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Abstract: The semantic segmentation of point clouds has significant applications in fields such as
autonomous driving, robot vision, and smart cities. As LiDAR technology continues to develop,
point clouds have gradually become the main type of 3D data. However, due to the disordered and
scattered nature of point cloud data, it is challenging to effectively segment them semantically. A
three-dimensional (3D) shape provides an important means of studying the spatial relationships
between different objects and their structures in point clouds. Thus, this paper proposes a semi-
supervised semantic segmentation network for point clouds based on 3D shape, which we call
SBSNet. This network groups and encodes the geometric information of 3D objects to form shape
features. It utilizes an attention mechanism and local information fusion to capture shape context
information and calculate the data features. The experimental results showed that the proposed
method achieved an overall intersection ratio of 85.3% in the ShapeNet dataset and 90.6% accuracy
in the ModelNet40 dataset. Empirically, it showed strong performance on par or even better than
state-of-the-art models.

Keywords: point cloud; geometric features; attention mechanism; semi-supervision

1. Introduction

The 21st century is witnessing rapid development in the field of data science, with
artificial intelligence playing a major role in driving innovation across various industries.
One of the areas in which AI has made significant advancements is computer vision, which
has been widely used in smart driving, smart cities, remote sensing, and robotics. In
recent years, with the development of LiDAR technology, research has shifted from two-
dimensional (2D) to three-dimensional (3D) vision, which has important applications in
areas such as autonomous driving, industrial control, remote sensing, and mapping.

The main forms of 3D data representation include point clouds, voxels, multi-views,
and meshes. Among them [1], 3D point clouds, which reflect the surface and structural
information of 3D objects better than voxels, multi-views, and meshes, are becoming
increasingly popular in the industry. However, the irregular and disorderly nature of point
cloud data presents challenges to the application of deep learning methods, which are
commonly used for 2D images.

The representation of 3D shape in point cloud data is described by point position, color,
normal vector, and other information. By analyzing the 3D shape in the point cloud data,
we can understand the geometric shape, surface texture, and surface shape of the object.
At the same time, geometric shapes, which reflect the intrinsic connections between local
structures in point clouds, play a crucial role in intelligent reasoning and provide important
information about the object’s local structures and semantics. Therefore, extracting robust
shape features from point clouds is a crucial step in the analysis of point cloud data. Despite
the advances made in this field, this challenge has yet to be addressed.

To address the challenges of processing 3D point cloud data, Qi et al. [2] proposed
the PointNet network, which directly processed a point cloud using deep learning and
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achieved good results. However, this network considered only the global features of the
point cloud, ignoring local features. Subsequently, Qi et al. [3] developed PointNet++,
which added local information but still ignored local shape information between points.
Huang et al. [4] attempted to solve this issue using convolutional neural networks (CNN) to
learn 3D shapes and generate local descriptors. However, the results were not sufficiently
comprehensive because they relied on projections to obtain local surface information.

To overcome these limitations, we propose a semi-supervised semantic segmentation
network for point clouds based on 3D shape, which we call SBSNet. The network encodes
the shape of the extracted point cloud from multiple pieces of geometric information and
constructs the shape context information through an attention mechanism to improve the
3D point cloud data feature calculation, capture the significant features of the data, and
enhance the feature difference degree of the boundary points. The key contributions of our
work are as follows:

(1) The proposed network extracts multiple pieces of geometric information from
point cloud data, such as density, normal vectors, and other geometric features that can
reflect point cloud texture information, uses unsupervised methods to zone the point
cloud’s geometric shape information, and finally encodes the shape information using
neural networks.

(2) We introduce an improved furthest point sampling algorithm based on geometric
curvature combined with spherical queries to create multiple subsets of local point cloud
data, partition the data into regions, and build a high-dimensional feature extractor for the
local data subsets.

(3) The attention mechanism is designed to capture the contextual information of the
point cloud shape features, amplify the significance of the extracted local features, and
finally improve the accuracy of point cloud segmentation.

(4) SBSNet was experimentally compared with several networks, such as PointNet,
PointNet++, and 3P-RNN. The average mean intersection over union (MIoU) of the SB-
SNet network was 85.3% in the ShapeNet dataset and 90.6% in the ModelNet40 dataset,
surpassing that of existing mainstream point cloud semantic segmentation networks.

2. Related Work

As 3D data acquisition technology continues to advance and becomes more affordable,
3D computer vision shows considerable potential. Specifically, 3D point cloud semantic
segmentation has found several important applications in areas such as automatic driving,
industrial control, and remote sensing mapping. The increasing popularity of deep learning
has led to a surge in point cloud semantic segmentation methods, which can be classified
as voxelization-based, projection-based, and point representation–based.

2.1. Semantic Segmentation Methods Based on Voxelization

Due to the irregularity of point cloud data, early point cloud processing methods
typically relied on voxelization techniques. For example, Huang et al. [5] employed a 3D
CNN to perform the semantic segmentation of voxelated point cloud data. To enhance
segmentation accuracy, Meng et al. [6] used a radial basis function (RBF)-based variational
autoencoder (VAE) network to encode local geometric structures within each voxel. The
Voxel R-CNN [7] method applies a voxel aggregation module to directly extract 3D features
from voxel features. However, voxelization can reduce data accuracy, thus affecting the
segmentation results. Moreover, the low-resolution nature of voxel structures and data loss
incurred by voxelization hinder the attainment of high semantic segmentation accuracy,
thereby rendering it unsuitable for fine-grained semantic segmentation networks.

2.2. Multi-View-Based Semantic Segmentation Approaches

Lawin et al. [8] employed a multi-view projection approach to perform semantic
segmentation by inputting multi-view projections into an FCN to compute semantic labels
through synthesized evaluation scores. Tatarchenko et al. [9] established a tangent plane for



Appl. Sci. 2023, 13, 3872 3 of 12

local point cloud regions and performed tangent plane projection to achieve semantic seg-
mentation by convolving data from multiple projection surfaces. Wu et al. [10] proposed a
segmentation method based on spherical projection. SalsaNext [11] improved SalsaNet [12]
by introducing various enhanced modules, such as hole convolution and pixel-shuffle
layers [13], as well as a point-by-point uncertainty-aware mechanism. However, projection-
based methods rely heavily on the selected projection surface and are less effective at
capturing inter-component data feature variations for fine-grained semantic segmentation.

2.3. Point Representation-Based Methods

Qi et al. [2] proposed PointNet, the first model that could directly process unorganized
point cloud data, generating global feature descriptors through a multilayer perceptron
(MLP) to achieve semantic segmentation. Subsequently, they proposed PointNet++ [3],
which improved the local feature representation of data and greatly enhanced the semantic
segmentation effect. Jiang et al. [14] developed the EdgeConv operation to capture local
geometric information while ensuring displacement invariance, thus improving the corre-
lation features between points by introducing edge data. PointCNN [15] aggregates spatial
structure and local feature information on points using X-Conv but does not achieve point
cloud replacement invariance. Thomas et al. [16] used a series of local 3D convolutional
kernels to construct kernel points that learned local geometric features by weighting the
features based on the Euclidean distance from points to kernel points.

Moreover, multiscale and shape features of point cloud data have been introduced
into semantic segmentation networks to improve their spatial information representation
capabilities. For example, Ye et al. [4] used point-by-point pyramidal pooling to capture
local multiscale context information on point clouds in order to improve the semantic
segmentation effect. Keisuke et al. [17] proposed a semantic segmentation network that
captures fine-grained information on multiscale point cloud contexts using an attention
mechanism. Liu et al. [18] used point cloud shape context information to construct an end-
to-end point cloud model in order to capture aggregated point cloud features and achieve
semantic segmentation. ShellNet [19] uses spherical convolution for feature extraction and
filtering, which can effectively retain local structural information and geometric features of
point cloud data and has high feature representation accuracy.

In this paper, we propose the SBSNet network for semantic segmentation based
on point representation. Our approach extracts various pieces of geometric information
from a point cloud, such as curvature and density, to encode shape features. We use an
attention mechanism to fuse these features with point cloud features, enabling the network
to learn and capture point cloud shape contextual information. By highlighting salient
local features of point cloud data, our method improves object boundary recognition and
produces promising semantic segmentation results.

3. Method

Point cloud data collected by LiDAR typically contain spatial coordinates, color, and
reflection intensity. Although the properties may vary slightly between acquisition devices,
the spatial coordinate property is always complete and essential for segmentation. The point
cloud data to be segmented can be represented as P = {pi|pi = {x, y, z}}, where pi represents
a point in 3D space with x, y, and z coordinates. Based on the inherent characteristics of the
point cloud data, we can extract their shape feature set S =

{
si
∣∣si =

{
x, y, z, nx, ny, nz, k

}}
.

An unsupervised machine learning method and a neural network with shared parameters
can encode the inputted point cloud data to generate the point cloud feature set F1. By
grouping the original point cloud P and performing PointNet feature learning, we can
obtain the feature set F2. Finally, by applying an attention mechanism to F1 and F2 for
feature learning, we can produce the set C = {Ci|Ci = {x, y, z, c}}, which contains the category
information. Figure 1 illustrates the overall network.
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3.1. Self-Priori Feature Map

A 3D shape refers to the shape and texture information of a 3D object, which is a
crucial feature of a point cloud since it describes the object’s shape and geometric rela-
tionships in 3D space. It reflects the object’s shape, size, position, and relationship with
surrounding objects. To better describe 3D objects, the proposed network constructs the
shape information geometry S. For the inputted point cloud P, the density of each point is
represented by calculating the distance to the nearest neighboring points as:

ρ = Pi− Pj =
√(

pi − pj
)2,
(

pi, pj ∈ P
)
. (1)

The normal vector of the point cloud is estimated using principal component anal-
ysis (PCA). A plane is estimated in the neighborhood of each point and fitted using
least squares, and the normal vector of the point cloud is calculated within n. The
curvature of the point cloud k is then determined using the normal vector, and the set
S =

{
si
∣∣si =

{
x, y, z, nx, ny, nz, k

}}
is finally formed.

3.1.1. Grouping Using Shape Information

Based on the point cloud’s rich shape information and the fact that different objects
have different shape information that plays different roles in describing their features, con-
structing the object’s shape information and accurately learning its features are particularly
challenging. To address this challenge, the proposed network employs a self-supervised
method for point cloud grouping using shape information. This method involves randomly
sampling the shape feature set S and selecting k points as centroids to form the centroid set
M = {m1, m2, . . . , mk}. The distance between each point Si in the point cloud data S and
each centroid mk is then calculated as:

dis
(
Si, Mj

)
=
√

∑m
t=1

(
Sit −Mjt

)2. (2)

The point cloud data are then assigned to the nearest centroid mi, and the position of
each regional center is updated based on the mean value of the point cloud data assigned
to each centroid as:

λj = argmini∈{1,2,......,k}disji. (3)

This process is repeated until the regional centers no longer move and the final point
cloud grouping G is formed.
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3.1.2. Encoder

In CNN, weight updates do not achieve parameter sharing while gradient updates in
backpropagation can only be performed on isolated points, resulting in a loss of feature
connection between points. To address this, we employed an MLP operation with parameter
sharing for each point in gi ∈ G, preventing weight updates from relying on individual
points and allowing them instead to learn the relationship of the surrounding points to
better capture the point cloud data for grouping. This is calculated as:

F1 = Max
(
∑m

j ( f gi)
)

, gi ∈ G, (4)

where f denotes a neural network with shared parameters and Max denotes the
maximum pooling.

3.2. Feature Fusion

To better learn the local features of the inputted point cloud, SBSNet is designed
with geometric curvature to improve the furthest point sampling. The original furthest
point sampling, though uniform, does not effectively capture the geometric relationships
between points. While sampling the furthest points, the curvature of neighboring points
is calculated by normal vectors to construct a normal curvature distribution. From the
normal distribution, it is known that (µ − 2σ, µ + 2σ) contains points with very similar
curvatures. To ensure different grouping results and comprehensive grouping, the points
with curvature distribution in the interval (−∞, µ − 2σ) ∪ (µ + 2σ, +∞) are selected to add
geometric information and finally form a set H = H1 ∩ H2.

H1 =

pm

∣∣∣∣∣∣
(

∑
l=x,y,z

√(
pil − pjl

)2
)

max

, p ∈ ∆P (5)

k = −
np pix piy√

n2
pixy

+ n2
piz

+
√

p2
jx + p2

jy

, p ∈ ∆P (6)

f (k) =
1√
2π

exp

(
−(k− µ)2

2σ2

)
(7)

H2 =
{

pi
∣∣kpi
〈
µ− 2σ, kpi

〉
µ + 2σ

}
, p ∈ ∆P (8)

Formula (1) is used to sample the farthest point of the input point cloud, where max
represents the maximum Euclidean distance between two points. Formula (2) calculates the
curvature k of the input point cloud, where n represents the normal vector of the point cloud.
Formula (3) is used to establish a normal distribution of the curvature of the point cloud, where
µ represents the mean value of the curvature and σ represents the standard deviation of the
curvature. Formula (4) is used to select the curvature at (−∞, µ − 2σ) ∪ (µ + 2σ, +∞), the
point of this interval.

The point cloud data of the 3D object are region-segmented using a ball query to
obtain m regions, forming a set Ai, which extracts the point cloud features of each region
using a parameter-sharing MLP to capture the local structure of the point cloud data, and
generating a feature set F2 as:

F2 = Max
(
∑m

j ( f ai)
)

, ai ∈ A, (9)

where f denotes the neural network with shared parameters and Max denotes the maximum
pooling.

Attention mechanisms are widely used in deep learning and are highly effective in
improving the performance of various tasks. By assigning a weight to each inputted
feature, attention mechanisms help the model focus on the most relevant information while
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ignoring irrelevant information. The weighted features are then combined to produce a
more informative representation.

The proposed network uses an attention mechanism to merge the features of F1 and
F2. F1 is used as the query key Q and F2 is used as the key value K to calculate the weight
coefficients of the value V as:

v = F(Q, K), (10)

where F is the dot product operation.
The softmax function is used to transform the attention scores into a probability

distribution in which the sum of all weight coefficients is 1. This normalization allows each
weight to represent the importance of its corresponding element in the inputted feature
set. Additionally, the properties of the softmax function can be used to emphasize the
importance of highly weighted elements while downplaying the importance of elements
with low weights. This is calculated as:

a = so f tmax(vi) =
exp(vi)

∑N
j exp

(
vj
) . (11)

The results of multiplying the values and the corresponding weights are then summed
to produce the attention value as:

Attention = ((K, V), Q) = ∑N
i=1 aivi. (12)

4. Results
4.1. Experimental Data and Parameter Settings

In this work, the ModelNet40 dataset was used for classification and the ShapeNet
dataset was used for part segmentation. ModelNet40 consists of 40 categories with a
total of 12,311 models, 9843 of which were used for training and 2468 were used for
testing. ShapeNet contains 16,881 3D point cloud models in 16 categories, with each model
containing two to five components. The hardware used in this experimental work was
Intel E5-2683v3 (28 cores, 2.0 GHz), 128 GB of DDR4 ECC, and NVIDIA GeForce RTX 3090.
The software environment consisted of Python 3.7 and PyTorch 1.0 or higher. The Adam
optimizer was used with an initial learning rate of 0.001.

4.2. Experimental Results and Analysis
4.2.1. Classification Experiment

To verify the effectiveness of the proposed classification model, the same evaluation
criteria and metrics as those for other algorithms were adopted, including mean class
accuracy (MAcc) and overall accuracy (OA). MAcc is useful for evaluating classification
models, especially when the dataset is imbalanced and the classes have different sizes.
It provides a more comprehensive evaluation of a model’s performance by taking into
account the accuracy of each class rather than only the overall accuracy. It is calculated
using Equations (13) and (14). OA evaluates the performance of a classification model
by calculating the percentage of correctly classified instances over the total number of
instances in the dataset. It is calculated using Equation (15).

acci =
Mi
ni

. (13)

mAcc =
1
C

C

∑
i=1

acci =
1
C

C

∑
i=1

Mi
ni

. (14)
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In Equations (13) and (14), Mi represents the number of correctly classified samples
in the ith category, ni represents the number of samples in the ith category, acci represents
the quasi-curvature of the ith category, and C represents the number of classified categories.

OA =
TP + TN

TP + FP + TN + FN
. (15)

In Equation (15), TP denotes the number of true positive predictions, TN denotes the
number of true negative predictions, FP denotes the number of false positive predictions,
and FN denotes the number of false negative predictions.

The proposed model was compared with several recent deep learning-based point
cloud classification methods, including PointNet, PointNet++, 3D-GCN, DGCNN, PointCNN,
MANet, GCN3D, and DTNet. The comparison results are presented in Table 1.

Table 1. Classification accuracy of different methods using the ModelNet40 dataset.

Network MAcc (%) OA (%)

PointNet [2] 86.2 89.2
PointNet++ [3] – 90.7
3D-GCN [20] – 92.1
DGCNN [21] – 92.9

PointCNN [15] 88.1 92.2
GCN3D [22] 90.3 93.0
DTNet [23] 90.4 92.9
MANet [24] – 92.5

Proposed network 90.6 93.1

As shown in Table 1, the proposed method achieved 90.6% MAcc and 93.1% OA in the
ModelNet40 dataset. Its OA was higher than that of several deep learning-based methods,
including 3D-GCN (by 1%), MANet (by 0.6%), GCN3D (by 0.1%), and DTNet (by 0.2%). It
was also significantly higher than that of the classical PointNet (by 3.9%) and PointNet++
algorithms (by 2.4%).

This paper also compared the time needed to train an epoch with various methods on
the ModelNet40 dataset. In order to ensure the fairness of the experiment, the methods
involved in the comparison adopted the same settings—the training period was 300, the
batch size was 10, the initial learning rate was 0.1, the momentum coefficient was 0.9, and
the interval used to adjust the learning rate had a step size of 50 and the gamma was set to
0.3, as shown in Table 2. Our method consumed more time, but it was not much different
from other mainstream methods. Although it took longer, our method had higher accuracy.

Table 2. Performance comparison of different network models on ModelNet40 dataset.

Model Time Taken for One Epoch (s) OA (%)

PointNet [2] 220 89.2
PointNet++ [3] 900 90.7
DGCNN [21] 205 92.9

Proposed network 905 93.1

4.2.2. Part Segmentation Experiment

In this work, we adopted the same judging rules as those for other algorithms to
calculate the MIoU and the intersection over union (IoU) for each object class. The IoU is
a commonly used evaluation metric in computer vision, particularly in object detection
and image segmentation tasks. It is the ratio of the intersection of the true label and the
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predicted value of the class, which is calculated using Equation (16). The MIoU is the average
intersection-to-combination ratio of each class, which is calculated using Equation (17).

IoU =
TP

TP + FN + FP
(16)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(17)

In Equations (16) and (17), k represents the number of categories.
The proposed method was compared with recent deep learning-based point cloud

classification methods, including PointNet, PointNet++, DGCNN, SK-Net, SRINet, and
Pointseq2seq. Table 3 shows the performance of each method in each category and the
MIoU of the tested shapes. Table 4 shows some examples of the SBSNet prediction results,
marking the segmentation effect at some boundaries to indicate the correctness of those
parts of the segmentation results.

As shown in Table 3, SBSNet had the highest MIoU for the teacup, car, chair, motorcy-
cle, guitar, keyboard, and table categories, with values of 88.5%, 78.9%, 91.9%, 92.6%, 73.5%,
95.5%, 76.9%, and 83.2%, respectively. It can be seen that by introducing shape information
coding, our method was more sensitive to shape information and could recognize objects
with more complex shapes. In addition, the average MIoU of SBSNet was the highest
(85.3%). As shown in Table 4, the results of SBSNet were highly consistent with the basic
facts.

4.3. Robustness Experiment

The proposed model’s robustness to different inputted point cloud resolutions and
numbers was tested by sampling 512, 1024, 2048, and 2860 points. The results shown in
Table 5 indicate that segmentation performance was best with 2048 input points. Segmen-
tation accuracy was slightly decreased when the number of inputted points increased or
decreased compared to the optimal number. Table 6 shows the results of chair segmentation
with different inputted points, indicating that even a minimum of 256 points could be used
to segment parts. The network model effectively extracted point cloud feature information
and was robust to point cloud resolution.
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Table 3. Component segmentation mean intersection over union of different methods using the ShapeNet dataset.( Bold font represents the highest MIoU in this
category).

MIoU (%) Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table

PointNet [2] 83.7 83.7 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [3] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [21] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
SK-Net [25] 85.0 82.9 80.7 87.6 77.8 90.5 79.9 91.0 88.1 84.0 95.7 69.9 94.0 81.1 60.8 76.4 81.9
SRINet [26] 73.5 72.6 74.0 68.0 48.6 79.4 61.0 88.0 78.5 75.4 75.0 49.6 82.3 65.4 46.7 53.0 72.4

Pointseq2seq [27] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
Proposed method 85.3 83.9 79.9 88.5 78.9 91.9 76.0 92.6 86.5 83.7 95.7 73.2 95.5 82.3 56.8 76.9 83.2
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Table 4. SBSNet segmentation visualization results.

GT Proposed GT Proposed
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The proposed model’s robustness to different inputted point cloud resolutions and 

numbers was tested by sampling 512, 1024, 2048, and 2860 points. The results shown in 

Table 5 indicate that segmentation performance was best with 2048 input points. Segmen-

tation accuracy was slightly decreased when the number of inputted points increased or 

decreased compared to the optimal number. Table 6 shows the results of chair segmenta-

tion with different inputted points, indicating that even a minimum of 256 points could 

be used to segment parts. The network model effectively extracted point cloud feature 

information and was robust to point cloud resolution. 
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In this paper, we present SBSNet, a network model designed for 3D point cloud clas-

sification and semantic segmentation tasks. SBSNet uses multiple point cloud geometric 

features grouped based on shape information and encoded by neural networks. The shape 

information is fused using an attention mechanism to capture salient local features that 

form feature descriptors to achieve semantic segmentation and classification. 

To validate the proposed model, we compared it with classical and recent deep learn-

ing-based methods using the classification dataset ModelNet40 and the segmentation da-

taset ShapeNet. In the ModelNet40 dataset, SBSNet had 90.6% MAcc, which was higher 

Inputted Points MIoU (%) 

512 76.13 

1024 81.22 

2048 85.35 

2560 85.25 

512 Points 1024 Points 2048 Points 2860 Points 

    

5. Conclusions

In this paper, we present SBSNet, a network model designed for 3D point cloud
classification and semantic segmentation tasks. SBSNet uses multiple point cloud geometric
features grouped based on shape information and encoded by neural networks. The shape
information is fused using an attention mechanism to capture salient local features that
form feature descriptors to achieve semantic segmentation and classification.

To validate the proposed model, we compared it with classical and recent deep
learning-based methods using the classification dataset ModelNet40 and the segmen-
tation dataset ShapeNet. In the ModelNet40 dataset, SBSNet had 90.6% MAcc, which
was higher by 4.4%, 2.5%, 0.3%, and 0.2% than that of PointNet, PointCNN, GCN3D, and
MANet, respectively. Moreover, SBSNet achieved 93.1% OA, which was 2.4%, 0.2%, and
0.2% higher than that of PointNet++, DGCNN, and DTNet, respectively. Furthermore, its
overall MIoU in the ShapeNet dataset was higher by 1.6%, 0.2%, 11.8% and 0.1% than that
of PointNet, PointNet++, SRINet, and Pointseq2seq, respectively. At the same time, in many
categories, SBSNet achieved the highest MIoU. Our experimental results also confirmed
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the effectiveness of the proposed model, which achieved point cloud data segmentation
and classification at a level comparable to that of many state-of-the-art models.

Although SBSNet can effectively capture the relationship between geometric features
and significant local features of point cloud data, its training time was slightly longer
than other networks according to the training time experiment. However, our method
was superior to other networks in both classification and individual experiments. In the
future, we will explore better and smaller networks to ensure accuracy and reduce the
training time.
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