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Abstract: Respiratory signals are basic indicators of human life and health that are used as effective
biomarkers to detect respiratory diseases in clinics, including cardiopulmonary function, breathing
disorders, and breathing system infections. Therefore, it is necessary to continuously measure respi-
ratory signals. However, there is still a lack of effective portable electronic devices designed to meet
the needs of daily respiratory monitoring. This study presents an intelligent, portable, and wireless
respiratory monitoring system for real-time evaluation of human respiratory behaviors. The system
consists of a triboelectric respiratory sensor; circuit board hardware for data acquisition, preprocess-
ing, and wireless transmission; a machine learning algorithm for enhancing recognition accuracy;
and a mobile terminal app. The triboelectric sensor—fabricated by the screen-printing method—is
lightweight, non-invasive, and biocompatible. It provides a clear response to the frequency and
intensity of respiratory airflow. The portable circuit board is reusable and cost-effective. The decision
tree model algorithm is used to identify the respiratory signals with an average accuracy of 97.2%.
The real-time signal and statistical results can be uploaded to a server network and displayed on
various mobile terminals for body health warnings and advice. This work promotes the development
of wearable health monitoring systems.

Keywords: respiratory monitoring; triboelectric sensor; decision tree model; machine learning
algorithm; intelligent mask

1. Introduction

Respiration is a fundamental indicator of life throughout human life, including the
cycle of inhalation and exhalation [1,2]. It can be used clinically as an effective biomarker for
detecting respiratory disease—the second leading cause of death, disability, and morbidity,
after cardiovascular disease—and for early screening of chronic obstructive pulmonary dis-
ease, bronchial asthma, sleep apnea, and respiratory infection [3,4]. For example, COVID-19
and influenza virus H1N1 are intimately associated with the respiratory system, and most
patients experience long-term respiratory discomfort during the rehabilitation process [5,6],
including coughing, severe coughing, sneezing, rapid breathing, etc. At present, the clin-
ical diagnosis of respiratory diseases is based on medical history, symptoms, and stage
treatment effects. Therefore, based on the characteristics of respiratory system diseases and
corresponding symptoms, it is beneficial for patients to continuously monitor respiratory
behavior and extract clinically relevant parameters to accurately describe their respiratory
status [7]. Continuous and real-time respiratory monitoring using portable equipment is an
effective method for tracking lung function, quantitatively changing treatment plans and
evaluating treatment effects, and prognosis [8]. Therefore, intelligent respiratory monitor-
ing systems that are portable, low-cost, and intelligent are extremely beneficial for personal
health via real-time monitoring of human respiratory physiological status.

In recent years, portable respiration sensing devices have been widely studied and are
seen as effective means of monitoring respiratory health [9,10]. For example, Zhang et al. [11]
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developed a biodegradable respiratory sensor to distinguish between healthy and asth-
matic, bronchitis, and chronic obstructive pulmonary disease states. Chen et al. [12]
reported a respiratory monitoring system that can simultaneously sample respiratory and
temperature signals using both capacitive and resistive sensors. Fang et al. [13] integrated
a five-channel triboelectric sensing network on a mask, which can overcome environmental
interference due to different facial contours and achieve a recognition accuracy of up to
100%. Among these sensors, the triboelectric sensor, based on the coupling effect of tribo-
electrification and electrostatic induction, has great potential among wearable electronics
due to its simple structure, light weight, and self-powered characteristics [14–19]. However,
there are still some challenges to overcome in order to gain a portable and sufficiently
smart respiratory monitoring system. These challenges include making respiration sensors
highly portable and comfortable for the human face, achieving higher accuracy to recognize
complex respiratory behaviors, and improving system-level and multi-terminal respiratory
monitoring applications.

In this study, we report a portable, algorithm-assisted, and wireless respiratory moni-
toring system for real-time evaluation of human respiratory behaviors. The triboelectric
respiratory sensor was directly screen-printed onto a commercial mask with a thickness
of 50 µm and a weight of 0.05 g to capture respiratory signals (respiratory intensity and
respiratory frequency) and showed high wearability and compatibility in daily use. A
portable integrated circuit board was fabricated for signal acquisition, preprocessing, and
wireless transmission, which can be reused, and only the low-cost respiratory sensing mask
would need to be replaced in long-term use, significantly reducing the cost of the whole
system. A decision tree model algorithm is used to categorize and quantify respiratory
signals. A total of 12 features are extracted via a trainable classifier, and an average accuracy
of 97.2% has been validated for five types of respiratory status. The real-time signals and
statistical results of the respiratory status of the user can be uploaded to a server network
and displayed in various mobile terminals for future body health warnings and advice.

2. Materials and Methods
2.1. Materials and Fabrication of the Triboelectric Respiratory Sensor

A commercial screen printer (PHP-B Series, Shanghai Hoting Screen Printing Equip-
ment Co., Ltd., Shanghai, China.) was used to manufacture the triboelectric respiratory
sensors. Ag ink was purchased from Qingdao Nano Print Materials Technology Co., Ltd,
Qingdao, China. Nylon ink was purchased from Hangzhou MIHE Trading Co., Ltd.,
Hangzhou, China. The Ag and nylon inks were directly used as received without further
purification. PTFE film was purchased from Dongguan Hongfu Insulating Material Co.,
Ltd., Dongguan, China.

Subsequently, the nylon, Ag, and nylon inks were printed layer by layer on the mask
textile substrate and dried completely at 120 ◦C for 30 min. The PTFE film was fixed above
the printed nylon ink to form a micro-curved surface. A structural diagram is shown in
Figure 1b.

2.2. Fabrication of Intelligent Wireless Respiratory Monitoring System

A commercial mask made of polypropylene spun-bonded non-woven fabric with
a double breathing valve was bought. The self-powered triboelectric respiratory sensor
was directly screen-printed onto the innermost non-woven textile surface of the mask
to form an intelligent mask for real-time respiratory monitoring. A circuit board was
built for data acquisition with a sampling frequency of 1000 point/s and wireless signal
transmission, which includes a low-pass multi-channel filter, an AD623 amplifier [20], an
ADS1256 analog-to-digital converter [21], and a BL600-SA-32 Bluetooth module [22]. A
decision tree model of the machine learning algorithm was used to enhance the recognition
accuracy of respiratory behaviors. An app was programmed for mobile phone terminals.
The real-time respiratory signals and statistical results for various respiration behaviors
were displayed in the app user interface.



Appl. Sci. 2023, 13, 3885 3 of 11

Figure 1. The main idea of the wireless intelligent respiratory monitoring system. (a) Schematic
diagram of the wearable respiratory monitoring system and its potential expandable medical services.
(b) The structural changes of the triboelectric respiratory sensor during the respiratory cycle, that
is, the contact between the PTFE and nylon during the expiratory process, and the separation of
the PTFE and nylon during the inspiratory process. (c,d) Photograph of the triboelectric respiratory
sensor assembled with the mask and worn on a volunteer’s face. (e) Photograph of self-built wireless
and portable data-acquisition circuit for the triboelectric respiratory sensor. (f) Logical flow chart
of the wireless respiratory monitoring system, including respiratory signal acquisition, preliminary
processing, wireless transmission, learning and testing of the algorithm, and display of respiratory
results in the app user interface.

2.3. Data Processing and Analysis by a Decision Tree Model Algorithm

The five types of typical respiratory behaviors (normal breathing, deep breathing,
sneezing, coughing, and laughing) were collected by the self-built circuit board and then
pretreated by filtering and smoothing.

The data analysis process was mainly based on the data analysis tools of wavelet
transform and Fourier transform. Wavelet transform was utilized to analyze transient
non-stationary signals and transform the original signals into time–frequency signals,
which can fully highlight the temporal distributional differences of various low-frequency
respiratory signals. Fourier transform transforms the time-domain signal into the frequency-
domain signal, which can be used to intuitively distinguish the frequency concentration
and fluctuation range and is used to judge the changes in respiratory behavior that lead
to this result. Based on the characteristics of the above three kinds of spectra, a total of
12 features were extracted, including mean, variance, standard deviation, root mean square
and kurtosis from the original time domain signal; pulse factor, waveform factor, peak
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factor, and skewness from the time–frequency domain; and unbiased estimation, coefficient
of variation, and edge factor from the frequency domain.

Next, the decision tree algorithm was used to build a classification model based on
the above features to improve the recognition accuracy of respiratory behavior. The total
number of samples in the training data set was 1580, and the number of samples for each
respiratory behavior was 316. Finally, the test data set including 395 data points was used
to evaluate the training results.

2.4. Characterization and Electrical Measurements

The output voltages, currents, and charges of the self-powered triboelectric respiratory
sensors were measured by Keithley 6514. Data were recorded using self-programmed
software written in LabView. The periodic respiratory process was simulated by a linear
motor (Linmot E1100, LinMot, Inc., Elkhorn, WI, USA), and the constant pressure value was
monitored by a Vernier double-range force sensor (Vernier Science Education, Beaverton,
OR, USA).

3. Results
3.1. Engineering Mechanism of the Intelligent Respiratory Monitoring System

As shown in Figure 1a, the typical characteristic of physiological respiration is the
cycle of inhalation and exhalation of air, which directly reflects respiratory status. Our main
idea was to prepare an intelligent respiratory monitoring system which included a portable
respiratory sensor to monitor the cycle of air inhalation and exhalation; a circuit board
for real-time data acquisition, preprocessing, and wireless transmission; and a machine
learning algorithm to enhance the recognition accuracy of respiratory behaviors. Finally,
all test data were to be processed and presented in the user interfaces of various terminals
to display real-time respiratory results and possible health-status alarms.

Based on the above considerations, a respiratory sensor combined with a daily mask
is an effective tool for daily respiratory monitoring. However, disposable masks are limited
in their use time, and the average person cannot wear a mask for more than 8 h. In the
COVID-19 pandemic environment, doctors suggested that the cumulative use time of
a mask should not exceed 4 h and insisted that it should not be reused. Therefore, the
wearing experience and production cost of the respiratory sensor are important factors that
must be considered.

As shown in Figure 1b,c, a triboelectric respiratory sensor with a single electrode mode
was utilized and fabricated by directly screen-printing biocompatible nylon and Ag inks
on a daily mask. In the commercial production process of daily masks, screen printing is
a mature customized processing technology, and this method is commonly used to print
logos, models, and patterns on clothes. The nylon/Ag/nylon inks were layer-by-layer
screen-printed onto the mask (Figure S1), then the PTFE film was tailored and fixed above
the nylon layer with a small curvature. The thickness of the upper PTFE layer was 20 µm,
and the maximum distance between the PTFE and nylon was 1 mm. A surface SEM image
of the nylon and Ag ink layers is shown in Figure S2. During the exhalation and inhalation
process, the airflow pushes the inner PTFE film so that it contacts or separates from the
printed nylon layer. Based on the coupled effect of triboelectrification and electrostatic
induction, this triboelectric respiratory sensor can directly sense the driving force of the
respiratory airflow, which can provide intuitive respiratory information, with high-fidelity
data, non-invasive acquisition, and a non-irritating interface. Figures S3 and S4 illustrate
the thickness and the weight of our printed triboelectric respiratory sensor, which are only
50 µm and 0.05 g, respectively. The thicknesses of the top nylon layer, the Ag electrode,
the bottom nylon layer, and the cotton textile are 23, 12, 16, and 500 µm, respectively. In
practical use, with the merits of light weight, superior flexibility, and high integration
with the mask, the triboelectric respiratory sensor can fit comfortably on the user’s face
(Figure 1d) and is fixed near the respiratory valve of the mask, so that it will not affect
the filtering ability of the mask. The costs of each of the materials used in the 4 × 4 cm2
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respiratory sensor are listed in Table S1, and the total cost of replacing the respiratory
monitoring mask is only 0.377 dollars, meaning that it does not carry an economic burden.

The output signal of the triboelectric respiratory sensor is recorded by a self-built
portable data-acquisition circuit board, as shown in Figures 1e and S5. This circuit board
can be reused, and only the low-cost respiratory sensing mask would need to be replaced
in long-term use, which significantly reduces the cost of the whole system.

A logical flow chart for this wireless respiratory system is shown in Figure 1f. After the
sampling, filtering, amplification, and transmission of the respiratory signals and machine
learning, the dynamic respiratory curves and statistical data can be displayed in multi-
terminal consumer electronics for real-time respiratory monitoring, health assessment,
online consultation, and early disease warnings.

3.2. Working Mechanism and Output Performance of the Triboelectric Respiratory Sensor

Figure 2a shows the sensing mechanism of our triboelectric respiratory sensor [23–25].
The working process of the triboelectric respiratory sensor can be described as follows. First,
in the original state, the electrification process occurs when the PTFE film contacts the nylon
layer, and the same numbers of opposite-polarity charges are generated between the contact
interfaces. As the most triboelectrically negative material, PTFE tends to gain electrons
compared with nylon. Then, in the inhaling process, the PTFE film gradually separates
from the nylon, and the potential difference increases, resulting in the instantaneous flow
of electrons from the ground to the Ag electrode. In the exhalation process, the PTFE film
approaches the nylon layer, and the potential difference decreases, leading to the electrons’
instantaneous flow back to the ground until the two materials come into full contact.
During periodic respiration, the PTFE film performs a periodic contact–separation process
to generate an instantaneous AC current through an external circuit. To understand the
potential distribution of the respiratory sensor more quantitatively, finite-element analysis
was carried out using COMSOL software, as shown in Figure 2b. The potential balance is
formed when the PTFE film is in full contact with the printed nylon layer. When the PTFE
film is far away from the nylon layer, a potential difference is formed between the PTFE
film with positive potential and the nylon layer with negative potential. The results of the
finite-element analysis confirmed the mechanistic analysis.

To accurately evaluate the respiratory-sensing performance, a linear motor was used
to drive the PTFE film to move reciprocally and simulate the respiratory process. As shown
in Figure 2c, with an area of 4 × 4 cm2, a frequency of 0.5 Hz, and a constant force of
1 N, our triboelectric respiratory sensor can output an open-circuit voltage (Voc) of 8.3 V,
a short-circuit current (Isc) of 17.6 nA, and a short-circuit charge (Qsc) of 2.5 nC. For the
0.5 Hz Voc signal, the response and recovery times of the respiratory sensor to the airflow
are 0.25 s and 0.97 s, respectively, in the exhalation and inhalation process (Figure S6).

The electrical output of this triboelectric respiratory sensor is determined by the res-
piratory status, including two main factors, namely, respiratory intensity and respiratory
frequency. Respiratory pressure and frequency in humans are generally lower than 1000 Pa
and 3 Hz, respectively [13]. Firstly, Figure 2d shows that the output voltage of the triboelec-
tric respiratory sensor increases with increasing pressure from 60 Pa to 3000 Pa and that the
output voltage presents an approximately linear increase in the range of 60–1200 Pa, with
a sensitivity of 0.0079 V/Pa. Secondly, as shown in Figures 2e and S7, with an operating
frequency from 0.5 Hz to 3 Hz, the triboelectric respiratory sensor exhibits well-defined
frequency characteristics, while the output voltage shows an indistinct difference and
remains stable at 8.3 V.

Moreover, the electrical output can be easily regulated by the device area (Figure 2f).
In particular, for patients with dyspnea or respiratory failure, the sensing area can be
appropriately increased to enhance the signal-to-noise ratio to obtain clearer respiratory
signals by means of the customization of screen-printing methods. Change in temperature
has no effect on the respiratory sensor, which ensures the ability of the sensor to continue
to be used in a changing environment (Figure S8). Durability is another essential factor
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for real-time respiratory monitoring; as shown in Figure 2g, our triboelectric respiratory
sensor works stably after more than 10,000 continuous contact–separation cycles. All these
excellent characteristics make this triboelectric respiratory sensor ideal for continuously
monitoring daily respiratory status.

Figure 2. The working mechanism and typical output performances of the triboelectric respiratory
sensor. (a,b) Schematic illustration of the working mechanism and COMSOL finite-element simulation
results for the triboelectric respiratory sensor. (c) Typical output voltage, current, and charge curves
for the triboelectric respiratory sensor. (d) Output voltage results for different pressures, from 60 Pa
to 3000 Pa. (e) Output voltage curves for different operating frequencies, from 0.5 to 3 Hz. (f) Output
voltage curves for different sensing areas of 2 × 2 to 6 × 6 cm2. (g). Cycling stability performance of
the triboelectric respiratory sensor for 10,000 cycles.

3.3. Data Analysis and Feature-Extraction Approaches Respecting Respiratory Signals

Figure 3a–e show the output signal curves of five typical respiratory behaviors
recorded by the sensor, including normal breathing, deep breathing, coughing, sneezing,
and laughing. These respiratory statuses represent the most common natural physiological
behaviors. It can be seen that the electrical signal curves exhibit significantly different
waveforms and intensities and provide characteristic information, including but not limited
to frequency, intensity, duration, and peak value.

Wavelet transform (Figure 3f–j) and Fourier transform (Figure 3k–o) are used to
analyze the electrical signals [26], showing the corresponding time–frequency spectra
and frequency–energy distributions, respectively. The wavelet transform and Fourier
transform are both powerful tools for analyzing signals. The wavelet transform is useful
for analyzing transient non-stationary signals, such as respiratory signals, and can provide
a time–frequency map that directly reflects the joint time–frequency characteristics of a
signal. The Fourier transform is useful for converting a signal from the time domain to
the frequency domain, allowing for the identification of intense frequency bands in the
signal. The Fourier transform can also be used to identify the peak energy concentration of
a signal, while the wavelet transform can be used to visualize the frequency change band.
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Both transforms have their own advantages and can be used to analyze different types of
respiratory signals and extract signal features.

Figure 3. Data analysis and feature extraction of five typical respiratory behaviors. (a–e) Real-time
output voltage curves generated by triboelectric respiratory sensors for normal breathing, deep
breathing, sneezing, coughing, and laughing. (f–j) The time—frequency spectra corresponding to
the five output voltage curves analyzed by wavelet transform. (k–o) The corresponding energy
distributions of output voltage curves analyzed by Fourier transform.

As shown in Figure 3a,f,k, a peak signal with a voltage of 27.7 mV and a duration
of 3.7 s was obtained for the normal breathing process with a 0.24 Hz energy concen-
tration frequency. Deep breathing, which is stronger and longer than normal breathing,
meanwhile, presented an output voltage of 63.8 mV, a duration of 14.3 s, and an energy
concentration frequency of 0.07 Hz (Figure 3b,g,l). The original curves for coughing and
sneezing were similar, but the impact force of the transient airflow generated by sneezing is
significantly stronger than that of coughing, which can be verified by the peak distributions
of the output voltage and energy concentration curves (Figures 3c,h,m and 3d,i,n). Due
to multiple and instantaneous gas-exchange processes, laughing signals present multiple
energy concentration peaks mainly concentrated in the range of 0–1 Hz (Figure 3e,j,o).

Finally, a total of 12 typical feature values were extracted from the above time-domain
and frequency-domain spectra. From the original time-domain spectra, the mean values,
variances, standard deviations, and root mean squares and kurtosis can be extracted. From
the frequency-domain spectra, based on the Fourier transform, the features of unbiased
estimations, coefficients of variation, and edge factors can be extracted. From the time-
domain spectra, based on the wavelet transform, the features of mean values, variances,
standard deviations, and root mean squares and kurtosis can be extracted. All these
features can be used to analyze the characteristics of respiratory signals and can provide
valuable insights into the complex respiratory processes. Based on the abovementioned
characteristic information, further training and testing using a machine learning algorithm
will enhance the intelligence of the respiratory monitoring system.

3.4. Algorithm for the Respiratory Monitoring System and Its Application

Based on a comprehensive understanding of the characteristics of respiratory signals,
the decision tree model algorithm is a powerful tool for automatically detecting and classi-
fying complex respiratory behaviors. It has the advantage of reducing over-fitting problems
and ranking the importance of extracted features in classification. This makes it an ideal
choice for wearable healthcare applications, as it can provide high recognition accuracy.

Figure 4a shows the detailed workflow for the decision tree model algorithm. In the
training stage, five classification feature sets are first established based on the extraction of
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the above 12 features for each type of respiratory behavior. The structure and flow of the
training data set are shown in Figure S9. Using these five classification feature sets and the
corresponding annotation labels, we achieved the trained classification model based on the
decision tree algorithm. In the test stage, the features of the unknown respiratory signals
were extracted and classified one by one according to the trained classification model, until
all the features were matched.

Figure 4. Demonstrations of the wireless and real-time respiratory monitoring system. (a) The
workflow chart of respiratory type recognition based on the decision tree algorithm includes data
acquisition, preliminary processing, the algorithm learning process, and the algorithm testing process.
(b) Gini importance indexes of 12 features in the classification model trained on the 1580 data samples.
(c) A 3D scatter diagram with average value, variance, and skewness as the features selected in the
coordinate axes to divide five respiratory types. (d,e) Confusion matrix and classification accuracy of
the recognition of five respiratory types. (f) Optical photograph of the wireless intelligent respiratory
monitoring system and a mobile phone app made for real-time respiratory recognition and statistics.

In this work, the number of training data samples for the five types of respiratory
signals was 1580. Figure 4b shows the Gini importance indexes of the 12 features in the
trained classification model, which are often used to feedback the importance of each
feature and judge the contribution in the classification model. It can be seen that variance,
root mean square, kurtosis, and unbiased estimation are the most important indicators of
the classification model, while coefficient of variance, edge factor, waveform factor, and
peak factor contribute less to respiratory behavior classification. We randomly selected
149 normal breathing samples, 77 deep breathing samples, 64 coughing samples, 76 sneez-
ing samples, and 29 laughing samples as a test data set to test the recognition accuracy
after training (Figure S10). Such a test method for data extraction is more random and can
highlight the accuracy of decision tree model classification. As shown in Figure 4c, a 3D
scatter diagram is provided to intuitively highlight the classification ability of the algorithm
with respect to the test data set. The signals of sneezing (green) and coughing (red) are
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usually difficult to distinguish in waveforms. Here, they can be clearly distinguished by
only three selected features, namely, average value, variance, and skewness. According to
the confusion matrix, the average accuracy for recognizing respiratory types reached up
to 97.2%, indicating the huge potential in terms of meeting daily respiratory monitoring
requirements (Figure 4d,e).

Moreover, an intelligent and system-level respiratory monitoring system was demon-
strated by integrating the triboelectric respiratory sensor, the portable circuit board (Figure 1e),
the decision tree model algorithm, and a mobile terminal. As shown in Figure 4f, the real-
time respiratory signals and statistical results for various respiratory behaviors are displayed
intuitively in the user interface. This respiratory monitoring system is not only easy to use in
daily life but can also monitor a variety of respiratory signals, providing new opportunities
for future research on life health monitoring and diagnostic systems.

4. Discussion

Our respiratory monitoring system has excellent properties, such as wear resistance,
low cost, and high precision, making it a promising technology for early-disease-prediction
models, cost-effective daily respiratory care, and treatment-effect tracking. The combination
of the triboelectric respiratory sensor and a daily mask produced by the screen-printing
method makes the respiratory monitoring system more convenient and comfortable to use.
However, our respiratory monitoring system still has some limitations and there is still
room for improvement, such as integrating the circuit board and the sensor into a small
and light chip and addressing the anchoring deviation of the sensor data due to individual
breathing habits and environmental complexity. In addition, further research is needed
to deeply analyze the signal characteristics of some specific respiratory diseases based
on the mechanical learning algorithm. The ultimate goal of our respiratory monitoring
system is to enable high-accuracy medically assisted daily respiratory evaluation through
the collection, storage, and objective evaluation of respiratory signals over long-period
use times.

5. Conclusions

In summary, this paper presents an intelligent, portable, and wireless respiratory
monitoring system for real-time evaluation of human respiratory behavior. The respiratory
monitoring system consists of a triboelectric respiratory sensor; circuit board hardware for
real-time data acquisition, preprocessing, and wireless transmission; a machine learning
algorithm to enhance the recognition accuracy of respiratory behaviors; and a mobile
terminal app to display the dynamic respiratory curves and statistical data. The triboelectric
respiratory sensor—fabricated by the screen-printing method—is thin, lightweight, non-
invasive, and made of harmless and odorless materials. It is clearly responsive to the
frequency and intensity of respiratory airflow and can easily adjust the electrical output.
The portable circuit board is reusable and cost-effective. The decision tree model algorithm
is used to identify respiratory signals with an average accuracy of 97.2%. The real-time
signal and statistical results can be uploaded to a server network and displayed on various
mobile terminals for body health warnings and advice. Thus, this work provides an
effective and convenient means of monitoring respiratory health.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app13063885/s1, Figure S1: Flow chart of the self-powered triboelectric
respiratory sensor fabricated by screen printing; Figure S2: SEM images of the screen-printed Ag
layer and the nylon layer on the textile; Figure S3: Cross-sectional SEM images of the screen-printed
triboelectric respiratory sensor; Figure S4: The weight of the textile printed with the triboelectric
respiratory sensor and the pure textile of the same size; Figure S5: Circuit diagram of the self-
built portable data-acquisition circuit board; Figure S6: The first response and recovery time of the
respiratory sensor for exhalation and inhalation airflow under 0.5 Hz; Figure S7: Output current
and charge curves at different operating frequencies, from 0.5 to 3 Hz; Figure S8: The effect of
20–50 ◦C temperature on the electrical output characteristics of the respiratory sensor; Figure S9: The
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training process of the decision tree algorithm; Figure S10: Randomly selected 1 min signal periods of
five respiratory signal curves used for the recognition accuracy test of the decision tree algorithm.
The test data set included 29 laughing samples, 149 normal breathing samples, 77 deep breathing
samples, 64 coughing samples, and 76 sneezing samples. Table S1: Cost of each layer of 4 × 4 cm2

respiratory sensor.
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