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Abstract: Respiratory signals are basic indicators of human life and health that are used as effective 
biomarkers to detect respiratory diseases in clinics, including cardiopulmonary function, breathing 
disorders, and breathing system infections. Therefore, it is necessary to continuously measure res-
piratory signals. However, there is still a lack of effective portable electronic devices designed to 
meet the needs of daily respiratory monitoring. This study presents an intelligent, portable, and 
wireless respiratory monitoring system for real-time evaluation of human respiratory behaviors. 
The system consists of a triboelectric respiratory sensor; circuit board hardware for data acquisition, 
preprocessing, and wireless transmission; a machine learning algorithm for enhancing recognition 
accuracy; and a mobile terminal app. The triboelectric sensor—fabricated by the screen-printing 
method—is lightweight, non-invasive, and biocompatible. It provides a clear response to the fre-
quency and intensity of respiratory airflow. The portable circuit board is reusable and cost-effective. 
The decision tree model algorithm is used to identify the respiratory signals with an average accu-
racy of 97.2%. The real-time signal and statistical results can be uploaded to a server network and 
displayed on various mobile terminals for body health warnings and advice. This work promotes 
the development of wearable health monitoring systems. 

Keywords: respiratory monitoring; triboelectric sensor; decision tree model; machine learning al-
gorithm; intelligent mask 
 

1. Introduction 
Respiration is a fundamental indicator of life throughout human life, including the 

cycle of inhalation and exhalation [1,2]. It can be used clinically as an effective biomarker 
for detecting respiratory disease—the second leading cause of death, disability, and mor-
bidity, after cardiovascular disease—and for early screening of chronic obstructive pul-
monary disease, bronchial asthma, sleep apnea, and respiratory infection [3,4]. For exam-
ple, COVID-19 and influenza virus H1N1 are intimately associated with the respiratory 
system, and most patients experience long-term respiratory discomfort during the reha-
bilitation process [5,6], including coughing, severe coughing, sneezing, rapid breathing, 
etc. At present, the clinical diagnosis of respiratory diseases is based on medical history, 
symptoms, and stage treatment effects. Therefore, based on the characteristics of respira-
tory system diseases and corresponding symptoms, it is beneficial for patients to contin-
uously monitor respiratory behavior and extract clinically relevant parameters to accu-
rately describe their respiratory status [7]. Continuous and real-time respiratory monitor-
ing using portable equipment is an effective method for tracking lung function, quantita-
tively changing treatment plans and evaluating treatment effects, and prognosis [8]. 
Therefore, intelligent respiratory monitoring systems that are portable, low-cost, and in-
telligent are extremely beneficial for personal health via real-time monitoring of human 
respiratory physiological status. 

Citation: Zhang, C.; Zhang, L.;  

Tian, Y.; Bao, B.; Li, D. A  

Machine-Learning-Algorithm-As-

sisted Intelligent System for  

Real-Time Wireless Respiratory 

Monitoring. Appl. Sci. 2023, 13, 3885. 

https://doi.org/10.3390/app13063885 

Academic Editor: Fabio Di  

Pietrantonio 

Received: 15 February 2023 

Revised: 10 March 2023 

Accepted: 17 March 2023 

Published: 18 March 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Appl. Sci. 2023, 13, 3885 2 of 11 
 

 

In recent years, portable respiration sensing devices have been widely studied and 
are seen as effective means of monitoring respiratory health [9,10]. For example, Zhang et 
al. [11] developed a biodegradable respiratory sensor to distinguish between healthy and 
asthmatic, bronchitis, and chronic obstructive pulmonary disease states. Chen et al. [12] 
reported a respiratory monitoring system that can simultaneously sample respiratory and 
temperature signals using both capacitive and resistive sensors. Fang et al. [13] integrated 
a five-channel triboelectric sensing network on a mask, which can overcome environmen-
tal interference due to different facial contours and achieve a recognition accuracy of up 
to 100%. Among these sensors, the triboelectric sensor, based on the coupling effect of 
triboelectrification and electrostatic induction, has great potential among wearable elec-
tronics due to its simple structure, light weight, and self-powered characteristics [14–19]. 
However, there are still some challenges to overcome in order to gain a portable and suf-
ficiently smart respiratory monitoring system. These challenges include making respira-
tion sensors highly portable and comfortable for the human face, achieving higher accu-
racy to recognize complex respiratory behaviors, and improving system-level and multi-
terminal respiratory monitoring applications. 

In this study, we report a portable, algorithm-assisted, and wireless respiratory mon-
itoring system for real-time evaluation of human respiratory behaviors. The triboelectric 
respiratory sensor was directly screen-printed onto a commercial mask with a thickness 
of 50 μm and a weight of 0.05 g to capture respiratory signals (respiratory intensity and 
respiratory frequency) and showed high wearability and compatibility in daily use. A 
portable integrated circuit board was fabricated for signal acquisition, preprocessing, and 
wireless transmission, which can be reused, and only the low-cost respiratory sensing 
mask would need to be replaced in long-term use, significantly reducing the cost of the 
whole system. A decision tree model algorithm is used to categorize and quantify respir-
atory signals. A total of 12 features are extracted via a trainable classifier, and an average 
accuracy of 97.2% has been validated for five types of respiratory status. The real-time 
signals and statistical results of the respiratory status of the user can be uploaded to a 
server network and displayed in various mobile terminals for future body health warn-
ings and advice. 

2. Materials and Methods 
2.1. Materials and Fabrication of the Triboelectric Respiratory Sensor 

A commercial screen printer (PHP-B Series, Shanghai Hoting Screen Printing Equip-
ment Co., Ltd., Shanghai, China.) was used to manufacture the triboelectric respiratory 
sensors. Ag ink was purchased from Qingdao Nano Print Materials Technology Co., Ltd, 
Qingdao, China. Nylon ink was purchased from Hangzhou MIHE Trading Co., Ltd., 
Hangzhou, China. The Ag and nylon inks were directly used as received without further 
purification. PTFE film was purchased from Dongguan Hongfu Insulating Material Co., 
Ltd., Dongguan, China. 

Subsequently, the nylon, Ag, and nylon inks were printed layer by layer on the mask 
textile substrate and dried completely at 120 °C for 30 min. The PTFE film was fixed above 
the printed nylon ink to form a micro-curved surface. A structural diagram is shown in 
Figure 1b. 
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Figure 1. The main idea of the wireless intelligent respiratory monitoring system. (a) Schematic di-
agram of the wearable respiratory monitoring system and its potential expandable medical services. 
(b) The structural changes of the triboelectric respiratory sensor during the respiratory cycle, that 
is, the contact between the PTFE and nylon during the expiratory process, and the separation of the 
PTFE and nylon during the inspiratory process. (c,d) Photograph of the triboelectric respiratory 
sensor assembled with the mask and worn on a volunteer’s face. (e) Photograph of self-built wireless 
and portable data-acquisition circuit for the triboelectric respiratory sensor. (f) Logical flow chart of 
the wireless respiratory monitoring system, including respiratory signal acquisition, preliminary 
processing, wireless transmission, learning and testing of the algorithm, and display of respiratory 
results in the app user interface. 

2.2. Fabrication of Intelligent Wireless Respiratory Monitoring System 
A commercial mask made of polypropylene spun-bonded non-woven fabric with a 

double breathing valve was bought. The self-powered triboelectric respiratory sensor was 
directly screen-printed onto the innermost non-woven textile surface of the mask to form 
an intelligent mask for real-time respiratory monitoring. A circuit board was built for data 
acquisition with a sampling frequency of 1000 point/s and wireless signal transmission, 
which includes a low-pass multi-channel filter, an AD623 amplifier [20], an ADS1256 an-
alog-to-digital converter [21], and a BL600-SA-32 Bluetooth module [22]. A decision tree 
model of the machine learning algorithm was used to enhance the recognition accuracy 
of respiratory behaviors. An app was programmed for mobile phone terminals. The real-
time respiratory signals and statistical results for various respiration behaviors were dis-
played in the app user interface. 
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2.3. Data Processing and Analysis by a Decision Tree Model Algorithm 
The five types of typical respiratory behaviors (normal breathing, deep breathing, 

sneezing, coughing, and laughing) were collected by the self-built circuit board and then 
pretreated by filtering and smoothing. 

The data analysis process was mainly based on the data analysis tools of wavelet 
transform and Fourier transform. Wavelet transform was utilized to analyze transient 
non-stationary signals and transform the original signals into time–frequency signals, 
which can fully highlight the temporal distributional differences of various low-frequency 
respiratory signals. Fourier transform transforms the time-domain signal into the fre-
quency-domain signal, which can be used to intuitively distinguish the frequency concen-
tration and fluctuation range and is used to judge the changes in respiratory behavior that 
lead to this result. Based on the characteristics of the above three kinds of spectra, a total 
of 12 features were extracted, including mean, variance, standard deviation, root mean 
square and kurtosis from the original time domain signal; pulse factor, waveform factor, 
peak factor, and skewness from the time–frequency domain; and unbiased estimation, 
coefficient of variation, and edge factor from the frequency domain. 

Next, the decision tree algorithm was used to build a classification model based on 
the above features to improve the recognition accuracy of respiratory behavior. The total 
number of samples in the training data set was 1580, and the number of samples for each 
respiratory behavior was 316. Finally, the test data set including 395 data points was used 
to evaluate the training results. 

2.4. Characterization and Electrical Measurements 
The output voltages, currents, and charges of the self-powered triboelectric respira-

tory sensors were measured by Keithley 6514. Data were recorded using self-programmed 
software written in LabView. The periodic respiratory process was simulated by a linear 
motor (Linmot E1100, LinMot, Inc., Elkhorn, WI, USA), and the constant pressure value 
was monitored by a Vernier double-range force sensor (Vernier Science Education, Bea-
verton, OR, USA). 

3. Results 
3.1. Engineering Mechanism of the Intelligent Respiratory Monitoring System 

As shown in Figure 1a, the typical characteristic of physiological respiration is the 
cycle of inhalation and exhalation of air, which directly reflects respiratory status. Our 
main idea was to prepare an intelligent respiratory monitoring system which included a 
portable respiratory sensor to monitor the cycle of air inhalation and exhalation; a circuit 
board for real-time data acquisition, preprocessing, and wireless transmission; and a ma-
chine learning algorithm to enhance the recognition accuracy of respiratory behaviors. 
Finally, all test data were to be processed and presented in the user interfaces of various 
terminals to display real-time respiratory results and possible health-status alarms. 

Based on the above considerations, a respiratory sensor combined with a daily mask 
is an effective tool for daily respiratory monitoring. However, disposable masks are lim-
ited in their use time, and the average person cannot wear a mask for more than 8 h. In 
the COVID-19 pandemic environment, doctors suggested that the cumulative use time of 
a mask should not exceed 4 h and insisted that it should not be reused. Therefore, the 
wearing experience and production cost of the respiratory sensor are important factors 
that must be considered. 

As shown in Figure 1b,c, a triboelectric respiratory sensor with a single electrode 
mode was utilized and fabricated by directly screen-printing biocompatible nylon and Ag 
inks on a daily mask. In the commercial production process of daily masks, screen print-
ing is a mature customized processing technology, and this method is commonly used to 
print logos, models, and patterns on clothes. The nylon/Ag/nylon inks were layer-by-layer 
screen-printed onto the mask (Figure S1), then the PTFE film was tailored and fixed above 
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the nylon layer with a small curvature. The thickness of the upper PTFE layer was 20 μm, 
and the maximum distance between the PTFE and nylon was 1 mm. A surface SEM image 
of the nylon and Ag ink layers is shown in Figure S2. During the exhalation and inhalation 
process, the airflow pushes the inner PTFE film so that it contacts or separates from the 
printed nylon layer. Based on the coupled effect of triboelectrification and electrostatic 
induction, this triboelectric respiratory sensor can directly sense the driving force of the 
respiratory airflow, which can provide intuitive respiratory information, with high-fidel-
ity data, non-invasive acquisition, and a non-irritating interface. Figures S3 and S4 illus-
trate the thickness and the weight of our printed triboelectric respiratory sensor, which 
are only 50 μm and 0.05 g, respectively. The thicknesses of the top nylon layer, the Ag 
electrode, the bottom nylon layer, and the cotton textile are 23, 12, 16, and 500 μm, respec-
tively. In practical use, with the merits of light weight, superior flexibility, and high inte-
gration with the mask, the triboelectric respiratory sensor can fit comfortably on the user’s 
face (Figure 1d) and is fixed near the respiratory valve of the mask, so that it will not affect 
the filtering ability of the mask. The costs of each of the materials used in the 4 × 4 cm2 
respiratory sensor are listed in Table S1, and the total cost of replacing the respiratory 
monitoring mask is only 0.377 dollars, meaning that it does not carry an economic burden. 

The output signal of the triboelectric respiratory sensor is recorded by a self-built 
portable data-acquisition circuit board, as shown in Figures 1e and S5. This circuit board 
can be reused, and only the low-cost respiratory sensing mask would need to be replaced 
in long-term use, which significantly reduces the cost of the whole system. 

A logical flow chart for this wireless respiratory system is shown in Figure 1f. After 
the sampling, filtering, amplification, and transmission of the respiratory signals and ma-
chine learning, the dynamic respiratory curves and statistical data can be displayed in 
multi-terminal consumer electronics for real-time respiratory monitoring, health assess-
ment, online consultation, and early disease warnings. 

3.2. Working Mechanism and Output Performance of the Triboelectric Respiratory Sensor 
Figure 2a shows the sensing mechanism of our triboelectric respiratory sensor [23–

25]. The working process of the triboelectric respiratory sensor can be described as fol-
lows. First, in the original state, the electrification process occurs when the PTFE film con-
tacts the nylon layer, and the same numbers of opposite-polarity charges are generated 
between the contact interfaces. As the most triboelectrically negative material, PTFE tends 
to gain electrons compared with nylon. Then, in the inhaling process, the PTFE film grad-
ually separates from the nylon, and the potential difference increases, resulting in the in-
stantaneous flow of electrons from the ground to the Ag electrode. In the exhalation pro-
cess, the PTFE film approaches the nylon layer, and the potential difference decreases, 
leading to the electrons’ instantaneous flow back to the ground until the two materials 
come into full contact. During periodic respiration, the PTFE film performs a periodic con-
tact–separation process to generate an instantaneous AC current through an external cir-
cuit. To understand the potential distribution of the respiratory sensor more quantita-
tively, finite-element analysis was carried out using COMSOL software, as shown in Fig-
ure 2b. The potential balance is formed when the PTFE film is in full contact with the 
printed nylon layer. When the PTFE film is far away from the nylon layer, a potential 
difference is formed between the PTFE film with positive potential and the nylon layer 
with negative potential. The results of the finite-element analysis confirmed the mecha-
nistic analysis. 

To accurately evaluate the respiratory-sensing performance, a linear motor was used 
to drive the PTFE film to move reciprocally and simulate the respiratory process. As 
shown in Figure 2c, with an area of 4 × 4 cm2, a frequency of 0.5 Hz, and a constant force 
of 1 N, our triboelectric respiratory sensor can output an open-circuit voltage (Voc) of 8.3 
V, a short-circuit current (Isc) of 17.6 nA, and a short-circuit charge (Qsc) of 2.5 nC. For the 
0.5 Hz Voc signal, the response and recovery times of the respiratory sensor to the airflow 
are 0.25 s and 0.97 s, respectively, in the exhalation and inhalation process (Figure S6). 
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The electrical output of this triboelectric respiratory sensor is determined by the res-
piratory status, including two main factors, namely, respiratory intensity and respiratory 
frequency. Respiratory pressure and frequency in humans are generally lower than 1000 
Pa and 3 Hz, respectively [13]. Firstly, Figure 2d shows that the output voltage of the tri-
boelectric respiratory sensor increases with increasing pressure from 60 Pa to 3000 Pa and 
that the output voltage presents an approximately linear increase in the range of 60−1200 
Pa, with a sensitivity of 0.0079 V/Pa. Secondly, as shown in Figures 2e and S7, with an 
operating frequency from 0.5 Hz to 3 Hz, the triboelectric respiratory sensor exhibits well-
defined frequency characteristics, while the output voltage shows an indistinct difference 
and remains stable at 8.3 V. 

Moreover, the electrical output can be easily regulated by the device area (Figure 2f). 
In particular, for patients with dyspnea or respiratory failure, the sensing area can be ap-
propriately increased to enhance the signal-to-noise ratio to obtain clearer respiratory sig-
nals by means of the customization of screen-printing methods. Change in temperature 
has no effect on the respiratory sensor, which ensures the ability of the sensor to continue 
to be used in a changing environment (Figure S8). Durability is another essential factor 
for real-time respiratory monitoring; as shown in Figure 2g, our triboelectric respiratory 
sensor works stably after more than 10,000 continuous contact–separation cycles. All these 
excellent characteristics make this triboelectric respiratory sensor ideal for continuously 
monitoring daily respiratory status. 

 
Figure 2. The working mechanism and typical output performances of the triboelectric respiratory 
sensor. (a,b) Schematic illustration of the working mechanism and COMSOL finite-element simula-
tion results for the triboelectric respiratory sensor. (c) Typical output voltage, current, and charge 
curves for the triboelectric respiratory sensor. (d) Output voltage results for different pressures, 
from 60 Pa to 3000 Pa. (e) Output voltage curves for different operating frequencies, from 0.5 to 3 
Hz. (f) Output voltage curves for different sensing areas of 2 × 2 to 6 × 6 cm2. (g). Cycling stability 
performance of the triboelectric respiratory sensor for 10,000 cycles. 

  



Appl. Sci. 2023, 13, 3885 7 of 11 
 

 

3.3. Data Analysis and Feature-Extraction Approaches Respecting Respiratory Signals 
Figure 3a–e show the output signal curves of five typical respiratory behaviors rec-

orded by the sensor, including normal breathing, deep breathing, coughing, sneezing, and 
laughing. These respiratory statuses represent the most common natural physiological 
behaviors. It can be seen that the electrical signal curves exhibit significantly different 
waveforms and intensities and provide characteristic information, including but not lim-
ited to frequency, intensity, duration, and peak value. 

Wavelet transform (Figure 3f–j) and Fourier transform (Figure 3k–o) are used to an-
alyze the electrical signals [26], showing the corresponding time–frequency spectra and 
frequency–energy distributions, respectively. The wavelet transform and Fourier trans-
form are both powerful tools for analyzing signals. The wavelet transform is useful for 
analyzing transient non-stationary signals, such as respiratory signals, and can provide a 
time–frequency map that directly reflects the joint time–frequency characteristics of a sig-
nal. The Fourier transform is useful for converting a signal from the time domain to the 
frequency domain, allowing for the identification of intense frequency bands in the signal. 
The Fourier transform can also be used to identify the peak energy concentration of a 
signal, while the wavelet transform can be used to visualize the frequency change band. 
Both transforms have their own advantages and can be used to analyze different types of 
respiratory signals and extract signal features. 

As shown in Figure 3a,f,k, a peak signal with a voltage of 27.7 mV and a duration of 
3.7 s was obtained for the normal breathing process with a 0.24 Hz energy concentration 
frequency. Deep breathing, which is stronger and longer than normal breathing, mean-
while, presented an output voltage of 63.8 mV, a duration of 14.3 s, and an energy con-
centration frequency of 0.07 Hz (Figure 3b,g,l). The original curves for coughing and 
sneezing were similar, but the impact force of the transient airflow generated by sneezing 
is significantly stronger than that of coughing, which can be verified by the peak distribu-
tions of the output voltage and energy concentration curves (Figure 3c,d,h,i,m,n). Due to 
multiple and instantaneous gas-exchange processes, laughing signals present multiple en-
ergy concentration peaks mainly concentrated in the range of 0−1 Hz (Figure 3e,j,o). 

 
Figure 3. Data analysis and feature extraction of five typical respiratory behaviors. (a–e) Real-time 
output voltage curves generated by triboelectric respiratory sensors for normal breathing, deep 
breathing, sneezing, coughing, and laughing. (f–j) The time−frequency spectra corresponding to the 
five output voltage curves analyzed by wavelet transform. (k–o) The corresponding energy distri-
butions of output voltage curves analyzed by Fourier transform. 

Finally, a total of 12 typical feature values were extracted from the above time-do-
main and frequency-domain spectra. From the original time-domain spectra, the mean 
values, variances, standard deviations, and root mean squares and kurtosis can be 
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extracted. From the frequency-domain spectra, based on the Fourier transform, the fea-
tures of unbiased estimations, coefficients of variation, and edge factors can be extracted. 
From the time-domain spectra, based on the wavelet transform, the features of mean val-
ues, variances, standard deviations, and root mean squares and kurtosis can be extracted. 
All these features can be used to analyze the characteristics of respiratory signals and can 
provide valuable insights into the complex respiratory processes. Based on the abovemen-
tioned characteristic information, further training and testing using a machine learning 
algorithm will enhance the intelligence of the respiratory monitoring system. 

3.4. Algorithm for the Respiratory Monitoring System and Its Application 
Based on a comprehensive understanding of the characteristics of respiratory signals, 

the decision tree model algorithm is a powerful tool for automatically detecting and clas-
sifying complex respiratory behaviors. It has the advantage of reducing over-fitting prob-
lems and ranking the importance of extracted features in classification. This makes it an 
ideal choice for wearable healthcare applications, as it can provide high recognition accu-
racy. 

Figure 4a shows the detailed workflow for the decision tree model algorithm. In the 
training stage, five classification feature sets are first established based on the extraction 
of the above 12 features for each type of respiratory behavior. The structure and flow of 
the training data set are shown in Figure S9. Using these five classification feature sets and 
the corresponding annotation labels, we achieved the trained classification model based 
on the decision tree algorithm. In the test stage, the features of the unknown respiratory 
signals were extracted and classified one by one according to the trained classification 
model, until all the features were matched. 

In this work, the number of training data samples for the five types of respiratory 
signals was 1580. Figure 4b shows the Gini importance indexes of the 12 features in the 
trained classification model, which are often used to feedback the importance of each fea-
ture and judge the contribution in the classification model. It can be seen that variance, 
root mean square, kurtosis, and unbiased estimation are the most important indicators of 
the classification model, while coefficient of variance, edge factor, waveform factor, and 
peak factor contribute less to respiratory behavior classification. We randomly selected 
149 normal breathing samples, 77 deep breathing samples, 64 coughing samples, 76 sneez-
ing samples, and 29 laughing samples as a test data set to test the recognition accuracy 
after training (Figure S10). Such a test method for data extraction is more random and can 
highlight the accuracy of decision tree model classification. As shown in Figure 4c, a 3D 
scatter diagram is provided to intuitively highlight the classification ability of the algo-
rithm with respect to the test data set. The signals of sneezing (green) and coughing (red) 
are usually difficult to distinguish in waveforms. Here, they can be clearly distinguished 
by only three selected features, namely, average value, variance, and skewness. According 
to the confusion matrix, the average accuracy for recognizing respiratory types reached 
up to 97.2%, indicating the huge potential in terms of meeting daily respiratory monitor-
ing requirements (Figure 4d,e). 

Moreover, an intelligent and system-level respiratory monitoring system was 
demonstrated by integrating the triboelectric respiratory sensor, the portable circuit board 
(Figure 1e), the decision tree model algorithm, and a mobile terminal. As shown in Figure 
4f, the real-time respiratory signals and statistical results for various respiratory behaviors 
are displayed intuitively in the user interface. This respiratory monitoring system is not 
only easy to use in daily life but can also monitor a variety of respiratory signals, provid-
ing new opportunities for future research on life health monitoring and diagnostic sys-
tems. 
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Figure 4. Demonstrations of the wireless and real-time respiratory monitoring system. (a) The work-
flow chart of respiratory type recognition based on the decision tree algorithm includes data acqui-
sition, preliminary processing, the algorithm learning process, and the algorithm testing process. 
(b) Gini importance indexes of 12 features in the classification model trained on the 1580 data sam-
ples. (c) A 3D scatter diagram with average value, variance, and skewness as the features selected 
in the coordinate axes to divide five respiratory types. (d,e) Confusion matrix and classification ac-
curacy of the recognition of five respiratory types. (f) Optical photograph of the wireless intelligent 
respiratory monitoring system and a mobile phone app made for real-time respiratory recognition 
and statistics. 

4. Discussion 
Our respiratory monitoring system has excellent properties, such as wear resistance, 

low cost, and high precision, making it a promising technology for early-disease-predic-
tion models, cost-effective daily respiratory care, and treatment-effect tracking. The com-
bination of the triboelectric respiratory sensor and a daily mask produced by the screen-
printing method makes the respiratory monitoring system more convenient and comfort-
able to use. However, our respiratory monitoring system still has some limitations and 
there is still room for improvement, such as integrating the circuit board and the sensor 
into a small and light chip and addressing the anchoring deviation of the sensor data due 
to individual breathing habits and environmental complexity. In addition, further re-
search is needed to deeply analyze the signal characteristics of some specific respiratory 
diseases based on the mechanical learning algorithm. The ultimate goal of our respiratory 
monitoring system is to enable high-accuracy medically assisted daily respiratory evalu-
ation through the collection, storage, and objective evaluation of respiratory signals over 
long-period use times. 

5. Conclusions 
In summary, this paper presents an intelligent, portable, and wireless respiratory 

monitoring system for real-time evaluation of human respiratory behavior. The 



Appl. Sci. 2023, 13, 3885 10 of 11 
 

 

respiratory monitoring system consists of a triboelectric respiratory sensor; circuit board 
hardware for real-time data acquisition, preprocessing, and wireless transmission; a ma-
chine learning algorithm to enhance the recognition accuracy of respiratory behaviors; 
and a mobile terminal app to display the dynamic respiratory curves and statistical data. 
The triboelectric respiratory sensor—fabricated by the screen-printing method—is thin, 
lightweight, non-invasive, and made of harmless and odorless materials. It is clearly re-
sponsive to the frequency and intensity of respiratory airflow and can easily adjust the 
electrical output. The portable circuit board is reusable and cost-effective. The decision 
tree model algorithm is used to identify respiratory signals with an average accuracy of 
97.2%. The real-time signal and statistical results can be uploaded to a server network and 
displayed on various mobile terminals for body health warnings and advice. Thus, this 
work provides an effective and convenient means of monitoring respiratory health. 
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triboelectric respiratory sensor and the pure textile of the same size; Figure S5: Circuit diagram of 
the self-built portable data-acquisition circuit board; Figure S6: The first response and recovery time 
of the respiratory sensor for exhalation and inhalation airflow under 0.5 Hz; Figure S7: Output cur-
rent and charge curves at different operating frequencies, from 0.5 to 3 Hz; Figure S8: The effect of 
20–50 °C temperature on the electrical output characteristics of the respiratory sensor; Figure S9: 
The training process of the decision tree algorithm; Figure S10: Randomly selected 1 min signal 
periods of five respiratory signal curves used for the recognition accuracy test of the decision tree 
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