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Abstract: We discuss the analysis of a piezoelectric energy harvester for random mechanical vibra-
tions, and we assess the performance improvement guaranteed by interposing a matching network
between the transducer and the electrical load, in terms of average output power and power ef-
ficiency. The mathematical model describing the harvester is a system of stochastic differential
equations, where both cases of linear and nonlinear devices are considered. In the linear case, the
power delivered to the load is increased by a factor of about 20 with respect to the direct connection,
with a similar increase in the conversion efficiency. In the nonlinear case, we use a moment closure
technique to calculate the first- and second-order moments of the electro-mechanical variables in
the weak noise limit. Moment calculation is used to determine the optimal values of the matching
network components that maximize the performance. In the strong noise limit, the state equations
are integrated numerically to determine the same performance metrics. Our analysis shows that a
properly designed matching network improves the performance by a significant amount, especially
at low noise intensity.

Keywords: energy harvesting; piezoelectric energy harvester; nonlinear dynamical systems;
equivalent circuits; impedance matching; power efficiency; nonlinear resonance

1. Introduction

Scavenging ambient dispersed energy available for conversion to electrical power
represents the ultimate solution for self-powering individual nodes of wireless sensor
networks [1–4] and, more in general, internet of things (IoT) wireless interconnected devices.

Although the possible energy sources are quite varied, ranging from human motion to
thermal gradients and high-frequency electromagnetic radiation [5–8], ambient parasitic
vibrations are particularly promising due to several characteristics, such as their significant
power availability, the ease of conversion into an electrical form making use of a certain
number of transducers, and, last but not least, the fact that they are ubiquitous [9–13].

The modeling, and thus also the design, of vibration energy harvesters requires in the
first place to properly describe the energy source, i.e., the mechanical vibrations available
for energy collection. Some considerations on the harvester design can be carried out based
on a simplified description, in which vibrations are assumed purely sinusoidal [14–21]. In
other words, this amounts to assume that the energy is concentrated at a single frequency
value or, mathematically speaking, the power spectrum is a delta function vs. frequency.
On the other hand, a more physical description should take into account the spread of
the vibration energy over a continuous frequency range. For this task, the more obvious
approach amounts to a random description of vibrations [22–29].

From the designer point of view, a stochastic description of external sources poses
major challenges, especially when nonlinear effects are taken into account, as the application
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of the combined machinery of stochastic analysis [30,31] and nonlinear dynamics [32]
is required.

A second major challenge is represented by the obvious requirement to design harvest-
ing systems with a very high efficiency. In fact, energy harvesters (or, more in general, elec-
trical power supplies), are often working far from their optimal condition due to a non-ideal
energy transfer from the (mechanical) source to the (electrical) load. Such an operating con-
dition can be conveniently represented exploiting an electro-mechanical analogy, allowing
for the construction of an equivalent circuit describing the entire harvester [28,33]: this rep-
resentation, in turn, suggests the introduction of a matching network between the harvest-
ing device and the electrical load to eliminate, or at least mitigate, the mismatch [18,19,34].
Impedance matching is a classical design technique that has been exploited in RF and
microwave electronics for about 70 years [35–37]; however, in other electronics areas, the
energy transfer improvement is mostly limited to power factor correction schemes.

A solution inspired by power factor correction is the connection of a shunted reactive
element (capacitor or inductor) in parallel to the resistive load [18,34,38,39]. The role of the
shunted element is to reduce the time lag between the voltage and current in the load, thus
reducing the amount of power reflected from the load to the source. An alternative solution,
based on impedance matching theory, consists in interposing a matching network between
the harvester and the electrical load. The matching network must be designed to eliminate
the impedance mismatch between the mechanical and the electrical parts. The advantage
offered by the matching network solution is that it not only reduces the power reflected
from the load to the source but also maximizes the average power absorbed by the load,
in general outperforming power factor corrected solutions. Obviously, perfect matching
is achievable only at a specific frequency. Still, the matching network can be optimized to
offer partial matching over a relatively wide frequency interval, maximizing the average
power absorbed by the load and the power conversion efficiency, even for multi-frequency
or broadband inputs.

In this work, we study a bistable piezoelectric energy harvester, as schematized in
Figure 1, subject to random mechanical vibrations. In this device, a cantilever beam is
fixed at one end to a vibrating support, with a magnet of mass m at the opposite end to
amplify oscillations. Vibrations of the support induce oscillations of the beam that in turn
are transformed into electrical power by means of layers of a piezoelectric material deposed
on the cantilever. Nonlinearity is introduced in the design by the tip magnet, that is fixed
to a support in front of the inertial magnet but with opposed polarities, to create a biased
inverted pendulum with magnetic repulsive force. When the two magnets are close enough,
magnetic repulsion forces the beam to the left or to the right of the vertical position. The
unforced system exhibits bi-stability, with two stable equilibrium points, each with its own
basin of attraction, separated by an unstable saddle, corresponding to the vertical position.

We show novel results derived through stochastic analysis complemented by numeri-
cal approaches. The energy harvester description derives from modeling the mechanical
part, the linear piezoelectric materials, and the circuit representation of the electrical load.
Nonlinearities are included by means of a proper model for the mechanical elastic potential.
The result is a description in the form of a stochastic differential equation (SDE) system.

For the linear energy harvester, we use stochastic calculus to analytically evaluate
the output average power and the power efficiency. For the nonlinear system, the same
quantities cannot be computed analytically, because the resulting stochastic differential
equations are nonlinear and cannot be solved. To overcome this issue, we resort to a moment
closure technique that permits to calculate the moments of the probability distribution
for the electro-mechanical variables in the weak noise limit. In the medium-strong noise
regime, we use stochastic numerical integration schemes to calculate the output average
power and power efficiency.
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Figure 1. Schematic representation of a piezoelectric cantilever beam energy harvester.

Inspired by our recent work on the application of circuit theory to improve the effi-
ciency of energy harvesting systems, we interpose an LC matching network between the
transducer and the load [18,19], whose advantages are assessed in terms of the output (i.e.,
on the load) average voltage, output average power and conversion power efficiency.

The paper is organized as follows: In Section 2, we derive the stochastic differential
equations that describe the energy harvester subject to random vibrations, modeled as a
white Gaussian noise. As a first contribution, in Section 3, we derive the equation governing
the power balance of the electro-mechanical system, showing that determination of the
output average power and of the power efficiency requires to calculate the variance of
the output voltage. Section 4 is dedicated to the second main contribution: we introduce
a novel, systematic procedure to derive dimensionless stochastic differential equations
describing the system. In particular, we show how dimensionless time must be introduced
to correctly take into account the stochastic nature of the governing equations. Section 5 is
devoted to the analysis of a linear energy harvester, showing how stochastic calculus can
be used for the design and optimization of the matching network.

Section 6 represents the main contribution of the work: we develop a methodology
based on the Gaussian moment closure technique for the design and optimization of
the matching network for nonlinear energy harvesters, a quite important result, as few
techniques exist for the design of nonlinear systems. We show that the optimized matching
network increases the average harvested power and power conversion efficiency by more
than 30 times in the weak noise limit, and by more than 5 times for medium-strong noise
intensity. Finally, Section 7 is devoted to conclusions.

2. Stochastic Differential Equations and Energy Harvesting System Modeling

Mechanical vibrations are random in nature, and thus they are best described as a
stochastic process.

Let (Ω,F , P) be a probability space, where Ω is the sample space, F = (Ft)t≥0 is
a filtration, i.e., the σ-algebra of all the events, and P a probability measure. A vector-
valued stochastic process Xt is a vector of random variables parameterized by t ∈ T. We
adopt the standard notation used in probability: capital letters denote random variables,
while lower case letters denote their possible values. The parameter space T is usually the
half-line [0,+∞[. Alternatively, the stochastic process can be thought of as the function
Xt : Ω× T 7→ Rd.

The energy of mechanical vibrations is typically concentrated at low frequencies, but if
the frequency spectrum is wide enough, and the noise correlation time is negligible, a white
Gaussian noise process may represent a reasonable approximation. A truly white noise
process cannot exist in the real world, as the flat spectrum characteristic of a white process
implies an infinite power. Even if the white source overestimates the available power, a
finite bandwidth is usually recovered since the deterministic dynamics normally embeds
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a low-pass behavior. Therefore, the white process approximation is quite common in the
literature, and a well-developed theory is available, making the white noise approximation
very convenient from the mathematical point of view [22,23,25,30,31,39–43].

White Gaussian noise is the “formal” derivative of a Wiener process. A one-dimensional
Wiener process Wt = W(t) is characterized by E[Wt] = 0 (symbol E[Xt] denotes expectation
of the stochastic process Xt with respect to the measure P), covariance cov(Wt, Ws) =
E[Wt Ws] = min(t, s) and Wt ∼ N (0, t), where symbol ∼ means “distributed as”, and
N (0, t) denotes the normal distribution, centered at zero.

A d-dimensional system of stochastic differential equations (SDEs) driven by the
one-dimensional Wiener process Wt reads

dZt = a(Zt)dt + B(Zt)dWt (1)

where Zt : Ω× T 7→ Rd is a vector valued stochastic process, the vector valued function
a : Rd 7→ Rd is called the drift function, and B : Rd 7→ Rd is termed diffusion. Drift and
diffusion are measurable functions satisfying a global Lipschitz condition to ensure the
existence and uniqueness solution theorem [31]. If function B(Zt) is constant, noise is called
unmodulated or additive; otherwise, it is modulated or multiplicative.

The SDEs for the energy harvesting system can be derived from classical mechanics,
from the characterization of piezoelectric materials, and from the circuit description of the
electrical load [18,19,28]. For the mechanical part and the piezoelectric transducer, we have

mẍ + γẋ + U′(x) + αe = fext(t) (2a)

Cpz ė + αẋ + IL = 0 (2b)

Equation (2a) describes the mechanical domain. Here, m is the inertial mass, x rep-
resents the displacement of the mass from the rest position (dots denote derivation with
respect to time), γ is the internal friction constant, U(x) is the elastic potential of the beam
(symbol ′ denotes derivation with respect to the argument), α is the electro-mechanical
coupling constant (in N/V or As/m), e is the output voltage of the piezoelectric transducer,
and fext(t) is the external force due to the vibrating support that, as discussed above, will
be modeled as white Gaussian noise. Equation (2b) describes the piezoelectric transducer,
where Cpz is the electrical capacitance of the transducer, and IL is the current through
the electrical load. This model was experimentally validated by several groups; see, for
instance, [14,16,26,29,44].

Finally, we consider the circuit description of the load. A matched load is composed by
an electrical element that absorbs average power, such as a sensor, an actuator or a battery,
modeled by a resistor (Figure 2b) and by a matching network (Figure 2a) made of reactive
elements (inductors and/or capacitors) that do not absorb average power, designed to
reduce the impedance mismatch between the load and the power source.

Perfect matching can be achieved only at one specific frequency, even if wide-band
matching networks can be designed to achieve a partial matching over a relatively wide
frequency interval. In this work, we consider a low-pass L-matching network, such as the
one shown in Figure 2a. The network is composed by an inductor and a shunt capacitor,
connected to form an L-shaped structure. The network behavior is low-pass, as at very
low frequency, the inductor and the capacitor behave as a short circuit and an open circuit,
respectively, and thus vo(t) = e(t). Conversely, at very high frequency, the asymptotic
behavior of the inductor and of the capacitor are reversed so that vo(t) = 0 V. The low-pass
behavior is the most convenient for mechanical vibrations scavenging, as the energy of
ambient vibrations is mostly concentrated at low frequencies.
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Figure 2. (a) Resistive load. (b) Matched load composed of a resistor and of a low-pass L-matching
network.

Application of Kirchhoff current law and of the capacitor characteristic relationship
gives

−IL + CPv̇o + GLvo = 0 (3)

Similarly, application of Kirchhoff voltage law and using the inductor characteristic
relationship provides

LS İL + vo − e = 0 (4)

Combining (2), (3) and (4), and rewriting as an SDEs system, finally yields

dZ1 =Z2 dt (5a)

dZ2 =
1
m
(
−U′(Z1)− γ Z2 − α Z3

)
dt +

ε

m
dWt (5b)

dZ3 =
1

Cpz
(αZ2 − Z4)dt (5c)

dZ4 =
1

LS
(Z3 − Z5)dt (5d)

dZ5 =
1

CP
(Z4 − GL Z5)dt (5e)

where Zt = [Z1, . . . , Z5]
T = [x, ẋ, e, IL, vo]T is the state vector of electro-mechanical vari-

ables, and ε dWt is the external forcing that models ambient vibrations as a white Gaussian
noise process with intensity ε.

To assess the performance of the matching network, we compare the output average
power and the power efficiency of the matched load with those of a simple resistive load,
as that shown in Figure 2b, which is used as a benchmark. For the resistive load, Ohm’s
law gives IL = GLvo that, combined with (2) and rewritten as an SDEs system, yields

dZ1 =Z2 dt (6a)

dZ2 =
1
m
(
−U′(Z1)− γ Z2 − α Z3

)
dt +

ε

m
dWt (6b)

dZ3 =
1

Cpz
(α Z2 − GL Z3)dt (6c)

where Zt = [Z1, Z2, Z3]
T = [x, ẋ, e]T is the state vector of electro-mechanical variables.

3. Energy Balance Equation, Output Average Power and Power Efficiency

The total energy stored within the harvester is the sum of the kinetic energy of the
inertial mass, of the elastic potential energy of the beam, of the energy stored in the
piezoelectric transducer, and, possibly, of the electric energy stored in the reactive elements
of the matching network.

The instantaneous power absorbed by the piezoelectric transducer is the sum of the
power transferred from the mechanical part to the transducer, and of the electrical power
transferred form the transducer to the electrical load. Using the passive sign convention,
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and taking into account that the force exerted by the mechanical part is ftr(t) = α e = α Z3,
we have

ptr(t) = ftr(t) ẋ− e IL = Cpz e ė (7)

where the last result is derived using (2b). The energy stored in the transducer is Etr(t) =∫
ptr(t) dt = Cpz Z2

3/2 + KE, where KE is an arbitrary energy constant.
The total energy stored in the harvester is (obviously, the last two terms are not present

for the harvester with resistive load)

E(t) =
1
2

m Z2
2 + U(Z1) +

1
2

Cpz Z2
3 +

1
2

LS Z2
4 +

1
2

CP Z2
5 + E0 (8)

where E0 is an arbitrary energy constant. Taking the differential, using the SDEs system (5),
and applying Itô’s lemma, we obtain

dE =

(
−γZ2

2 − GLZ2
5 +

ε2

2m

)
dt + ε Z2 dWt (9)

After taking the stochastic expectation and using the martingale property of Itô stochas-
tic integral, we have (the same formulas hold for both the power balance and the power
efficiency for the resistive load, with Z5 replaced by Z3)

E
[

dE(t)
dt

]
= −γ E

[
Z2

2

]
− GL E

[
Z2

5

]
+

ε2

2m
(10)

Equation (10) represents a power balance equation. At a steady state, the harvester
reaches a state where the average power injected by ambient vibrations Pin = ε2/(2m)
equals the average power (dissipated by internal friction plus that absorbed by the load)
Pout = γ E

[
Z2

2
]
+ GL E

[
Z2

5
]
.

The power efficiency η is defined as the ratio between the average power absorbed by
the load and the average power injected by the ambient vibrations, so that

η =
2m GL

ε2 E
[

Z2
5

]
(11)

4. Dimensionless SDEs System

For practical manipulation, it is often more convenient to work with dimensionless
equations. For this purpose, consider an SDEs system written in the form

dZt =
(
Â Zt + n̂(Zt)

)
dt + εB̂ dWt (12)

where Â ∈ Rn,n, is a matrix representing the coefficients of the linear part of the drift
vector, while n̂ : Rn 7→ Rn collects the nonlinear part, and B̂ ∈ Rn is a constant diffusion
vector. Consider the linear variable transformation y = Pz, where P ∈ Rn,n is a constant
regular matrix. For dimensionless variables, matrix P is diagonal with entries represented
by normalizing parameters. Using Itô’s lemma [30,31], the following SDEs system for the
stochastic processes Yt is obtained:

dYt =
(

PÂP−1Yt + Pn̂(P−1Yt)
)

dt + ε P B̂ dWt (13)

As a dimensionless time, we introduce the new time variable τ(t) = ω t, where ω > 0
is a frequency. If Yt solves (13), then Yτ solves the SDEs system

dYτ =
1
ω

(
PÂP−1Yτ + Pn̂(P−1Yτ)

)
dτ + ε P B̂ dWt (14)
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The change of time theorem for Itô integrals ([31], p. 156) implies that

Wτ(t) ∼
√

τ′(t)Wt =
√

ω Wt (15)

where symbol ∼ means, again, “distributed as”. Denoting as Xτ the solution to the
SDEs system

dXτ =
1
ω
(AXτ + n(Xτ))dτ +

ε√
ω

B dWτ (16)

where A = PÂP−1, n(x) = Pn̂(P−1x), and B = PB̂, it follows that Xτ ∼ Yτ , because they
are solutions for the same SDEs system, for two different realizations of the Wiener process.

In most practical applications the distribution of the stochastic process is the most
relevant information because knowledge of the expected quantities is more important than
knowledge of the particular solution associated to a specific realization of the noise process,
e.g., a strong solution.

5. Linear System Analysis

First, we consider the case where the inertial magnetic mass and the tip magnet are
far apart so that the magnetic repulsive force can be neglected and the cantilever beam
behaves as a linear inverted pendulum.

The elastic potential of the beam is assumed of the form U(x) = kx2/2. Substituting
the potential into the SDEs system (5), a linear system of SDEs for the dimensionless
variables can be obtained using the diagonal matrix

P = diag[l−1
0 , Tl−1

0 , CpzQ−1
0 , TQ−1

0 , CpzQ−1
0 ] (17)

where l0, Q0 are normalizing constants equal to one, with dimension of a length and of a
charge, respectively, and T = 1/ω =

√
m/k is a normalization time. The following SDEs

system is obtained:
dXt = A Xt dt + ε B dWt (18)

where

A =



0 1 0 0 0

−1 −ρ −β 0 0

0 α 0 −1 0

0 0 µ 0 −µ

0 0 0 η −δ


, B = [0, σ, 0, 0, 0]T (19)

and with the following values of the parameters

ρ =
γ√
mk

, β =
α

Cpzk
, µ =

m
k Cpz LS

η =
Cpz

CP
, δ =

GL
CP

√
m
k

, σ =
1
m

(m
k

) 3
4 (20)

Note that, by definition, all parameters are positive.
First of all, we observe that for the set of parameters that we shall use, all eigenval-

ues of the matrix A will have negative real parts. Taking the stochastic expectation in
Equation (18), we obtain the ordinary differential equations (ODEs) system

d
dt

E[Xt] = A E[Xt] (21)

Because matrix A is stable, it follows that E[Xt]→ 0 for t→ +∞.
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For the second-order moments, we evaluate

d
(

XtXT
t

)
=dXt XT

t + Xt dXT
t + dXt dXT

t

=
(

A Xt XT
t + XtXT

t AT + ε2B BT
)

dt + ε
(

BXT
t + XtBT

)
dWt (22)

where we use Itô’s lemma, e.g., dt2 = dt dWt = 0, and dW2
t = dt. Taking expectations on

both sides, using the martingale property of Itô’s integral and the fact that asymptotically
E[Xt] = 0, we obtain the Lyapunov equation

dσ

dt
= A σ + σ AT + ε2B BT (23)

where σ = E[XtXT
t ] is the covariance matrix, and we used the fact that σ is symmetric.

Because matrix A is stable and BBT is symmetric, the solution of (23) is unique. The
asymptotic solution is obtained solving the stationary Lyapunov equation

A σ + σ AT + ε2B BT = 0 (24)

To optimize the matching network, we solved the stationary Lyapunov Equation (24)
for many values of the parameters LS and CP within a given interval. Figure 3 shows the
root mean square value of the output voltage vo(rms) =

√
E[v2

o(t)] versus the values of LS
and CP. The values of the other parameters used in our analysis are summarized in Table 1,
and they are well comparable to those used in several other recent works, e.g., [33,38,45].

The output voltage shows a maximum for L(opt)
S = 22.91 H, and C(opt)

P = 8.53 nF, with
vmax

o(rms) = 20.59 V. For comparison, the energy harvester with resistive load offers an output
voltage vmax

o(rms) = 4.43 V. The average output voltage, average output power and power
efficiency for the two setups are summarized in Table 2.

The high value for the inductance in the matching network is a numerical artifact,
a consequence of the relatively high value assumed for the inertial mass m = 1 g. The
inductance could be reduced considering a lighter inertial mass and of course also reducing
the harvested power. An alternative solution could be the use of an active element (an
inductance emulator) in the matching network that can produce high inductance values
but would require an external power source. Notice that a significant increment of the
harvested power can be obtained even using a sub-optimal value of the inductance. Finally,
it is well known that piezoelectric transducers require high inductance values for shunting
and matching. The realization of large inductances is an important research topic, and very
promising results have recently been obtained, see, for example, [46].

Table 1. Values of the energy harvester parameters.

Parameter Value

m 1 g
γ 0.012 Ns/m
k 5.4046 · 103 N/m

Cpz 80 nF
RL 1 MΩ
α 0.0042 N/V (As/m)
ε 10−3 (dimensionless)
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Table 2. Root mean square value of the output voltage, output average power and power efficiency
for the energy harvester with the two different load setups.

Configuration Voltage (rms) Maximum Power Efficiency

Resistive load 4.43 V 19.61 µW 3.9%
Matched load 20.59 V 424.1 µW 84.8%

Figure 3. Root mean square of the output voltage as a function of the matching network parameters
LS and CP.

6. Nonlinear System Analysis

When the inertial magnetic mass and the tip magnet are close enough, magnetic
repulsion induces bi-stability, forcing the beam to the left or to the right of the vertical
position. The magnetic force makes two vertically tilted positions stable equilibrium points,
associated to the local minima of the potential energy, while the vertical position becomes
an unstable equilibrium associated to a local potential energy maximum. For ambient
mechanical vibrations of small amplitude, the beam is expected to oscillate around one
of the two equilibria, remaining confined within the corresponding potential well. If
the vibration intensity is large enough, however, fluctuations of the beam around the
resting position are combined with random jumps from one well to the other. As the
noise intensity becomes large enough, the beam will exhibit more frequent excursions
between the two wells, with a motion ultimately resembling a random wandering around
the vertical position.

To account for such bi-stability, we shall assume a potential function of the form
U(x) = −k1 x2/2 + k3 x4/4 + U0, where k1 and k3 are the linear and the nonlinear elastic
constants, respectively, and U0 = k2

1/(4k3). Using the diagonal matrix (17), the following
SDEs system is obtained:

dXt = (A0 Xt + n(Xt))dt + εB dWt (25)

where

A0 =



0 1 0 0 0

1 −ρ −β 0 0

0 α 0 −1 0

0 0 µ 0 −µ

0 0 0 η −δ


, B = [0, σ, 0, 0, 0]T (26)

and n(x) = [0,−κx3, 0, 0, 0]T , with κ = k3/k1.
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Proceeding in full analogy with the linear case, the evaluation of the output average
power corresponds to the calculation of the second-order moments. However, differently
from the linear case, for a generic nonlinear systems, it is impossible to derive closed
equations for the moments. In fact, because of the nonlinear term in (25), the ODEs system
for E[Xn

t ] will include terms such as E[Xn+2
t ] for all n = 1, 2, . . ., thus leading to an infinite

hierarchy of coupled ODEs. A possible workaround is to make some a priori assumption
about the probability density function for Xt. Under a suitable hypothesis, it is possible to
express higher-order moments as functions of the lower-order ones, a methodology termed
moment closure technique [47].

A quite common choice amounts to assume that the stochastic process obeys a multi-
variate Gaussian distribution. In general, it is neither possible to justify such an assumption
rigorously nor to prove that the approximated results converge to the exact values. How-
ever, there is a large amount of evidence that the method provides accurate enough results,
especially if the system is subject to weak white Gaussian noise and is characterized by
underlying deterministic dynamics exhibiting a stable solution [47].

We proceed as follows:

• We assume Xt ∼ N (µ, σ), and we derive the ODEs system for the first two order
moments. All higher order moments in the ODE system are expressed as functions of
the first and second order moments.

• We solve the moment ODEs system in the weak noise limit, for all values of the
matching network parameters LS and CP in a given interval, finding the optimal
values that maximize the output average power and power efficiency.

• In the strong noise limit, we solve the full SDEs system numerically, using the values
of LS and CP determined in the previous step, to verify whether the matched load
offers better performance in terms of output average power and power efficiency with
respect to the resistive load setup.

To begin with, we introduce the centered variable Xt = Xt − µ. Then, Xt ∼ N (0, σ),
where σ = E[XtX

T
t ] is the covariance matrix, and

dXt =
(
A0(Xt + µ) + n(Xt + µ)

)
dt + ε B dWt (27)

By definition, asymptotically Xt → 0 for t→ +∞, and therefore, taking expectations,
µ solves

A0µ + E[n(Xt + µ)] = 0 (28)

For a multivariate centered normal distribution, k-th order central moments are null
if k is odd, while even orders can be expressed in terms of the elements of the covariance
matrix. In particular,

E[(X1 + µ1)
3] = 3µ1σ11 + µ3

1 (29)

and using the definition of n(Xt + µ), we have

E[n(Xt + µ)] = −κµ1


0

µ2
1 + 3σ11

0
...
0

 (30)

For the second-order central moment, repeating the steps (22) and (23), we obtain the
nonlinear Lyapunov equation

dσ

dt
= A0σ + σAT

0 + E[n(Xt + µ)XT
t ] + E[XtnT(Xt + µ)] + ε2BBT (31)
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A straightforward calculation yields

n(Xt + µ)XT
t = −κ


0 0 . . . 0

(X1 + µ1)
3X1 (X1 + µ1)

3X2 . . . (X1 + µ1)
3Xn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 (32)

For a multivariate centered normal distribution,

E[(X1 + µ1)
3X1] = 3 σ11

(
σ11 + µ2

1

)
(33a)

E[(X1 + µ1)
3X j] = 3σ1j

(
σ11 + µ2

1

)
(33b)

and therefore,

E[n(Xt + µ)XT
t ] + E[Xt nT(Xt + µ)] =

− 3κ
(

σ11 + µ2
1

)


0 σ11 0 · · · 0

σ11 2σ12 σ13 · · · σ1n

0 σ13 0 · · · 0

...
...

...
. . .

...

0 σ1n 0 · · · 0


(34)

Substituting (30) and (34) into (28) and (31), respectively, we obtain a system of non-
linear differential algebraic equations (DAEs) that can be solved numerically to determine
the admissible values for µ and σ, from which the covariance matrix σ is readily derived.

Figure 4 shows the root mean square output voltage for the nonlinear bistable energy
harvester, as a function of the matching network parameters LS and CP. The elastic constant
model parameters are set to the values k1 = 5.4046 kN/m and k3 = 5.4046 TN/m. The
latter is chosen to be very large to achieve a reasonably small value for the displacement
x. The other parameters are the same as those of Table 1. The output voltage achieves the
maximum value of vmax

o(rms) = 20.59 V for L(opt)
S = 11.6 H and C(opt)

P = 8.63 nF. Interestingly,
the optimal inductance value is a little lower for the nonlinear system with respect to the
linear case. Note that since the noise intensity is very small, the figure resembles that of the
linear system. However, since the equilibrium position is not the vertical resting state, the
optimal values of the parameters are different.

Figure 5 shows the root mean square output voltage as a function of the noise intensity.
Red squares refer to the energy harvester with matched load with optimal values of the
circuit components given above. Blue circles refer to the energy harvester with a simple
resistive load. The output voltage was obtained from the numerical integration of the SDEs
system using the stochastic Runge–Kutta method. For each value of the noise intensity, we
averaged over 20 simulations, each one with a different realization of the noise process,
with time length ∆T = 104 s and time integration step δt ≈ 50 µs. Root mean square
values were calculated averaging over all simulations, after removing the initial transients.
We notice that although the matching network optimization is carried out for a small
noise intensity, the matched load setup offers higher output voltage, and therefore higher
output average power and better power efficiency, also for a relatively high noise intensity.
Figure 6 shows the displacement x versus time for two values of the noise intensity. On the
left, for ε = 10−3, the beam–inertial mass system remains confined in the right potential
well, vibrating around the equilibrium position with small amplitude. On the right, for
ε = 5 · 10−3, the beam–inertial mass system jumps irregularly back and forth from one
well to the other. In all our simulations, the initial condition was set to X(0) = 0, with the
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beam–mass system falling in the left or in the right potential well depending on the initial
value of the Wiener process.

Figure 4. Root mean square of the output voltage as a function of the matching network parameters
LS and CP for the nonlinear bi-stable energy harvester.

Figure 5. Root mean square of the output voltage as a function of the noise intensity. Blue circles:
Resistive load. Red square: Matched load.

Figure 6. Position versus time for the energy harvester with matched load. On the left: Noise intensity
ε = 10−3. On the right: noise intensity ε = 5 · 10−3.
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To validate the accuracy of the method based on Gaussian moment closure, we com-
pare theoretical predictions with results from numerical simulations. Figure 7 shows the
relative error between theoretical predictions obtained using the Gaussian moment closure
method and numerical simulations changing the noise intensity, for both the root mean
square output voltage (red squares) and the power efficiency (blue circles). The relative
error is evaluated as

∆x =

∣∣∣∣ xtheoretical − xnumerical
xnumerical

∣∣∣∣ (35)

As expected, the relative error is very small for weak noise, and it increases along with
the noise intensity. The error becomes rapidly significant when the beam begins to jump
between the two potential wells because the corresponding probability density function is
no longer a multivariate Gaussian.

Figure 7. Relative error for the root mean square output voltage (red squares), and the power
efficiency (blue circles), between theoretical predictions obtained using Gaussian moment closure
method and full numerical simulations versus the noise intensity.

7. Conclusions

Ambient dispersed energy is a potentially unlimited energy source that can be ex-
ploited for supplying power to the next generation of wireless connected IoT electronic
devices. In particular, parasitic mechanical vibrations are very promising for their relatively
high power density and they widespread presence.

In this work, we studied a bi-stable piezoelectric energy harvester for parasitic ambient
mechanical vibrations scavenging. We showed that the application of matching network,
interposed between the piezoelectric transducer and the electrical load, increases the
harvested power and the power conversion efficiency by more than 30 times in the weak
noise limit, and by more than five times for medium–strong noise intensity.

The matching network is designed to reduce the impedance mismatch between the
mechanical and the electrical domains of the harvester. With respect to other previously
proposed solutions based on power factor correction, the new setup not only reduces the
reactive power reflected by the load to the source but also maximizes the average power
absorbed by the load.

To properly optimize the matching network, we developed a novel design methodol-
ogy. For a linear harvester, the optimal values of the matching network elements can be
determined analytically applying stochastic analysis methods and solving the resulting
Lyapunov equation. For a nonlinear harvester, we developed a technique based on finding
an approximate solution for a nonlinear Lyapunov equation applying the Gaussian moment
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closure method. The proposed methodology represents a significant improvement for the
design of nonlinear systems, for which few techniques are currently available.

Although the design methodology is best suited for weak noise intensity, we verified
through numerical simulations that the application of the optimized matching network
offers a significant boost in the power performance of the energy harvester, even for the
medium–high intensity of ambient mechanical vibrations.
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