good accuracy, weights are adjusted at regular intervals
after each execution epoch. Once the training data and LP recognition model training
are set, in the next section, we demonstrate our detailed observations and findings. Our
LP recognition analysis and discussion are based on the PKU, AOLP, and CCPD datasets,
which are well-known and widely used in research these days.

Algorithm 5: The LPR model training.

1. Input: Dataset of 28 × 28 Images with character classes
2. begin LPR Training
3. begin Model Design
4. Apply the DNN with 13 Layers of the CNN
5. for i = 1:3
6. Conv2D 3 × 3
7. MaxPool 2 × 2
8. end
9. Flatten the LP with a dropout of 50%
10. for i = 1:3
11. Use a dense Layer with a dropout of 50%
12. end
13. end Model Design
14. begin Training
15. for epoch = 1:n, get batch of images (i)
16. for i = 1:n
17. Provide image to the model and check predicted characters adjust weights
18. end
19. end
20. end LPR Training
21. Output: Model with set weights
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4.2. Analysis of the PKU Dataset

During our study, we initiated our experiments on the PKU dataset, which is a well-
known publicly available vehicle dataset. Table 1 briefly describes the various vehicle
categories in the PKU dataset. Generally, the PKU dataset is a collection of diverse vehicle
images that are captured under diverse conditions [31]. As shown in Table 1, this dataset
contains a total of 3977 diverse vehicle images. The developers of the PKU dataset divided
the vehicles into five distinct categories, which they refer to as G1, G2, G3, G4, and G5. Out
of 3977 vehicle images, the PKU dataset also contains a total of 4263 visible license plates,
whose pixel resolution varies from 20 to 62 pixels.

Table 1. The PKU dataset description.

Category Vehicle Conditions
Input Image
Resolution

(Pixels)
No. of Images No. of Plates Plate Height

(Pixels)

G1
Cars on roads; ordinary environment at
different daytimes; contains only one

license plate per image
1082 × 728 810 810 35–57

G2
Cars/trucks on main roads at different

daytimes with sunshine; only one
license plate in each image

1082 × 728 700 700 30–62

G3 Cars/trucks on highways during the
night; one license plate per image 1082 × 728 743 743 29–53

G4
Cars/trucks on main roads; daytimes
with reflective glare; one license plate

in input images
1600 × 1236 572 572 30–58

G5
Cars/trucks at roads junctions with
crosswalks with several plates per

image
1600 × 1200 1152 1438 20–60

Complete PKU dataset 3977 4263 20~62

In Figure 3, we demonstrate a few detection results for both vehicles and license plates
for each category of the PKU dataset. We show different vehicles from each category to
demonstrate a fair understanding.

Vehicle+LP detection: G1-category: The first row in Figure 3 demonstrates a few
images from this category. It is evident for this category that for different-shaped vehicles,
the detection module performs well by drawing a red rectangle around the object of
interest, which is a vehicle in this case. The detected vehicle image is then analyzed by the
LP localization module. In all four of the sample images in Figure 3 from the G1 category,
the visible LP is accurately localized by our developed method.

Vehicle+LP detection: G2-category: The second row in Figure 3 demonstrates a few
images from the G2 category. As indicated in Table 1, this category mostly contains vehicle
images that are captured during different times of the day. In all four images shown for
this category, both the vehicle and the LP localization module are in the correct position,
thereby indicating the correct position of both of these objects. The first image shown for
this category is of the truck, and the rest are the cars. However, the detectors applied to
capture these objects are intelligent enough to discriminate between these shapes.

Vehicle+LP detection: G3-category: The third row in Figure 3 demonstrates a few
images from the G3 category. Most of the images in this category are nighttime captures of
small cars and trucks. It can be observed in the third row of Figure 3 that both objects are
accurately located. To fairly discriminate the vehicle and the LP detection for nighttime
captured images, we draw the white color bounding box around both the detected vehicle
and the LP area.
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Vehicle+LP detection: G4-category: The 4th row in Figure 3 demonstrates a few
images from the G4 category. This category also contains one license plate in an image, but
those are captured in a difficult situation of reflective glare that affects the image quality
and the LP area appearance. However, in this case, our applied object detectors handle
them efficiently. For each of the different images shown in the fourth row of Figure 3, the
good performance of the applied detectors to localize both vehicles and the LP of that
vehicle is evident.

Vehicle+LP detection: G5-category: The last row in Figure 3 demonstrates a few
images from the G5 category. This category contains a few LPs in an image. As shown in
the last row of Figure 3, all the instances of object detection are completely achieved. In
particular, the first image in the fifth row shows the object from an angle, which is also
correctly spotted by the applied detectors. The rest of the images in this row contain at
least two vehicles along with two LPs that are accurately detected.
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Table 2 lists the comparison of each category of the PKU dataset for various methods
mentioned therein. A few of the important findings from Table 2 are summarized below.

• Each of the compared methods along with our developed method yields 100% vehicle
detection accuracy in the G1 and G2 categories, except the work developed in [33],
whose vehicle detection accuracy is 99%. Similarly, for the G3 category, the method
developed in [33,34] yields 98.20% and 99% vehicle detection accuracy. The remaining
approaches all produce 100% vehicle detection results.

• In the G4 category, all of the methods compared can find vehicles with an accuracy of at
least 99%. In this category, YOLO-v7-based methods [46,47] yield the highest vehicle
detection accuracy of 99.74% and 99.72%, respectively. While for the G5 category,
an improved YOLO-v7-based method ranks first, yielding 99.22% vehicle detection
accuracy. Our developed method ranks 3rd and yields a vehicle detection result at par
with [46] by delivering 99.10% detection accuracy.

• On the PKU dataset to locate vehicles, an improved YOLO-v7-based method ranks
first and yields a mean vehicle detection accuracy of 99.79%, followed by standard
YOLO-v7 [46], whose accuracy is 99.76%. Our developed method also yields approxi-
mately similar results as compared with [46]. Vehicle detection is a prototype in our
developed system. Therefore, an accuracy of slightly over 99.75% is very encouraging
in the later stages of the algorithm.

• Table 2 also lists the LP detection comparisons for several methods. As can be seen, the
improved YOLO-v7 [46] ranks first in all five categories of the PKU dataset in terms of
LP detection. The standard YOLO-v7 method [45] ranks 2nd in terms of license plate
localization on this dataset. For the G1 and G2 categories, all of the methods compared
had a LP detection accuracy of at least 97%, whereas, for the G3 category, the methods
listed in Table 2 yielded at least 98% LP detection. For the G4 category, approximately
99% LP detection is achieved. The G5, which is the most challenging category in
the PKU dataset, is also addressed nicely. In this category, the methods listed in
Table 2 yield at least 98% accurate license plate detection. In addition, our method
yields at least 99% LP detection for G1, G2, G3, and G4 categories. In the G5 category,
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our finely tuned version of the Faster RCNN achieves 97.30% accurate license plate
detection accuracy.

• Our analysis indicates that the mean LP detection accuracies of the works [32–34,45–47]
are found to be 98.47%, 98.06%, 98.47%, 99.09%, 99.05%, and 99.13%, respectively. The
aforementioned LP detection accuracies are a good indicator that all the compared methods
yield at least 98% license plate detection accuracy. YOLO-based methods [45–47] perform
well to locate an object, such as a vehicle or license plate. However, from Table 2, we
find that our method, which employs a fine-tuned version of the Faster RCNN, yields
a mean license plate detection accuracy of 99.04%. The aforedescribed analysis is a
good indicator of the application of the various methods to achieve objects, such as
vehicles and license plates, in various real-life applications. Vehicle and license plate
detection is a prototype of our developed system. Therefore, our deployed detectors
also yields at par results with the recently published works.

Table 2. Category-wise Vehicle + License Plate detection comparison (%) on PKU dataset.

PKU Dataset Categories

Object Ref G1 G2 G3 G4 G5

Vehicle

[32] 100 100 100 99 98.50
[33] 99 98 98.20 99.10 98
[34] 100 100 99 99.10 98
[45] 100 100 100 98.96 99.13
[46] 100 100 100 99.72 99.10
[47] 100 100 100 99.74 99.22

Proposed 100 100 100 99.70 99.10

License Plate

[32] 99 97.05 98.80 99 98.50
[33] 97 98.01 98.20 99.10 98
[34] 98.50 98.22 98.55 99.10 98
[45] 98.80 99.45 99.15 98.96 99.13
[46] 99.85 99.50 99.22 99.35 97.35
[47] 99.87 99.65 99.40 99.40 97.35

Proposed 99.81 99.50 99.20 99.40 97.30

With the state-of-the-art method listed in Table 2, detection accuracy is almost at par
with that of conventional methods. After the objects, which in our case are vehicles and
LPs, are located, in the next phase we process the detected LP area for recognition. It
is important to state that in the PKU dataset, all the visible license plate labels are not
annotated. Therefore, in the PKU dataset, we labeled the 2250 images. The 1355 images are
randomly selected for training, and the other 901 are used for testing. To evaluate license
plate recognition accuracy, the license plate was localized by a bounding box as shown in
Figure 3 for each category of the PKU dataset. The detected license plate is now fed to our
newly developed recognition module.

As shown in Figure 4, the proposed LP recognition technique correctly understands
different LPs that appear in each of the five categories of the PKU dataset. The important
points noted during the LP recognition task are discussed further below.

LP recognition: G1-category: As shown in the first row in Figure 4, the proposed
recognition algorithm precisely identifies the LPs shown therein. Our obtained correct
recognition result is shown on top of the original LP on the input vehicle images. The third
image in the first row of Figure 4 has a relatively complex background. However, it does
not pose any threat to the proposed method of achieving the correct identification result.

LP recognition: G2-category: As shown in the second row in Figure 4, the first three
images have different car colors with their own installed LPs. Our method correctly
identifies all such cases. However, the fourth image of the bus with visible LP has a
relatively complex background. Nevertheless, the proposed method handles this scenario
well and achieves the correct result on top of the original LP shown therein.
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LP recognition: G3-category: As shown in the third row in Figure 4, the proposed
LPR method reliably handles the high-glare images. The LPs on the vehicles in the first two
pictures in this row are clear enough to be correctly identified. Similarly, it is clear from this
row that our developed method handles low-contrast images in which both the vehicles
and the background have blackish appearances. Generally, it is observed in the third row
of Figure 4 that our developed method has barely any effect on its recognition performance
with blackish objects against a black background.

LP recognition: G4-category: As shown in the fourth row in Figure 4, the area around
the vehicles is highly dark. There also appear to be glare and high beams from vehicles.
However, in all four images shown for this category in Figure 4, our developed method
accurately identifies all the LP numbers and successfully handles the glare situations.

LP recognition: G5-category: As shown in the fifth row in Figure 4, there appear
to be multiple vehicles and LPs in the images. For all the images shown, our developed
method identifies all the LP that appear in the images. In the second and fourth images,
there appear to be three LPs. In the fourth image, our method identifies all three LPs,
whereas, in the second image, only two LPs are detected out of three. One reason is the red
text that appears in the input image around the LP area, which created a hurdle for our
developed method.
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Table 3 lists the LP recognition rate for each of the PKU categories for works developed
in [32–34]. It is important to state here that these methods were chosen for comparison on
the PKU dataset because their standard implementation is publicly available. This makes it
logical to train these models on the PKU dataset along with our developed method.

Table 3. Category-wise LP recognition accuracy comparison (%) on PKU dataset.

Ref G1 G2 G3 G4 G5

[32] 96 97.80 92.60 80.00 72.00

[33] 92.00 90.50 90.10 89.60 86.40

[34] 98.00 98.50 90.00 86.01 81.10

Proposed 100 100 100 99 99.63

From Table 3, it is evident that all the compared methods yield over 90% recognition
accuracy for the G1 category. Our developed method yields 100% LP recognition accuracy
in this category. The work developed by Zhang et al. [34] ranks second, yielding 98%
accurate recognition. For the G2 category, the work developed by Masood et al. [33] yields
the lowest LP recognition accuracy of 90.50%. In this category, our developed method
ranks first, followed by the work reported in [34]. For the G3 category, the works on [33]
and [34] yield almost similar results by producing at least 90% recognition accuracy. In
this category, the work developed by Xu et al. [32] also reports 92.60% LP recognition. For
the G4 category, we observe that works in [32–34] yield below 90% LP recognition. In this
category, our developed method comprehensively outperforms the compared methods. For
the G5, which is the most difficult category of the PKU dataset, the work in [32] produces
the least accuracy of 72%, followed by [34], whose accuracy is a bit over 80%. In this
category, our developed method yields 99.63% recognition accuracy.

In Figure 5, we report the mean license plate recognition accuracy on the PKU dataset.
Our proposed LPR method comprehensively beats the compared methods in terms of
mean recognition accuracy. As shown in Figure 5, our developed license plate recognition
method yields 99.63% accuracy on the PKU dataset. Similarly, the work proposed in [34]
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ranks second, yielding 90.72% accuracy. On the aforementioned dataset, the work proposed
in [32] yields the lowest license plate recognition accuracy of 79.28%. To the best of our
knowledge, on the PKU vehicle dataset, the proposed method has almost solved the LPR
accuracy problem.
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Figure 5. Mean LP recognition comparison on the PKU dataset.

4.3. Analysis of the AOLP Dataset

The application-oriented license plate (AOLP) [35] database consists of 2049 images of
a Taiwan license plate. This dataset is categorized into three subsets according to complexity
levels and photographing conditions, which are access control (AC), traffic law enforcement
(TLE), and road patrol (RP). For the readers’ information, below we briefly describe the
categories contained in the AOLP dataset.

Access Control (AC): The AC refers to the cases in which a vehicle passes a fixed
passage at a reduced speed or with a full stop, such as at a toll station or the entrance/exit
of a region.

Traffic Law Enforcement (TLE): The TLE refers to cases where a vehicle travels
at a regular or higher speed but violates traffic laws, such as a traffic signal or speed
limit, and is captured by a roadside camera. Here, 757 images were collected for this
application category.

Road Patrol (RP): The RP refers to the cases where the camera is installed or handheld
on a patrolling vehicle and takes images of the vehicles from arbitrary viewpoints and
distances. Since we do not have any other images with Taiwan license plates, we use any
two of these subsets for training and the remaining one for testing, similar to previous
practices. Figure 6 shows our obtained results on the AOLP dataset.
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Figure 6 shows the license plate recognition results for each of the aforedescribed
categories of the AOLP dataset. The proposed LPR method works well for scenarios where
half of the vehicle bonnet is visible along with the license plate location, which is much
lower on the horizontal axis. In each of the images in Figure 6a for the AC category, the
proposed method accurately identifies the license plates. Similarly, for the TLE category,
as shown in Figure 6b, where the license plates appear in the angular view, the proposed
method accurately handles this angle variation by correctly identifying all the license plates.
The third image in Figure 6b is especially interesting, as here a yellow vehicle appears at the
back side of the license plate, which ultimately results in the partial occlusion of the license
plate. Although it does not affect the digits of the plate area, the proposed LPR algorithm
handles this partial occlusion and accurately identifies the license plate. Figure 6c shows
the RP conditions. Clearly, this is a challenging category as there appears to be a large
angle deviation of the viewpoint of the license plate, which makes this scenario challenging
for most of the machine learning algorithms. However, as can be seen in Figure 6c, the
proposed LPR method reliably handles this issue by indicating the correct number on the
license plate.

Table 4 lists the LP recognition rate on different classes of the AOLP dataset for works
developed in [36–39]. It is important to state here that these methods were chosen for
comparison on the AOLP dataset because their evaluations on this dataset, along with
standard implementation, are publicly available. This makes a fair reason for us to train
these methods on the AOLP dataset along with our developed method. Table 4 also lists the
comparison of the proposed LPR with a few recent methods on the AOLP dataset. As can
be seen in Table 4, for the AC category, the proposed method yields the highest recognition
rate of the license plates in this category.
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Table 4. Comparison of the AOLP dataset.

Method

Accuracy % on Each Category

AC: No of
Images = 681

TLE: No of
Images = 757

RP: No of
Images = 611

Mean
Recognition
Accuracy %

[36] 94.9000 94.2000 88.4000 92.5000
[37] 95.3000 96.6000 83.7000 91.8666
[38] 96.6000 97.8000 91.0000 95.1333
[39] 97.3000 98.3000 91.9000 95.8333

Proposed 97.8970 98.2719 91.9006 96.0231

Moreover, in the AC category, the work proposed in [39] ranks second among the
compared methods. Similarly, for the TLE category, the proposed LPR method ranks
second on the AOLP dataset. In this category, the work reported in [39] yields the highest
recognition accuracy. However, the work in [36] ranks fourth among all compared methods,
yielding slightly over 94% identification accuracy. For the RP category, the method reported
in [39] and the proposed method yield almost similar identification accuracy of slightly
over 91%, despite the fact that the proposed method is a bit higher. As indicated by the last
column in Table 4, the proposed license plate recognition method yields the highest license
plate recognition accuracy of 96.0231% on the AOLP dataset. The work listed in [39] ranks
second in achieving overall identification accuracy, followed by [38]. In general, and across
the whole AOLP dataset, all of the methods compared correctly identify license plates over
91% of the time.

4.4. Analysis of the CCPD Dataset

The CCPD dataset [40] is the largest publicly available LP dataset and has a collection
of over 290,000 Chinese LP images. This dataset is separated into several categories
according to the difficulty of identification, for instance, the illuminations on the LP area,
the distance from the license plate when photographing, and the degree of horizontal and
vertical tilts. The CCPD dataset also contains images in different weather conditions, such
as rainy, snowy, or foggy. Each category includes 10,000 to 20,000 images. The CCPD-base
consists of approximately 200,000 images, of which 100,000 are used for training and the
other half are for testing. As listed in Table 5, the other sub-datasets, such as the CCPD-DB,
the CCPD-FN, the CCPD-rotate, the CCPD-weather, and the CCPD-challenge, are also used
during the test phase.

Table 5. Comparison of the CCPD dataset.

Model
CCPD-
Base

(100 k)

CCPD-DB
(20 k)

CCPD-FN
(20 k)

CCPD-
Rotate
(10 k)

CCPD-Tilt
(10 k)

CCPD-
Weather

(10 k)

CCPD-
Challenge

(10 k)

Overall
Accuracy

(%)

[40] 98.5000 96.9000 94.3000 90.8000 92.5000 87.9000 85.1000 95.5000
[41] 99.1000 96.3000 97.3000 95.1000 96.4000 97.1000 83.2000 93.0000
[42] 99.5000 98.1000 98.6000 98.1000 98.6000 97.6000 86.5000 98.3000
[43] 98.9000 96.1000 96.4000 91.9000 93.7000 95.4000 83.1000 96.6000
[44] 99.6000 98.8000 98.8000 96.4000 97.6000 98.5000 88.9000 98.5000

Proposed 99.8500 98.7800 98.8000 98.1100 98.8000 98.9000 88.8000 98.7000

Figure 7a shows a few samples of the output images on the CCPD-base images. Clearly,
the proposed method performs well on all images. Particularly, the left-most image has
huge illumination variations with very limited visible contrast in the license plate area.
The proposed method handles that scenario well and correctly identifies the license plate.
Similarly, the second, third, and fourth images in the top row of Figure 7a are the cases
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where the license plate appears in the angular view. However, our proposed method
handles this scenario and identifies all the license plates. Figure 7b shows the CCPD-blur
image output of our developed method. Most of these blurred images were captured in
outdoor conditions with strong sunlight and complex backgrounds. Since these images
appear blurry, the license plate area has a low resolution. However, it can be seen in
the second row of Figure 7b that our developed method performs significantly well and
identifies all the license plates shown therein in the second row. Particularly, the first and
third images in the second row of Figure 7b are indicative of the good performance of our
developed method where the background is complex along with various other objects.
Moreover, the third row in Figure 7c is the sample output of our proposed method for the
CCPD-FN cases. Clearly, in this case, our developed method is quite accurate and reliably
identifies all the license plates shown therein. It is to be noted that the third row in Figure 7
also contains complex backgrounds. However, the good performance of our developed
method is unaffected by these factors.
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A more detailed analysis of our developed method is shown in Figure 8. As can be
seen, the outputs in the first row of Figure 8 are from the CCPD-rotate category. Particularly,
the first image has a rotated license plate along with an overly whitish appearance due to
the presence of very strong sunlight. Clearly, the developed method handles such a scenario
and accurately identifies the license plate. The fourth image in the first row of Figure 8
has a relative combination of dark and bright contrast. Overall, the proposed method
performs well in the CCPD-rotate category and, as seen in Table 5, produces encouraging
results. The second row in Figure 8 shows the license plate identification resultant images
from the CCPD-tilt category. The first image in the third row of Figure 8 is a low–contrast
image example that has severe black contrast. It can be seen that our developed method is
unaffected by this situation and accurately identifies the license plate. Similarly, the last
image in the third row of Figure 8, which has a slightly misplaced license plate, is highly
challenging in the tilt category. However, our developed method also handles this case
intelligently and produces accurate output.

More output resultant images from the CCPD dataset are shown in the third row of
Figure 8, where a few cases are shown for the different weather conditions. The first three
images in the third row of Figure 8 correspond to the snowy weather where our developed
method reports accurate results, whereas the fourth image is for the rainy day in which our
developed method performs at par and yields accurate results. The fourth row in Figure 8
is for the outputs generated by the algorithm for the CCPD challenge category.

During simulations, we find that this is the most challenging category in the dataset,
and it is not easy for every algorithm to handle this. The first image shown in the last row
of Figure 8 indicates that both the vehicles and the outside environment are severely dark.
However, our developed method handles this scenario and yields accurate recognition
results. The same is true for the third image in the last row, where our approach accurately
identifies and identifies the license plate. Similarly, for the 2nd image in the last row of
Figure 8, there appears to be a shadow on the road and the vehicle, and there is also a bright
light in the center of the license plate. However, our developed method passes through
this hurdle and yields the correct result. Likewise, the rightmost bottom image in Figure 8
is the case where there are back lights turned on, and half of the license plate has a blue
background with white color text on it while the other half has a light grey background
with yellow text over it. Consequently, our established approach delivers accurate and
encouraging results in this case.

Table 5 lists the LP recognition rate on different classes of the CCPD dataset for works
developed in [40–44]. It is important to state here that these methods were chosen for
comparison on the AOLP dataset because their evaluations on this dataset, along with
standard implementation, are publicly available. This makes a fair reason for us to train
these methods on the AOLP dataset along with our developed method. In Table 5, we show
the comparison of our developed method with these five techniques on the CCPD dataset
for all the categories. It can be seen that, for the CCPD-Base category, our method ranks
second out of all the compared methods. In this category, the work reported by [44] has
the highest accuracy. In this category, the work conducted in [40] has the least recognition
accuracy. For the CCPD-DB category, our method follows [44] and lies in the second
position. Here, the work in [41] has the lowest accuracy. For the CCPD-FN category, our
method and [44] have the highest license plate recognition accuracy, followed by the work
done in [42].

For the CCPD-rotate category, our developed technique beats the compared works
and yields the highest identification accuracy of license plates. In this category, the work
done in [43] yields the lowest identification rates. Moreover, for the CCPD-Tilt category,
our method has the highest recognition accuracy, followed by the work in [40], which has
the lowest reported license plate identification rate. For the CCPD-weather category, our
method again beats the compared works. Here, the work in [40] has the lowest recognition
rates. Furthermore, for the CCPD challenge category, the work presented in [44] has the
highest license plate identification rate and [41] has the lowest. In this category, we again



Appl. Sci. 2023, 13, 3956 24 of 29

rank second out of the compared methods. Our developed method yields the highest
overall license plate recognition accuracy, with a 98.7000% correct recognition rate. The
work performed in [44] ranks second, and the work reported in [40] lies in the third spot.
Overall, the work reported in [41] has the lowest license plate identification rate of 93%.
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4.5. Computational Complexity

To perform the computational analysis of our developed method and the compared
methods, we manually cropped the image resolutions. In our experiments, we selected
different image resolutions, which are 700 × 1100, 500 × 800, 400 × 600, 320 × 240, and
300× 280 pixels. From the compared works in this manuscript, we choose ten methods and
executed them on the aforesaid image resolutions. Complete results are detailed in Figure 9.
It is evident that the work reported by Yu et al. [41] and Li et al. [36] is computationally
complex and consumes more than 3 ms to process the image resolution of 700 × 1100 to
yield the final recognition result. Moreover, the works of Yuan et al. [34], Luo et al [42],
and Wang et al. [43] also consume more than 2.5 ms to process the aforedescribed image
resolution to generate the final resultant image. The works reported in Masood et al. [33]
and Wu et al. [38] are computationally efficient and consume nearly 0.5 ms to process
the test image for various image resolutions. Therefore, we observe that our developed
technique takes slightly over 2 ms to deliver the final result. In terms of the execution
time ranking, our developed method ranks fourth out of all of the compared methods. We
observe that all the compared methods are near real-time for processing various image
resolutions. Once an algorithm is trained on every dataset, our developed method along
with other methods can be used in a resource-constrained environment, as we see that all
the methods explored in this study work in near real-time in actual living environments
with high accuracy.
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4.6. Discussion

Detailed simulations shown in this paper indicate that object detection, such as ve-
hicle or license plate detection, has been an active research field in recent years. This
paper presented a detailed analysis of license plate recognition on three publicly avail-
able datasets. For the task of vehicle detection, a Faster RCNN architecture was used.
The license plate was located and recognized through our own developed methods. Our
findings are indicative of superior outputs on challenging datasets. Moreover, a detailed
comparison of our developed method was carried out with several state-of-the-art license
plate recognition approaches. We are optimistic that this study will be a fair guideline for
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beginners and practitioners to modify or use any detector or recognizer for their desired
tasks or applications. The outcomes of our developed system for recognizing license plates
are summarized below.

PKU Dataset:
On this dataset, our developed method yielded 100% recognition accuracy in the G1,

G2, and G3 categories. In the G4 category, our developed method was 99% successful at
accurately recognizing the license plate. Finally, in the G5 category, our developed method
yielded 99.63% recognition accuracy. Overall, on the PKU dataset, our developed method
ranks first out of the three compared methods in terms of license plate recognition accuracy.

AOLP Dataset:
This dataset contains three challenging categories, which are access control, traffic

law enforcement, and road patrol. On access control, our developed method yielded
97.8970% accurate recognition accuracy and ranked first herein. On traffic law enforcement,
our developed method yielded 98.2719% license plate recognition accuracy and ranked
second among the compared methods. On the road patrol category, our developed method
generated a mean recognition accuracy of 91.9006% and ranked first among the four
compared methods. The whole-mean accuracy on the AOLP dataset by our developed
method is 96.0231%.

CCPD Dataset:
This is the largest publicly available license plate dataset and contains challenging

scenarios, such as blur, rotation, tilt, and varying weather. On this dataset, our developed
method yielded a mean recognition accuracy of 98.7000% and ranked first among all
compared methods. In general, for all the other aforementioned categories, our developed
method yielded over 98% recognition accuracy. However, for the CCPD challenge category,
our developed method yielded slightly over 88% recognition accuracy and ranked second
among the five compared methods.

4.7. Limitations

As with any other algorithm for machine learning, we discovered several shortcom-
ings and failures in our method. Figure 10 depicts a handful of these instances with the
following observations:
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• It is clear from the rightmost image in the first row of Figure 10 that the input image is
extremely blurry with a non-clear license plate. In such a case, our developed method
struggles to distinguish the actual words and reads “A” from the license plate as “0”.

• Similar is the case for the next two images in the first row of Figure 10. We also observe
that there is no specific rule for license plate fonts. Therefore, such cases are very hard
to identify correctly. As shown in the first image in the second row of Figure 10, the
extreme blur is also a very challenging situation for any algorithm to deal with.

• We observe that occlusion, either partial or full, is also a challenging factor for the
machine learning-based license plate identification method. One such case is shown
in the third image in the second row of Figure 10, where high intensity light beams
have created occlusion in the license plate area and thereby a hurdle for the algorithm
to handle with. Therefore, before processing the license plate, such factors should be
carefully analyzed.

• We also note that light that falls on the license plate area due to reflection from the
vehicle’s surface also reduces the recognition ability of the algorithm. One such case
is seen in the middle image of the second row in Figure 10. Therefore, before a test
license plate is fed to the recognition algorithm, this issue should also be noted. In
such cases, an image enhancement or contrast rectification method might be useful to
improve the quality of the appearance of the license plate.

5. Conclusions

Accurate detection and recognition of vehicle license plates in natural scene images
is an important task to be performed by machine learning algorithms. Nowadays, it
is an integral part of modern intelligent traffic control systems. However, this task is
quite challenging due to various factors, for instance, the non-uniform patterns of the
plates, variations in view angles, such as blurriness, and the occlusions. With such factors,
it is always difficult for a single algorithm to handle the aforedescribed issues. This
paper discussed methods to detect and identify license plates that appear in an image.
The proposed method is composed of three distinct but interconnected steps: (i) vehicle
detection, (ii) license plate detection, and (iii) license plate recognition. To locate the vehicles,
a fine-tuned version of the Faster RCNN was used, while the license plate area was located
through our own developed plate localization module. Finally, the recognition task is
achieved using the deep learning network. Simulations were performed on three databases,
which are the PKU, the AOLP, and the CCPD license plate dataset. Our proposed method
achieves competitive performance and yields 99%, 96.0231%, and 98.7000% recognition
rates on the aforesaid datasets. We are optimistic that our findings are promising and
will be applicable to a variety of real-world applications, including surveillance and the
monitoring of suspicious vehicles.

In the future, the proposed method could be modified to handle extreme blurriness.
Similarly, the proposed method could also be improved to handle occlusion. Moreover,
the developed algorithm could also be made intelligent by being trained in parallel over
various time intervals.
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