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Abstract: Simultaneous localization and mapping (SLAM), as an important research topic in robotics,
is useful but challenging to estimate robot pose and reconstruct a 3-D map of the surrounding
environment. Despite recent success of several deep neural networks for visual SLAM, those methods
cannot achieve robust results in complex industrial scenarios for constructing accurate and real-time
maps due to the weak texture and complex geometric structure. This paper presents a novel and
efficient visual SLAM system based on point–line-aware heterogeneous graph attention network,
which combines points and line segments to solve the problem of the insufficient number of reliable
features in traditional approaches. Firstly, a simultaneous feature extraction network is constructed
based on the geometric relationships between points and points and points and lines. To further
improve the efficiency and accuracy of the geometric association features of key regions, we design the
point–line-aware attention module to guide the network to pay attention to the trivial features of both
points and lines in images. Moreover, the network model is optimized by a transfer-aware knowledge
distillation strategy to further improve the system’s real-time performance. Secondly, to improve
the accuracy of the point–line matching, we design a point–line heterogeneous graph attention
network, which combines an edge aggregation graph attention module and a cross-heterogeneous
graph iteration module to conduct learning on the intragraph and intergraph. Finally, the point–line
matching process is transformed into an optimal transport problem, and a near-iterative method
based on a greedy strategy is presented to solve the optimization problem. The experiments on the
KITTI dataset and a self-made dataset demonstrate the better effectiveness, accuracy, and adaptability
of our method than those of the state of the art in visual SLAM.

Keywords: visual SLAM; point–line aware; knowledge distillation; heterogeneous graph attention
network

1. Introduction

Simultaneous localization and map construction technology, as the key to autonomous
movement of robots, is widely used in unmanned driving, virtual reality, mobile robots,
and other fields [1–5]. Compared with laser SLAM, vision-based SLAM has a low power
consumption, low cost, miniaturization, and other advantages, and its theoretical and
application value is very prominent [6]. Visual SLAM constructs a map of the surrounding
environment by obtaining the plane image information of the real world through a cam-
era. The pose state of the camera is inferred by the extracted feature information or pixel
grayscale. Visual SLAM methods can be classified into four categories: feature-point-based
methods [6–8], feature-line-based methods [9–12], feature-plane-based methods [12,13],
and the combination of the above methods [14–20], according to the kind of features used
to estimate the trajectory. The existing empirical methods cannot deal effectively with
complex industrial scenarios due to occlusion, illumination, and deformation issues. In
recent years, research on visual SLAM based on deep learning has attracted widespread
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attention. Serra et al. [21] used deep convolution to extract a point description with the
L2 norm as a similarity measure to enhance the robust matching between key points and
their local image features. Since a single feature descriptor cannot generate an effective
key-point detection, Shend et al. [22] proposed an end-to-end trainable matching network,
RF-Net, based on a receptive field to achieve a more efficient key-point detection. In order
to solve the problem of the low localization accuracy caused by the lack of key-point shape
perception in the joint learning of feature detectors and descriptors, Luo et al. [23] applied
a deformable convolutional network with a dense spatial transformation to enhance the
dynamic receptive field and improve the ability to express local shapes. Sarlin et al. [24]
proposed a graph neural network, SuperGlue, based on attention aggregation, which used
the optimal transmission model for matching optimization and realized the pose estimation
in both indoor and outdoor environments. Combining a convolutional network with a re-
current network, Tang et al. [25,26] proposed a geometric correspondence network (GCN),
which used an end-to-end learning method to detect key points and generate descriptors
for improving the accuracy of the pose estimation. Aimed at the problem of decreased lo-
calization accuracy caused by the partial occlusion of line segments, Pautrat et al. [27] used
a self-supervised network for line detection and for extracting line-segment descriptors,
which improved the robustness of line-segment matching. The above-mentioned feature
detection algorithms based on deep learning fused multilevel features, which did not
deeply explore the association and constraint relationship between point and line features.

In industrial production scenarios, there are many complex background objects such
as various buildings, pipelines, production equipment, and safety signs that lack corner
points or contain repeated textures. The point features in the image are not specific enough,
which makes them unable to provide an accurate position estimation. In addition, the
mismatch of line features greatly increases the time complexity of the computation. In
general, although existing methods have achieved certain results in feature detection and
matching tasks, due to the uneven light, single texture, and complex scene structure in
industrial scenarios, the pose estimation is easily degraded. How to efficiently fuse point
and line information to build a more stable visual SLAM system is still a difficult problem
that needs further research. Our main contributions can be summarized as follows:

• To solve the problem of weak point–line extraction ability in complex scenes, a point–
line synchronous geometric feature extraction network, PL-Net, is proposed. We use
an optimized residual block-feature pyramid network (ORB-FPN) to extract the feature
map of the input image. In the point extraction branch, based on the point-aware
module, the multiscale context is aggregated to obtain features with rich receptive
fields. Moreover, the edge information is used for the line extraction branch to improve
the accuracy of the line-segment detection. In order to make the network lightweight,
a transfer-aware knowledge distillation method is proposed to compress the model
for generating the point–line feature in the extraction task.

• Targeting a high accuracy and efficiency, a heterogeneous attention graph neural
network (HAGNN) is presented, which uses an edge-aggregated graph attention
network (EAGAT) to iterate the vertices of the heterogeneous graph constructed
from points and lines. To enhance the performance of the point–line matching, a
cross-heterogeneous graph interaction (CHGI) is used for harmonizing heterogeneous
information between graphs.

• By transforming the point–line matching process into an optimal transport problem,
a greedy inexact proximal point method for optimal transport, GIPOT, is proposed,
which calculates the optimal feature assignment matrix to find the global optimal
solution for the point–line matching problem.

2. SLAM System Framework

The framework of the SLAM system proposed in this paper is shown in Figure 1.
Firstly, a new image is input into the PL-Net network to detect key points and line segments,
and the corresponding descriptors are obtained through the point–line-aware attention
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module to enhance the feature expressiveness for both points and lines in images. Then, the
point and line features of the two images are transferred to the point–line heterogeneous
graphs, which are constructed by using the point and line features as the vertices and
connecting a vertex to its neighbors within a fixed radius. Secondly, the attention network
HAGNN obtains the enhanced features and inputs them into the GIPOT to generate point–
line matching results and calculate the pose of the current frame. Finally, by reprojecting
the features in the local map to the current frame, the projection error is calculated for the
backend processing of SLAM to complete the map.

Figure 1. System overview. The system has four components: 1. The point–line feature extraction
network (PL-Net) extracts key points, line segment and their descriptors (Section 3.1). 2. A hetero-
geneous graph attention network (HAGNN) is added with the positional encoding, which has N
EAGAT and GBGI layers (Section 3.2). 3. A greedy near iterative matching (GIPOT) module is used to
match the transformed features, which computes the affinity matrix M̃a f f and the assignment matrix.
(Section 3.3). 4. The backend optimization includes local mapping, loop detection, and mapping.

3. Methodology
3.1. Point–Line Feature Extraction Network

The point–line feature extraction network PL-Net is shown in Figure 2. Firstly, the
ORB-FPN module was used to extract the features of each layer for the image, and the PG
module completed the key-point extraction. Then, the center point map and displacement
map were generated through the branch of the line-segment perception module. Finally,
the point–line descriptor was generated through convolution and upsampling operations.

3.1.1. ORB-FPN Module

As shown in Figure 2, an optimized residual block (ORB) is designed based on the
Nesterov acceleration gradient (NAG) algorithm to enhance the expressive ability of target
features [26]. Then, we have:

yk+1 = xk + β(xk − xk−1) (1)

xk+1 = yk+1 − α∇ f (yk+1) (2)

where xk and yk+1 denote the output and input of the first layer of the network, and α
and β represent the learning rate and momentum parameters, respectively. ∇ f (yk+1)
is the gradient of the objective function f at yk+1, and f is a smooth function satisfying
the Lipschitz property. When the momentum parameter β = 0, the NAG algorithm is
equivalent to the standard gradient descent algorithm. When β > 0, it optimizes the
combination of α and β to accelerate convergence.
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Figure 2. The framework of our proposed network PL-Net. We input two images of size 512 × 512
and then obtain key points, line segment, and their descriptors through the ORB-FPN, extraction
module, and descriptor module. The gray box in the upper-right corner shows the structure of the
ORB-FPN. The upper gray branch is responsible for extracting points and lines. The lower red branch
is used to extract the point–line descriptor

In the neural network propagation process, the transmission of the signal from the
first layer to the last layer is expressed as:

Li+1 = σ(UiLi) (3)

where Li+1 is the features of the i + 1th layer in the network, and σ represents the activation
function. Suppose U is a symmetrical positive definite matrix; let V =

√
U and µ = VL;

then, for the nonlinear activation function σ(µ), there is a function g(µ), when g′(µ) = σ(µ).
We have:

∇∑i g
(

VT
j µ
)
= Uσ

(
UT L

)
= Uσ(UL) (4)

The objective function f (µ) is defined as:

f (µ) =

∥∥µ2
∥∥

2
−∑i g

(
VT

j µ
)

(5)
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where Vi is the ith column of V. Then,

∇ f (µi) = βi − Vσ(Vµi) (6)

Equation (2) can be expressed by:

µi+1 = µi + β(µi − µi−1) − α((1 + β)∇ f (µi)− β∇ f (µi−1)) (7)

Recovering L by L = V−1µ leads to:

Li+1 = ((1 + β)(1− α)− αβ)Li + β(1− α)Li−1 + α(1 + β)σ(ULi) (8)

where σ(ULi) is the ith layer feed-forward network, and the ORB module structure is
shown in Figure 2.

In order to aggregate the FPN multiscale feature information, a dual attention module
(DAM) was designed to perform the feature aggregation. As shown in Figure 3, firstly, in
order to obtain the position and channel information of the feature, the shallow feature map
x ∈ RW×H×D1 was passed through a global pooling operation and compression to generate
the position vector xp ∈ RW×H×1 and the channel vector xc ∈ R1×1×D1 , respectively. Then,
the position vector xp computed the weight of each position with a sigmoid activation
function and multiplied it with the feature map xp to generate the spatial position feature
map Fp ∈ RW×H×D1 , which was defined as:

Fp = σ(x)⊗ x (9)

where x is the shallow feature map, and σ is the sigmoid activation function. Similarly,
the convolution of the ReLU activation function, defined as f (x) = max(0, x), and the
sigmoid activation function was performed on the channel vector xc. The weight of each
channel was calculated and multiplied by the feature map x to generate the feature map
Fc ∈ RW×H×D1 , which was defined as follows:

Fc = σ(δ(W2(W1(gp(x))))⊗ x (10)

where δ is the ReLU activation function, and W1 and W2 are convolution operations with
sizes 1× 1× D1/16 and 1× 1× D1, respectively. Finally, the final output feature map F
was obtained by fusing the feature maps Fp, Fc, and x′. Then,

F = [(x⊕ Fp ⊕ Fc), x′] (11)

where ⊕ represents the addition of the corresponding elements of two matrices.
The input image was passed through the ORB-FPN module, which denoted the output

of the backbone as {C2, C3, C4, C5} with strides of {4, 8, 16, 32}. {F2, F3, F4} were obtained
after a 1× 1 convolution with the same 128-dimensional channel features. Finally, the ORB
module was added to enhance the acceptance domain of the output feature by using the
backbone network on C5 to separate the important context information. After interpolation
and maximum pooling of the extracted context features and the generated three feature
maps, an elementwise summation was performed to obtain features F.
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Figure 3. The dual attention module. The attention mechanism is adopted to adaptively aggregate
different features, where the weights are normalized with the softmax function.

3.1.2. Key-point Detection Module

As shown in Figure 2, the key-point detection module consisted of three point percep-
tion modules and two 3× 3 convolutions with a stride length of 1. A batch normalization
layer and ReLU layers were added between each convolutional layer. The output vector
was processed through a sigmoid activation function, so that the pixel values of the saliency
map were between 0 and 1. Then, through the key-point perception module and convo-
lution processing, the convolution operation was used to discriminate whether the 8× 8
area prediction contained key points. Finally, the key points were detected by using the
nonmaximum suppression (NMS) method in the key-point generation module (PG).

The point-aware module was used to capture the relationship between key points. As
shown in Figure 4, the key-point extraction branch embedded a context enhancement mod-
ule, which improved the feature expression ability. The output feature yp∈ RW×H×D was
obtained by fusing the convolutional features of different scales, which took yp∈ W×H×D

as input. The above process was defined as:

yp = W1[xp, BN(W1xp), BN(W2xp), BN(W3W1xp)] (12)

where xP is the input feature, W1, W2, and W3 are convolution operations with sizes of
1× 1, 2× 2, and 3× 3, respectively. BN is a normalization, and [] is a splicing operation.

Figure 4. The point-aware module. BN means batch normalization.
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3.1.3. Line-Segment Detection Module

The line-segment detection module extracted the features of the plane image through
the ORB-FPN module and then input it to the line-segment extraction module to generate
a midpoint with two symmetrical endpoints as the line-segment detection result. The
extraction of the line segment’s center point [28] used the classification model to judge
whether the pixel was the center point of the line segment. Since the shape of the line
segment was narrow and long, a large receptive field was required to classify the center
of the line segment. Therefore, a hybrid convolution module was introduced by stacking
three convolutional layers, a 3 × 3 deformable convolutional layer and two 3 × 3 dilated
convolutional layers. The receptive field of the network was increased while reducing the
parameters of the network. Then, three line-segment perception modules were used to
enhance the feature representation ability. Finally, a deconvolution layer was used to restore
the size of the output map to 512 × 512, which represented the center point of the line
segment on the output feature map. The displacement regression task of the line-segment
extraction branch was designed to predict the angle and length of the end point relative
to the midpoint. It was composed of a 3 × 3 deformable convolution layer and two 3 × 3
convolutional layers with a stride of 1. The relevant displacement was indexed by the
position through the output map. Finally, the CAL [29] was used for the line-segment
generation, and the two endpoints of the line segment were defined as follows:

(xl s , yl s
) = (xl c , yl c

) +
α

2
(cos θ, sin θ) (13)

(xl e, yl e
) = (xl c , yl c

)− α

2
(cos θ, sin θ) (14)

where (xl c , yl c
) is the coordinates of the root node, α is the length of the line segment, and θ

is the rotation angle.
In the line-segment detection, a line-aware module was introduced to effectively

extract line shape features. As shown in Figure 5, the line-segment-aware module adopted
the improved self-attention mechanism, which took the feature xL ∈ RW×H×D as input
and fused the self-attention features to generate the final output feature yL ∈ RW×H×D; the
above process was defined as follows:

yL = xL ⊕W1(α(Wq xL ×Wk xL)×Wv xL) (15)

where xL is the input feature, W1, Wq, Wk, and Wv are the learned weight matrices, which
were implemented as 1 × 1 convolutions, and ⊕ means that the corresponding elements of
the two matrices are added.

Figure 5. The line-aware module.
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3.1.4. Parallel Attention Module

To efficiently merge the two branches of point descriptors and line descriptors, we
designed a parallel attention module (PAB) based on self-attention and channel attention.
As shown in Figure 6, the output features of the key-point description branch contained
line-edge information with a strong correlation. In order to improve the accuracy of the
line descriptor, a lightweight attention mechanism was used to assign more weights for
the features of useful regions. The output feature map of the point description branch
was expressed as XE ∈ RC×H×W . A one-dimensional convolution of XE was performed to
obtain the spatial attention map AE ∈ RC×H×W . The edge feature map XS

E ∈ RC×H×W was
calculated as: XS

E = a(XE � AE) + XE, where a is a learnable parameter that was initialized
to 0. The CAEU module was designed to calculate a channel attention map, which recali-
brated the weight of the channel and obtained the fused feature map XS

F ∈ RC×H×W from
XS

F = XS
E ⊗ δ(Conv1× 1(Conv1× 1(GAP(XS

E))). Finally, the final output XSC
F ∈ R2C×H×W

of PAB was obtained by concatenating XS
T and XS

F together.

Figure 6. The parallel attention block (PAB). The PAB is designed to transfer important information to
the line branch output (XSC

F ). The pink box in the lower-left corner shows the structure of the CAEU.

3.1.5. Network Output Distillation

In order to reduce the increasing computation cost caused by the introduction of the
attention mechanism and the point–line perception module, we further compressed the
point–line detection model PL-Net. A transfer-aware method is presented to transfer the
information from the teacher model to the student network. The knowledge distillation
strategy (KD) [30–32] was used to fine-tune the accuracy of the recovery model. As shown
in Figure 2, the multiples tasks were combined with the teacher network and the student
network to guide the training of the student feature extraction. In the training process, the
adaptive weighted multitask distillation was realized, and Xtea, Ytea, and Ztea represented
the key point of the teacher model, the center point of the line segment, and the output of
the line-segment regression feature layer, respectively. The student model corresponded to
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the feature layers Xstu, Ystu, and Zstu. The mean squared error (MSE) function was applied
to the multitask distillation. The loss function of the training distillation was:

LS
p = ‖Xtea − Xstu‖2

LS
root = ‖Ytea −Ystu‖2

LS
dis = ‖Ytea −Ystu‖2

(16)

where LS
p, LS

root, and LS
dis denote the key point, the line segment’s center point, and the

distillation loss of the line-segment regression task, respectively. Then, the weighted
distillation loss was defined as:

Ls
MSE = ∑

l
ωl Ls

l (17)

where Ls
MSE is the multitask distillation loss, and ωl represents the weight value of the

verification loss.

3.1.6. Interlayer Knowledge Distillation

Different from the network output distillation, the student network was further en-
hanced by performing an interlayer knowledge distillation between the output of the
teacher model and the student model. The aware modules of each student layer were
associated with the relevant target-layer-aware modules for knowledge transfer. The layer’s
knowledge distillation loss was defined as:

LFMD = ∑
(sl ,tl)∈C

Dist(Transt(Ft
tl),Transs(Fs

sl)) (18)

Then, the overall loss was obtained as:

Ltotal = Ls
MSE + βLFMD (19)

where Trans( · ) means to convert the feature map of the perception module into a specific
manual representation through the attention map. C is the perception module, and Ft

tl
and Fs

sl are the feature layers of the lth layer of the student model and the teacher model,
respectively. The distance function Dist( · ) was used for computing the distillation loss of
the feature maps, and β was a hyperparameter.

3.2. Heterogeneous Graph Attention Network

As shown in Figure 7, consider two images I and I′, and the number of two feature
sets m and n belonging to them, respectively. Let d ∈ RD be the feature descriptor, where
D is the dimension of the descriptor. We utilized an attention graph neural network to
integrate the contextual cues and enhance its feature expression ability.

Position encoders were used for the two input features, and the key points and lines
positions were embedded into a high-dimensional vector by adding position encoding to
F̂1 and F̂2; thus, we had:

fi = di + MLP(Pi) (20)

MLP(Pi) = Waσ(WbPi) (21)

where Pi is the position of the feature, di is the descriptor information, and σ(·) is the ReLU
activation function.
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Figure 7. The overall structure of HAGNN. The first stage embeds the key points and line positions I
and I′ into a high-dimensional vector, which generates Gx and Gy. Graph architecture learning is
used to construct the graph. The two graphs can generate discriminative features through EAGAT
and CBGI. The second stage computes the affinity matrix and the assignment matrix between two
sets Hi and Hj and uses the assignment matrix to find matches and filter nonmatches.

3.2.1. Edge-Clustering Graph Attention Module

We propose an edge-aggregated graph attention network (EAGAT) based on GAT [33],
which uses edge information for feature enhancement during the aggregation process. In
order to make full use of the information of edge features, these different types of links
used different attention mechanisms. For features of the same nature (points and points,
lines and lines), the self-attention mechanism was used for the aggregation. For features of
different nature (points and lines), the cascade method was used for the aggregation. Let
the feature of the vertex v′i in the graph be fi, defined as:

f ′ i = σ( ∑
j∈Ns

so f tmax(
Wa fiWβ f j√

dk
Wγaji)Wε f j

+ ∑
j∈N d

so f tmax([Wa fi||Wβ f j||Wγaji])Wε) || fi
(22)

where Wa, Wβ, Wγ, and Wε ∈ R f ′η× fη represent the weight parameters, Ns is the feature
set of the same nature, Nd represents the feature set of different properties, and σ is the
ReLU activation function.

3.2.2. Cross-Heterogeneous Graph Iteration Module

Due to the affinity learning problem of message passing between graphs in graph
matching, a point–line heterogeneous graph message-passing method is proposed to
enhance the node features through an interactive correlation. The edge features and
node features were aggregated in two ways. For nodes of the same nature (points and
points, lines and lines), we used linear attention for the aggregation, and for nodes of
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different properties (points and lines), we used the aggregation method of the self-attention
mechanism. Then, f ′si ∈ R f ′η is expressed as:

f ′si = LN{ ∑
j∈N di

(so f tmax[(Wv f j)(Wk f j)
T ]+Wq fsi)}

+LN{ ∑
j∈N si

(Wl((Wq fsi)(Wk f j)
T + Wk f j) + fsi}

(23)

where vl/r ∈ R f ′η is the feature node of the two graphs, W(·) is the weight parameter, and
LN represents a layer normalization (LN).

3.3. Greedy near Iterative Matching Module

The output Hi of the last layer in the graph neural network is the feature of graph
I′. Hj is the feature of graph I′, and the point–line distance matrix G ∈ R+N1×N2 can be
expressed as:

G = fa f f (Hi, H′j), i ∈ v1, j ∈ v2 (24)

where fa f f is the weighted bilinear function, defined as:

fa f f (Hi, H′j) = exp(
HT

i KHT
j

τ
) (25)

where the feature is an n-dimensional vector, namely ∀i ∈ v1, j ∈ v2 and HT
i , HT

j ∈ Rn×n,
K ∈ Rn×n is the weight matrix of the affinity function, and τ is the regularization parameter.
In the matching process, due to the inconsistency of point and line types, a direct fusion
may cause a mismatch of point and line types. For this reason, we regarded the unit block
diagonal matrix as the initial coupling matrix Γ(1) so that the relationship between point
features and line features in the iterative process minimized the matching cost. Then,
we had:

Γ(1) ←
[

11p 0
0 11L

]
(26)

where P is the number of points after completion, and L is the number of lines after
completion. Then, the point–line discrete distribution Sinkhorn distance [34,35] was defined
as:

W∈(u, v)= min
Γ∈∑ (u,v)

〈C,Γ〉+ λh(Γ) (27)

where u and v are probability vectors, W∈(u, v) is the distance between u and v, the matrix
C =

[
cij
]
∈ R+n×n is the cost matrix, and cij is the distance between ui and vj. The

regularization term h(Γ) = ∑i,j Γij lnΓij. The proximal point iteration method [35] was used
to solve Equation (25). According to the proximal point iteration method, it is defined as
the Bregman divergence:

Dh(x, y) = ∑n
i=1 xi ln

xi
yi
−∑n

i=1 xi −∑n
i=1 yi (28)

After introducing the near-end point iteration, Equation (27) can be rewritten as:

Γ(t+1) = argmin
Γ∈∑ (u,v)

〈C, Γ〉+ βtDh(Γ, Γ(t)) (29)
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Substituting the Bregman divergence Equation (28) into Equation (29), it becomes

Γ(t+1)= argmin
Γ∈∑ (u,v)

〈
C′, Γ

〉
+ βth(Γ) (30)

where C′ = C−βt ln Γ(t); we used the greedy strategy to update the best row or column
and defined the distance matrix

ρ(x, y) = y− x + log
x
y

(31)

According to Equations (29) and (30), the affinity matrix was updated to find the best
matching relationship, and the specific algorithm flow is shown in Algorithm 1.

Algorithm 1: GIPOT(µ, v, G).
Input: Point–line features of graph network output Hi and Hj

Output: Γ(t+1)

initialize Γ(1) ←
[

11p 0
0 11L

]
, G ← fa f f (Hi, H′ j)

begin
for t = 1, 2, 3 . . . do

Q← G� Γ(t)

I ← argmaxiρ(ui,ui(Q))
J ← argmaxjρ(uj,uj(Q))

Γ(1) ← diag(exp(a))Qdiag(exp(b))
if ρ(uI ,uI(Q)) > ρ(uJ ,uJ(Q)) then

aI ← aI + log uI
uI(Q)

else
aJ ← aJ + log uJ

uJ(Q)

end
Γ(1) ← diag(exp(a))Qdiag(exp(b))

end
end

3.4. Loss Function

In order to realize the matching of points and lines, the point–line extraction loss,
descriptor extraction loss, and point–line matching loss were used as the loss functions
during model training.

3.4.1. Point–Line Extraction Loss

In the training stage of the point and line extraction branch, the output included the
root node’s confidence map, key-point map, and displacement map. The losses of these
three tasks were combined into Equation (32), defined as follows:

LPLE = Lroot + Lp + Ldis (32)

The ground truth of the root-point confidence map was constructed by marking the
root-point positions on a zero map. A weighted binary cross-entropy loss Lroot was used to
supervise this task, which was defined as:

Lroot = −∑i R̃i log Ri + (1− R̃i) log(1− Ri) (33)
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where R̃i and Ri are the prediction and true label of the root node of the line segment,
respectively. The true value of the key point was marked with the ORB feature. Lp(X, Y)
was defined as:

Lp(X, Y) =
1

Hcwc
∑ lp

(
Tij, T̃ij

)
(34)

lp

(
Tij, T̃ij

)
= − log(

exp(Tij
k )

∑64
1 exp(Tij

k )
) (35)

The displacement part of the line segment relative to the root node was used to locate
the length and angle of the line segment, which used the L1 loss and L1 smoothing loss,
respectively defined as:

Ldis =
m

∑
i=1

{ ∣∣θi − θ̂i
∣∣+ 0.5 ∗ (ρi − ρ̂i)

2 i f
∣∣ρi − ρ̂i

∣∣ < 1∣∣θi − θ̂i
∣∣+ ∣∣ρi − ρ̂i

∣∣− 0.5 otherwise
(36)

where θi and ρi represent the actual line segment’s length and angle, and θ̂i and ρ̂i are the
predicted line segment’s length and angle, respectively.

3.4.2. Point–Line Descriptor Loss

Denote the original image as I, and apply the homography transformation for I to
form a new image I′. Since the homography transformation is known, the corresponding
relationship between key points and line segments on I and I′ can be obtained. Therefore,
the loss function can be defined as:

Ld(θ,
{

dθ
a, dθ

+, dθ
−

}
) = [m +

∥∥∥dθ
a − dθ

+

∥∥∥2
− min

dθ
−∈dθ

−

∥∥∥dθ
a − dθ

−

∥∥∥2
]+ (37)

where the parameter m was set to 0.5, dθ
a is the descriptor on I of the anchor point, dθ

+ is
the matching descriptor on I′ of the positive sample, and dθ

− is the set of nonmatching
descriptors on I′ of the negative sample.

3.4.3. Matching Loss

For a matching network using the L2 loss, the loss function can be expressed as:

Lm =
1∣∣Mgt
∣∣ ∑
(i,j)∈Mgt

1
σ2(i)

∥∥M(i, j)−Mgt(i, j)
∥∥

2 (38)

where σ2(i) is the confidence variance of feature i. M(i, j) is the matching probability of
feature i and feature j, and Mgt is the real-valued matrix obtained by the homography
transformation.

3.4.4. Normalization

The total loss function was the sum of the above loss functions:

Lsum = λ1LPLE + λ2Ld + λ3Lm (39)

where λ1, λ2 and λ3 represent the coefficients of each loss function, respectively. λ1,2,3 =
{0.25, 0.25, 0.5}.

4. Experiments and Evaluation
4.1. Model Training Details

A wide range of experiments were performed on different datasets to demonstrate the
efficacy of our method. Our approach was evaluated with several evaluation criteria by
comparing to the typical SLAM methods on the KITTI dataset [36]. We used the training
set of Wireframe [37] with the ground truth to train our models and the other compared
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methods. The training process used data enhancement techniques such as random Gaussian
noise, motion blur, and brightness level changes to improve the network’s robustness
ability for changes in lighting and viewing angles. For end-to-end training of the point–line
matching network, our network was implemented in Pytorch [38] using the Adam [39]
optimizer to train the network with an initial learning rate of 1× 10−5 and a decay of the
learning rate by 20 at each epoch. We trained our model on a GeForce GTX2080Ti GPU.

4.2. KITTI Dataset Evaluation

We tested the proposed algorithm on the KITTI dataset [36]. The quantitative evalu-
ations for the different SLAM systems were the absolute trajectory error (ATE) [40] and
the relative pose error (RPE) [41] based on translations and rotations. Table 1 shows the
performance of this system was better than ORB-SLAM2, especially in sequences with
strong lighting, motion blur, and low texture areas, such as 06 and 09. It can be seen
that the multifeature fusion not only improved the accuracy of the algorithm but also
avoided the degradation problem that may occur in the pose solution algorithm when
using a single feature.

Table 1. Comparison between ATE and RPE on different SLAM algorithms.

Seq
ORB-SLAM2 Our

ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m)

00 1.266 52.5 0.363 1.233 2.9 0.122
01 4.296 3.4 0.420 2.616 4.8 0.044
02 12.790 4.3 0.107 12.721 3.6 0.077
03 0.403 0.8 0.072 0.385 2.0 0.055
04 0.466 2.2 0.055 0.192 2.1 0.040
05 0.348 2.3 0.144 0.402 1.7 0.056
06 1.184 3.9 0.089 0.572 1.8 0.042
07 0.439 1.3 0.076 0.436 1.6 0.046
08 3.122 12.1 0.076 2.874 3.9 0.054
09 3.319 15.0 0.104 1.537 2.2 0.054
10 0.927 2.6 0.090 0.989 2.1 0.060

Figure 8 shows the comparison results of ORB-SLAM2 and the method in this paper
on KITTI’s partial sequences. It can be seen that the algorithm of this paper was equivalent
to ORB-SLAM2 as a whole. However, in sequences such as 00, 02, and 09, it showed that
our method had the best results. On the other hand, the ORB-SLAM2 lost track easily and
did not have a whole trajectory.

Figure 9 depicts the variation curve of the pose estimation error with the number of
training iterations. When we used more than 80 iterations, the rotation and translation
errors were relatively small while the performance improved, which showed that the
algorithm in this paper had a good convergence.

Figure 10 visualizes the statistical error property between our system and ORB-SLAM2
on sequence 09 of KITTI. It shows that our model achieved obviously a better performance
than ORB-SLAM2 in terms of the root-mean-square error (controlled within 2 m), extreme
value error, and the sum of the squared errors. Figure 10b shows the columnar statisti-
cal comparison of postural errors; our model was better than ORB-SLAM2 in the APE
distribution range of the algorithm.
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Figure 8. Comparison of trajectories estimated by our SLAM method, ORB-SLAM2, and the ground
truth on the KITTI dataset.

Figure 9. The variation curve of the pose estimation error with the number of training iterations on
sequence 09 of KITTI. Each color represents a different number of sampling points.
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Figure 10. Comparison of the statistical error property between our system and ORB-SLAM2 on
sequence 09 of KITTI. (a) Quantitative index chart of ATE. (b) Histogram of ATE.

4.3. Real Data Evaluation

As shown in Figure 11, the feasibility of the algorithm was verified on a physical and
virtual oil and gas station, where the virtual simulation platform with a quadruped robot
was built with Unity3D.

Figure 11. The experimental robot platform. (a) The physical experimental robot platform with robot
hardware including a camera, depth camera, and IMU. An additional GPS/RTK was used for the
ground-truth estimation. (b) The virtual simulation platform.

To show the effects of point and line features on the SLAM system, we intercepted
two frames of images for extracting the features by PL-Net and matching by HAGNN. As
shown in Figure 12, it can be seen that the combination of point and line could make the
SLAM algorithm obtain richer and more diverse feature information.

The virtual simulation platform used a quadruped robot to inspect the oil field equip-
ment. As shown in Figure 13, this trajectory was compared with the ground truth by
using the evaluation package to obtain the RPE and APE. It can be seen that the area with
a larger error was basically distributed at the corner of the trajectory. The RMSE was
17.5 m. Overall, the trajectory of our method was consistent with the ground truth with
a high accuracy.
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Figure 12. The effect of point–line feature tracking. (a) The line-segment extraction results. (b) The
point and line-segment extraction results. (c) The point and line matching results. We visualized the
matching results with RGB color.

Figure 13. Simulation platform experiment. (a) The simulation platform. (b) The error mapped onto
trajectory. (c) RMSE of ATE in meters after translation and scale alignment.

4.4. GIPOT Experiment

In order to illustrate the convergence of GIPOT with different β, the Wasserstein dis-
tance of two one-dimensional Gaussian distributions was measured as an evaluation index.
As shown in Figure 14a, the blue equation was 0.5N(70, 8) + 0.5(35, 10), the red equation
was 0.4N(80, 9) + 0.6N(40, 10), where N(µ, σ2) is the probability density function of the
one-dimensional Gaussian distribution, µ and σ2 are the mean and variance, respectively.
Figure 14b shows the convergence of GIPOT under different conditions. Compared with the
Sinkhorn method, the convergence of the GIPOT iteration was quicker when β was large.
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GIPOT could converge to the exact Wasserstein distance with a complexity comparable to
that of Sinkhorn.

Figure 14. The difference graph of the Wasserstein distance. (a) GIPOT under different conditions
and convergence trajectory graph. We also plotted the ones for the Sinkhorn method for comparison.
(b) The average time of GIPOT and Sinkhorn iterations under different conditions.

4.5. Ablation Study

We used two datasets to demonstrate our proposed knowledge distillation. The result
of the teacher network and the student network are shown in Figure 15. Compared with the
true value, both models could identify key points and line segments with high precision.
Although there were some small missing line segments and connection errors in the results
of the student network, the expression of the line-segment structure in the environment
was basically accurate. The quantitative comparison is shown in Table 2. Although the
performance of the student network was slightly lower than that of the teacher network,
the operation speed was increased by 73%.

Table 2. Quantitative evaluation of PL-Net point-line detection knowledge distillation method on
Wireframe dataset and YorkUrban dataset.

Method Wireframe dataset YorkUrban dataset FPS
FH sAP LAP FH sAP LAP

Student 77.5 58.9 59.8 64.6 25.9 32.0 12.5
Teacher 80.6 57.6 61.3 67.2 27.6 34.3 7.2

To verify the role of the multifeature fusion in the SLAM system, the root-mean-square
error (RMSE) of the ATE index under different feature combinations was calculated. The
experimental results are given in Table 3, where the point–line feature combination method
used in this paper significantly improved the accuracy of the pose estimation. To evaluate
our design decisions, we evaluated four different variants with results. This ablation study,
presented in Table 4, showed that all HAGNN blocks were useful and brought substantial
performance gains. “No EAGAT” replaced all EAGAT layers with CHGI layers, and the
matching accuracy decreased by 9.7%. “No CHGI” replaced all CHGI layers with EAGAT
layer, and the precision of the resulting matching decreased by 22.6%, “No HAGNN”
replaced the graph neural network with a single linear projection, and the precision of the
resulting matching decreased by 26.1%.
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Figure 15. Qualitative evaluation of PL-Net point–line detection knowledge distillation method on
the Wireframe dataset and the YorkUrban dataset.

Table 3. Results of ablation experiment in term of the RMSE of ATE (Unit: m).

Seq P-SLAM L-SLAM PL-SLAM ORB-
SLAM2

LSD-
SLAM PTAM

00 1.203 6.233 1.233 1.266 5.347 2.842
01 3.934 12.367 2.616 4.296 — 3.358
02 7.689 — 12.721 12.790 — 13.742
03 0.393 5.457 0.385 0.403 7.431 2.302
04 0.347 13.824 0.192 0.466 — 2.773
05 0.863 — 0.402 0.348 1.293 0.456
06 0.884 — 0.572 1.184 — 1.024
07 0.255 — 0.436 0.439 — 0.423
08 3.122 — 2.874 3.122 — 3.358
09 2.625 4.783 1.537 3.319 11.395 2.048
10 0.447 5.824 0.989 0.927 2.841 0.768

The proposed HAGNN was compared with two feature matching methods: the nearest
neighbor (NN) method and SuperGlue. As show in Table 5, it can be seen clearly that
HAGNN had a significantly higher pose estimation accuracy than all competitors, which
showed a higher feature expression ability.

Table 4. Ablation of HAGNN.

Known Unknown

Match Precision Matching Score Match Precision Matching Score

No EAGAT 79.6 29.5 55.3 15.6
No CHGI 66.7 25.3 48.2 18.5

No HAGNN 63.2 19.4 51.2 10.3
Full 89.3 34.2 78.3 23.8
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Table 5. Experimental results of the pose estimation. Matching PL-Net features with HAGNN
resulted in a significantly higher pose accuracy (AUC), precision (P), and matching score (MS) than
with handcrafted or other learned methods.

Feature Matcher
Pose Estimation AUC

P MS
@5◦ @10◦ @20◦

SIFT NN 7.89 10.22 35.30 43.4 1.7
SIFT SuperGlue 23.68 36.44 49.44 74.1 7.2

SuperPoint NN 9.80 18.99 30.88 22.5 4.9
SuperPoint SuperGlue 34.18 44.32 64.16 84.9 11.1
LSD + LBD NN 5.43 7.83 28.54 32.5 1.3

SOLD2 NN 18.34 13.22 23.51 63.6 6.2
SuperPoint + SOLD2 Ours 35.86 44.73 64.43 85.3 12.3

Ours Ours 36.67 44.26 64.73 86.6 12.7

5. Conclusions

In this paper, we proposed a point–line-aware heterogeneous graph attention network
for a visual SLAM system. Combining the point- and line-aware attention modules based
on an attention-driven mechanism, the geometric association features of key regions was
further extracted, and the model was simplified by a transfer-aware knowledge distillation
strategy. By improving the accuracy of image point–line matching, a point–line hetero-
geneous graph attention network was proposed, which realized the feature aggregation
by conducting learning on the intragraph and intergraph. Based on the optimal transport
theory, we proposed a greedy inexact proximal point method that could effectively solve
the point–line matching problem. Experiments on a public dataset and a self-made dataset
showed qualitatively and quantitatively that our model had stronger robustness and a
better generalization ability. One limitation of our feature matching was that it was not
easy to estimate the pose error due to the interference of dynamic objects. Thus, in a
future study, we will introduce the cross-frame semantic information in the network for
dynamic environments.
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