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Abstract: In this study, the active tectonics, paleoseismicity, and seismic hazards of the Doroud
Fault are examined through high-resolution satellite image interpretations, field investigations,
outcrop and trench excavations, and the dating of geochronology samples. The Doroud Fault
(DF), one of the essential segments of the Main Recent Fault in the northern margin of the Zagros
mountain range, has a historical and instrumental background of high seismicity. We present the
first constraints from tectonic geomorphology and paleoseismology along the Doroud Fault near the
capital city of Dorud. Detailed observations from satellite imagery, field investigations, real-time
kinematic (RTK) measurements, paleoseismological trenching, the radiocarbon (C14), and optically
stimulated luminescence (OSL) as ages allowed us to map the fault in detail, describe and characterize
its kinematics, and document its recent activity and seismic behavior (cumulative displacements,
paleoseismicity, and magnitude, as well as recurrence interval) relevant to the recent seismic activity of
the Doroud Fault during the late Holocene as one of the most important seismogenic faults in Zagros.
Modern alluvial terraces of gullies and loess accumulations are systematically deflected and/or offset
with co-seismic rupture, landslides, and scarps, indicating that the Doroud Fault has been active in
the late Quaternary and is characterized by dextral strike–slip movements with a normal component.
In addition, our findings provide a comprehensive analysis of the fault displacement, the timing of
paleoearthquakes, and the right-lateral slip rate of the Doroud Fault. The late Holocene slip rate of the
Doroud Fault using the OSL dating the gully is as follows: the minimum and maximum horizontal
slip rates are estimated to be 1.82 and 2.71 mm/yr, and vertical slip rates of 1.03 and 1.53 mm/yr are
calculated for the past 4600 ± 900 years in the middle segment of the fault. This study focused on a
paleoseismological trench within the archeological sites of Darbe-Astaneh. The central portion of
the fault has historically hosted more than nine earthquakes in the last 66 ka years, according to the
study’s findings. According to paleoseismology studies, the Doroud Fault has the seismic capability
to cause earthquakes with a magnitude of more than 7.4 and a total slip rate of about 3.83 ± 0.1 m.
The average recurrence interval for the identified paleoearthquakes is approximately 104 ± 7 years.

Keywords: paleoseismology; slip rate; geomorphology; Main Recent Fault; Doroud Fault; Zagros
mountain range

1. Introduction

Paleoseismology studies with a geomorphologic viewpoint on tectonically active
areas are essential for modern seismic hazard assessment and determining the seismic
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potential of seismogenic faults over much more extended periods than instrumental mea-
surements [1]; moreover, these studies provide tightly constrained data for the location,
size, and recurrence of large earthquakes associated with surface rupture in recent geo-
logical time, which are critical for the assessment of seismic potential and hazards along
active faults [2–5]. Strike–slip faults have played a critical role in the development of
paleoseismology for several reasons. First, strike–slip faults are often the longest faults
on continental landmasses and typically have conspicuous geomorphic expressions [6,7].
Second, many of these faults have long records of seismicity because they pass through
populated continental regions and have experienced surface ruptures during large and
great historical earthquakes. Third, because coseismic deformation along strike–slip faults
is horizontal, subsequent earthquakes do not deeply bury or expose erosion or traces of
earlier events [5]. Using earthquake geology, paleoseismology, and archaeology in regions
with long historical records, we can determine earthquake construction, potentially slippery
conditions, and slip allocation over multiple earthquake cycles [8]. Paleoseismic research
aims to ascertain past earthquake activity by locating fault movements, rupture sites,
and slip/ground shaking strength distributions. One of the most fundamental principles
of paleoseismology is reconstructing the sequence of past earthquakes in relatively young
geological units [9]. One of the primary goals of earthquake geology and seismology is to
determine the earthquake recurrence interval, which permits probabilistic predictions of
the time and magnitude of future earthquakes along a fault [10–13]. Iran, located in the
Alpine-Himalayan belt, is one of the most seismically active areas on the planet. Its seismic
activity is distributed along the same active fault lines (Figure 1), with individual faults
rupturing every few hundred to thousands of years during strong earthquakes with a mag-
nitude higher than 7.4 [14–22]. Iran experienced 145 earthquakes with a magnitude higher
than 5.5 between 1900 and 2022, which resulted in 190,300 fatalities. More than 1000 people
were killed in 17 of these earthquakes, 11 of which had a magnitude of 7 or higher [23].
The magnitude and time of the last seismic events are crucial to figuring out the earth-
quake’s recurrence. Understanding a fault’s past behavior can help predict how it might
behave in the future, which can help with loss mitigation and seismic hazard estimation.
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throughout Iran. Zagros Main Recent Fault and Zagros Reverse Fault separate the Zagros moun-
tain range from central Iran. The blue frame shows the location of the study area. Doroud Fault, as 
one of the main segments of the Main Recent Fault, is located in the study area.  KB = Karehbas 
Fault; S = Sarvestan Fault; SP = SabzPushan Fault. 
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episodes of historical and antique cultural heritage sites located in earthquake-prone ar-
eas near active faults (especially in the Zagros) are of scientific, architectural, engineering, 
cultural, and social significance. The Main Recent Fault (MRF), located on the north-
western side of the Zagros Mountains (Figure 1b), is the most active fault system in the 
region where the convergence of the Arabian and Eurasian plates is oblique to the range’s 
trend [27–29]. The oblique convergence is consummated by the spatial separation of the 
strike–slip and reverse components on parallel faults [30,31]. It seems that a significant 
portion of the strike–slip mechanism is spent along the MRF [32]. The trend of the MRF 
along its length changes from ~330° in the northwest, between Nahavand and Borujerd, 
to ~300° in the central part and to ~315° in the Doroud–Borujerd basin, where it ends in 
frequent splay faults. Based on the geomorphology along with the northwestern and 
southeastern general segments of the MRF, as well as the focal mechanism of earth-
quakes, some researchers (e.g., [30]) suggest that the normal slip vector is approximately 
parallel to the middle segment (Doroud Fault), which has experienced destructive 
earthquakes (Figure 2a). The Doroud Fault, throughout its length, has cut through Qua-
ternary sedimentary units, the Bakhtyari formation (Pliocene–Pleistocene), Khanehkat–
Neyriz formations (Triassic–Jurassic), Gerey and limestone rock units (Triassic–Jurassic), 
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S = Sistan suture zone; M = Makran; arrows are GPS vectors. (b) Distribution of active faults
throughout Iran. Zagros Main Recent Fault and Zagros Reverse Fault separate the Zagros mountain
range from central Iran. The blue frame shows the location of the study area. Doroud Fault, as one
of the main segments of the Main Recent Fault, is located in the study area. KB = Karehbas Fault;
S = Sarvestan Fault; SP = SabzPushan Fault.

The Zagros mountain range (Figure 1a), one of the main structural zones of SW Iran,
which includes a large number of Iran’s devastating earthquakes, is a fold-and-thrust belt
at the leading edge of the Arabia–Eurasia continental collision zone, which accounts for
about one-third of the collision zone’s overall 20 to 30 mm/year convergence rate [25,26].
The perceptive impact of large-magnitude earthquakes and the intervening destructive
episodes of historical and antique cultural heritage sites located in earthquake-prone areas
near active faults (especially in the Zagros) are of scientific, architectural, engineering,
cultural, and social significance. The Main Recent Fault (MRF), located on the north-
western side of the Zagros Mountains (Figure 1b), is the most active fault system in the
region where the convergence of the Arabian and Eurasian plates is oblique to the range’s
trend [27–29]. The oblique convergence is consummated by the spatial separation of the
strike–slip and reverse components on parallel faults [30,31]. It seems that a significant
portion of the strike–slip mechanism is spent along the MRF [32]. The trend of the MRF
along its length changes from ~330◦ in the northwest, between Nahavand and Borujerd,
to ~300◦ in the central part and to ~315◦ in the Doroud–Borujerd basin, where it ends
in frequent splay faults. Based on the geomorphology along with the northwestern and
southeastern general segments of the MRF, as well as the focal mechanism of earthquakes,
some researchers (e.g., [30]) suggest that the normal slip vector is approximately parallel
to the middle segment (Doroud Fault), which has experienced destructive earthquakes
(Figure 2a). The Doroud Fault, throughout its length, has cut through Quaternary sedimen-
tary units, the Bakhtyari formation (Pliocene–Pleistocene), Khanehkat–Neyriz formations
(Triassic–Jurassic), Gerey and limestone rock units (Triassic–Jurassic), and Dalan (Permian)
and Mila formations (Cambrian–Late Ordovician) (Figure 2b). Within and on the border of
the rock units, the Doroud Fault trace with a deformation of the geomorphic features can be
clearly seen. In this paper, the geomorphology and paleoseismology of the Doroud Fault,
as well as its geometry and kinematics, are investigated. The primary goal of this research
is to improve seismic hazard assessments, thereby providing the means to mitigate the
eventual devastation caused by large earthquakes resulting from the activity of the Doroud
Fault. A crucial factor in determining the seismic potential of active faults is the slip rate.
The lateral slip rate of strike–slip faults is estimated by reconstructing the offset of linear
features with known ages. Geomorphological analysis of surface features, such as offset
channels [33–38], can be used to figure out the offsets, or paleoseismological trenching
can be used to measure the offsets from linear features that are buried, such as paleochan-
nels [39–44]. In this study, paleoseismology and geomorphology were used appropriately
to determine the slip rate of the Doroud Fault in order to understand its seismic behavior
and accurately assess the earthquake risk in SW Iran.
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Figure 2. The sources of earthquakes catalogue and geological map: (a) seismotectonic map of
northeastern Lorestan; (b) northeastern Lorestan geology map overlaid on a shaded relief map of
the 10 m digital elevation model with active fault traces resulting from the Landsat images and
field observations.

2. Tectonic Setting and Seismicity

The Zagros mountain range in southwest Iran (Figure 1a) expanded from ~250 km
to ~400 km in width and ~1500 km in length from SE Turkey (in the west) to the Hormuz
Strait (in the east) (Figure 1). This range was formed in a series of tectonic events related to
the collision of the Arabian plate with the Eurasia plate in the Miocene [45,46]. The Main
Zagros Reverse Fault (MZRF) and MRF delineate the Arabia–Eurasia suture that limits the
northern extension of the Zagros range (Figure 3) [16].
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However, the GPS proposed a velocity of ~20 mm/yr of the Arabian plate related to 
Central Iran [25]. The GPS indicates about half of the convergence is consumed by Zag-
ros. The rates of convergence along the Zagros belt are seen to be continuously decreas-
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Figure 3. Seismicity and structure of the Zagros Main Recent Fault (MRF). The most recent and active
structure (MRF) with its main segments is shown on the map. Five main segments of the MRF are
DF, Doroud Fault; NF, Nahavand Fault; GF, Garun Fault; SF, Sahneh Fault; and MF, Morvarid Fault.
Epicenters are for 1913–1972. Dates refer to instrumental epicenters and approximate regions of the
greatest destruction of the biggest earthquake [32].

The main structural features of the Zagros and its evolution history are known by var-
ious researchers [16,45,47]. During the Arabia–Eurasia collisional process, the sedimentary
rock units in the northern domain of the Arabian plate have been folded and detached
from its Pan-African basement into a long belt (Zagros fold-thrust belt). To the north of
the Zagros fold-thrust belt and parallel to it is the Sanandaj–Sirjan Zone, and the Urumieh–
Dokhtar magmatic arc, which consists of imbricated sedimentary and metamorphic rocks,
and Andean-type volcanic rocks, respectively [47].

The obduction of the Neo-Tethys oceanic crust onto the northern margin of the Arabian
plate in the late Cretaceous has been the first tectonic event in the development of the Zagros
orogenic belt. In the late Campanian, the obduction finished while remains of the Neo-
Tethys oceanic crust continued to subduct beneath Central Iran in the Oligocene–Miocene.
Based on the NUVEL-1A plate motion model [28], currently, the collisional stage is active
with a convergence rate of ~30 mm/yr in the north–south direction. However, the GPS
proposed a velocity of ~20 mm/yr of the Arabian plate related to Central Iran [25]. The GPS
indicates about half of the convergence is consumed by Zagros. The rates of convergence
along the Zagros belt are seen to be continuously decreasing from SE to NW, from ~9 mm/yr
in SE Zagros to ~6 mm/yr and ~4 mm/yr in Central and N Zagros, respectively.

The multisegmented Zagros Main Recent fault is a major NW–SE-trending right-
lateral strike–slip seismic fault zone of more than 800 km long located between the Zagros
fold-and-thrust belt in the southwest and Central Iranian range-and-basin in the north-
east [16,20,32]. The fault trace in the northern margin of the Zagros range depicted by
Ambraseys and Melville [48] is equivalent to what is now known as the MRF, but there
was no field evidence for the strike–slip component; only vertical displacements were
observed (north-east side down). The MRF is divided into five major segments (from
Kamyaran to Arjanak), including the Doroud, Nahavand, Garun, Sahneh, and Morvarid
segments [32] (Figure 3). In the last century, several destructive earthquakes, such as
Silakhorin 1909.01.23 with Mw7.3; Razan 1955.12.04, UTC: 14:02, epicenter: 33.50 N–48.80 E
Ms 6.0; Heydarabad 1961.10.28, UTC: 10:46:33.54 N–48.49 E and Ms 5.0; Sahneh 1958.08.14,
UTC: 15:26 and Ms 5.5; Nahavand 1958.08.16, Mw 6.6, UTC: 19:13 and epicenter: 34.25 N–
47.84 E; Dinevar 1958.09.21, UTC: 16:18 and Mw 5.2; 1987.05.29, epicenter: 34.06 N–48.28 E,
Ms 6.5 and Night/Wednesday; Farsineh 1957.12.13 with Mw 6.5; Nevahand 1958.08.16 with
Mw = 6.7; Karkhaneh 1963.03.24, UTC: 12:44, epicenter: 34.43 N–47.89 E and Mw 5.8; and
Chalencholan 2006.03.31 with Mw = 6.1, have occurred on these segments (Figure 3) [25].
The most destructive was the 1909 earthquake (Ms 7.4) associated with a fault rupture over
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45 km long [32]. It was felt in a large area where 128 villages were damaged and it caused
more than 8000 people to be killed [18,48].

The event Chalencholan 2006.03.31 with Mw~6.1 (with 68 deaths and ~1400 injured)
had a consistent focal mechanism of the right-lateral strike–slip action, and it ruptured the
Doroud segment of the MRF. According to relocation models, the dextral slip of up to 90 cm
was recorded at a depth of ~4 km in the 2006 Chalencholan event. Based on Peyret et al. [49],
the maximum horizontal displacement near Chalencholan city is suggested to be ~12 cm.
In any case, geomorphological evidence shows 50–70 km of right-lateral displacement
along the MRF [30].

3. Method and Data

To determine the slip rate of the Doroud Fault, the offsets of tectonic features were anal-
ysed using field observations, topographic data, Google Earth satellite images, and OSL
dating results [50–52]. The topographic data were obtained using real-time kinematic
measurements (RTK). Given that the horizontal uncertainties for RTK data is <0.5 m, mea-
surement errors on the displacements mainly arise from the determination of markers
and construction of fitting lines [13,53]. We thus chose potential research sites based on
the interpretation of a digital elevation model (DEM) and Google Earth satellite images;
moreover, before digging trenches, Holocene and Pleistocene rock units were carefully
separated, the fault trace and surface geomorphic features around the fault were mapped
in the field, and topographic cross-sections from RTK data were drawn (using The Environ-
ment for Visualizing Images (ENVI)) software across the fault scarps at the site. To study
paleoseismology, we excavated a trench (see its location in Figure 4; TC (Trench)) using
both hand and machine tools across the fault scarp and pond, and mainly along the middle
segment of the Doroud Fault. We chose the pond to excavate a trench because it is a location
of accumulation of recent sediments that certainly record seismic events, and this pond was
formed due to the action of the fault in the hanging wall of the Doroud Fault and is the clos-
est location to the epicenter of the 1909 earthquake. A string grid defining 1 m× 1 m panels
was strung along the length of the trench walls after the walls were scraped and cleaned.
Then, each grid panel was photographed with four images that slightly overlapped with
one another. The sedimentary layers in each trench were classified as separate units based
on color, particle size, sorting, texture, bedding thickness, and other characteristics, such as
the colluvium wedge. The sequence of ground-rupturing events was then determined
based on strata cross-cutting relationships, sediment thickness variations, soft sediment
deformation, and fissures. The radiocarbon (C14) and optically stimulated luminescence
(OSL) ages of sediment samples collected from trenches were utilized to constrain the ages
of the stratigraphic units and, consequently, the interpreted events.
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4. Geomorphology and Slip Rate of the Doroud Fault

The use of morphological offsets to determine the long-term slip rate on an active fault
requires datable morphologic features, which were first displaced by the fault motions and
then preserved over the observable displacement [54–56]. We used the satellite image of the
satellite interpretations of the digital elevation model (DEM) at 10 m, SASPlanet satellite
images (http://www.sasgis.ru), and the field observations by reconstructing the satellite
image and measuring in the field; we came to the conclusion that the Doroud Fault has
caused the maximum cumulative horizontal (dextral) offsets in the Pliocene–Quaternary
units of the rivers by ~775 m and ~30 m (Figures 5 and 6). The observed displacements are
associated with the southeastern and middle segments of the Doroud Fault, which ruptured
during the 1909 Silakhor earthquake [16,18,32,48]. Geomorphic evidence, such as dextral
surface ruptures including beheaded gullies (Figure 6c) and shutter ridges (Figure 6d), is
visible within the mezoseismal area of the 1909 earthquake, which demonstrates the fault
zone in this region (Figures 6 and 7) and its relationship to the late Pleistocene–Holocene
activity of the Doroud Fault. However, the surface expression of the strike–slip fault is
poorly exposed in the study area, with only a few possible nominations. These offsets,
ranging from several meters to a kilometer, are observed from southeast to northwest.
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Figure 5. Offset reconstruction and morpho-structural interpretation: (a) The 3D perspective diagram
(vertical exaggeration = 2) of the SE area (see Figure 2 for the location). Digital elevation model
extracted from Aster 15 m. In this area, the Doroud Fault trace located between Quaternary alluvial
and Pliocene piedmont deposits. (b) The present-day situation with three drainages and fault.
The red box indicates the location of the (c). (c) Google Earth image of the right-lateral horizontal
offsets of three rivers. The blue and red arrows indicate the rivers and right-lateral fault mechanism,
respectively. (d) Reconstruction of the rivers to their initial position after back-slip the fault on the
SASPlanet image of ~775 m of the rivers (1 and 2) offsets along the fault trace.

http://www.sasgis.ru
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Figure 6. The Doroud Fault trace with offset reconstruction for drainages in the Quaternary sedi-
ments. The blue line and red arrows show rivers and fault traces, respectively. The red and blue
arrows indicate fault trace and rivers, respectively. The dark box indicate the location of the (b–d).
(a) The topographic map of the central part of the area. Black lines delineate a topographic crest for
calculating the ratio of vertical and horizontal displacement across the fault. (b) Field photograph
of three offset rivers with fault trace within young alluvial. Offsets from left to right are 13 ± 2 m,
20 ± 3 m, and 23 ± 2 m, respectively. (c) SASPlanet image view of the reconstruction of the drainage
to its initial position after back-slip (30 ± 2 m) along the fault trace. (d) Another field photograph of
several offset drainage with fault traces.
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Figure 7. The detailed topographic and field photographs of the geomorphic features along the
Doroud Fault: (a,b) Field photographs of the gullies S1, S2, and S3 (about them, read the text).
The red triangles indicate fault trace. The yellow arrows indicate the location of the gullies. (c) Field
photograph of the ideal gully offset along the Doroud Fault to determine fault slip rate and OSL
sampling site (using GPS (RTK) surveying). The blue line indicates river. (d) The 3-D view of the
digital elevation model (DEM) obtained from the GPS kinematics survey (red arrows are the fault
trace, and green and yellow lines are shifted crest lines within the hanging wall and the footwall,
respectively). (e) The diagram for the calculation of the slip rate of the Doroud Fault. Vertical profiles
along the offset crests’ axes, with estimates of the cumulated vertical component, are shown on the
diagram. The minimum value corresponds to the difference in height between the highest points in
the violet footwall profiles and the lowest points in the orange hanging wall profiles. The maximum
value corresponds to the vertical separations between the projections of the footwall and hanging
wall profiles on the fault (consider a fault plane with a dip of 72◦). Diagram defining the parameters
for the calculation of the rake (R) of the slop. In order to calculate (c): H = horizontal component;
V = vertical component; Vf = vertical component projected along the fault; α = dip of the fault plane
(Cos cˆ = d/v, cˆ + pˆ + bˆ + 90◦ = 180◦, bˆ = 90◦ − cˆ− pˆ, Vf = d/cos bˆ, Rˆ = arctgVf/H, h = cospˆxVf;
α = arctg h/H). (f) Our RTK GPS systems provide digital elevation model (DEM), map, and fault slip rate.

Slip rate studies are landform-based paleoseismic studies, the aim of which is to
calculate a long-term fault slip rate from landforms offset by multiple events. They are
usually reconnaissance studies on poorly known faults and precede trenching studies. Slip
rate studies can be performed at widely varying spatial and temporal scales [5]. These
different sizes of offset features propose an excellent opportunity to better document the
seismic behavior and the occurrence of past large earthquakes on the Doroud Fault. Several
displaced gullies close to the TC trench site (Figure 4) afford an opportunity to establish
the fault slip rate. We document offset terraces, and river channels at three sites using
the resulting high-resolution topographic map allow one to restore the offset channels to
simple linear patterns along the fault, illustrating cumulative dextral offsets along the fault
trace on the order of about 30 m (Figure 6).

It is difficult to determine the long-term slip rate along the Doroud Fault because of
the intense human activity (e.g., agriculture fields and constructions) which has changed
the original geomorphology in many places. However, a few geomorphologic features
can be used to analyze the tectonic activity of the fault. In the central part of the fault,
3 km east of Doroud city, close to the Darbe-Astaneh village, the features have been
displaced by multiple earthquakes. Therefore, the offsets represent the cumulative amounts
of surface movements. We used kinematic GPS (real-time kinematic/GNSS) to obtain
accurate displacement measurements, and in order to obtain the time of sedimentation
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from the gully in Figure 7c, alluvial sediments of the present age consisting of gravel, sand,
and silt were sampled, which were analyzed by the OSL, and the age of 4600 ± 900 was
obtained. The obtained values were used for the calculation of fault parameters and the
preparation of digital elevation models. Our analysis was focused on three shifted crest
lines in the central part of the fault (S1, S2, and S3 in Figure 7a,b). Using the trigonometric
functions Vf = V/sinδ and ρ = artg (Vf/H), where H is the horizontal component, V is
the vertical component, Vf is the vertical component projected along the fault, δ the dip,
and ρ the rake (see Figure 7e) [57], we estimated a rake angle for the slip vector comprised
between 20 and 40 degrees. We constrained the kinematics of the fault at a smaller scale
within its southeastern part. The offset drainages were measured both in the field with
a tape and, on the high-resolution topographic map obtained by a real-time kinematic
(RTK) survey devoted to a systematic survey of offset drainages (Figure 7d), S1 and S2 in
Figure 7a,b have cumulative horizontal offsets of ~22 m and ~14 m and cumulative vertical
offsets of ~14.35 m and ~6.8 m; the cumulative horizontal and vertical offsets of S3 are
~10.5 m (A’B’ in Figure 7d) and ~5.7 m (C’D’ in Figure 7f), respectively (Table 1). In order to
calculate the amount of slip rate, we used the data of S3.

Table 1. The mean of the displacements obtained in the gully area due to Doroud Fault activity.
H(m) = cumulative horizontal displacement; Vmax (m) = cumulative displacement of the slope on
the ground; Vf (m) = displacement of the slope collapse on the fault surface; R (Radian) = rake angle;
NS (m) = cumulative displacement fault slip (net slip).

Number H (m) Vmax (m) Vf (m) R (Radian) NS (m)

1 21.59 6.82 6.48 17 22.58
2 13.94 14.34 13.48 44 19.40
3 10.05 5.92 5.57 29 11.49

In Figure 8, we presented a schematic model of the Doroud Fault, which cuts the
gully in the long fault in S3. We discussed the ages of these geomorphic markers using
OSL dating (Dt1 Post IRSL gully) to derive the slip rate averaged over the late Pleistocene–
Holocene. Based on the formula (Average slip rate = slip distance/slip time), slip rates
were calculated thus [58]:

10.5/4600 ± 900 = 2/28 ± 0.42 mm/yr

5.7/4600 ± 900 = 1.29 ± 0.23 mm/yr
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Figure 8. A schematic model of the measured horizontal and vertical offsets along the Doroud Fault.

The results indicate the horizontal slip rate of the Doroud Fault, in the period of the
last 4600 ± 900 years, is 2.28 ± 0.42 mm/yr (between 2.7–1.86 mm/yr) and the vertical slip
rate is ~1.29 ± 0.23 mm/yr (between 1.52–1.6 mm/yr).

5. Palaeoseismic Trenching along the Doroud Fault

Previous studies related to the analysis of the seismic activity of the Doroud Fault have
been carried out to investigate the pre-shocks and aftershocks of the two major earthquakes
in 1909 (Ms 7.4) and 2006 (Ms 6.1) using Coulomb stress and InSAR data [49]. Investigating
the fault ruptures and seismic gaps in the northern part of the fault [32] indicates the
fault has the ability to have a magnitude 7.1 earthquake. Therefore, the Doroud plain
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(or Silakhor plain) is considered to be highly active in the duration of tectonic activity,
according to seismic catalog data [59–61]. To retrieve the chronology of surface-rupturing
paleoearthquakes, we conducted the first paleoseismological study along the Doroud
Fault at a site called Darbe-Astaneh (Figures 4 and 9). This site was selected based on
geomorphological observations performed from a 3-D model obtained from the GPS (RTK)
surveying and field surveys (Figure 9). The trench was excavated perpendicular to the
general trend of the fault (Figure 9a,b), where our DEM map and topography profile show
a fault scarp (Figure 9c–e).
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Figure 9. The location of the trench in the middle part of the Doroud Fault. Red triangles show
the fault trace. The red triangles indicate fault trace. The red lines indicate the position of the
cross-sections. (a) SASPlanet image of the fault trace and the excavated trench location for the
paleoseismology studies. (b) Field photograph of the fault trace and the excavated trench location.
(c) The 3-D model obtained of the GPS (RTK) surveying of the trench-digging area. (d) Topography
map based on GPS measurements of the fault trace and excavated trench location (red line). (e) Note
the component of apparent vertical movement (30.5 cm) ~4.5 m fault scarp obtained from the detailed
topographical profiles. (f) Field photograph looking west along the fault, at the same time with
excavation within the pond (red arrow), the fault trace marked by well-developed vegetation.
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The Darbe-Astaneh trench was excavated across the fault within the wet pond (Figure 9).
The sag pond’s best depositional environments for preserving paleoearthquake evidence
are relatively low-energy environments where sediments accumulate episodically in thin
strata, separated by weathering profiles, organic soils, or peats. The stratigraphy in the sag
pond is dominated by the continuous quiet-water deposition of finely laminated clayey silt
with some interbeds of well-sorted sand. The depositional environment and the general
absence of bioturbation because of the high groundwater conditions permit the cm-scale
resolution of individual units [5]. The trench strikes N40◦ E and has a length of 30 m,
a depth of 4.5–5 m, and a width of around 1.5 m. Once the trench was excavated, the walls
were cleaned to remove trench smears and gouges created by the backhoe, and field
photographs were shown at the same time as the excavation of the trench (Figure 9f,g).
The excavation exposes a succession of fine-grained, well-bedded layers interbedded
with a few gravelly units. The almost fine-grained deposits are primarily horizontal and
composed of laminated silts, sands, and gravel. Based on the grain size and the location of
trench excavation within the pond, 27 units are defined within the trench. Many potteries
and other artifact fragments were found in the stratigraphic units after careful logging,
including pieces of charcoal, which were collected for radiocarbon C14 analysis (Figure 10),
and the place was determined with sediments containing quartz and feldspar for sampling
and dating by the OSL method (collected from units 2 and top 19 and colluviums wedge C1)
(Table 2). Several faults were highlighted in zones A and B of the trench (Figures 10 and 11),
between meters 1 to 4 and 18 to 22.
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Figure 10. Radiocarbon dates were calibrated by OxCal 4.3.2 calibration program (Bronk Ramsey 2017)
using atmospheric IntCal13 calibration curve (Reimer et al. 2013) (DT1: trench one, C: sample carbon).

Table 2. Values used to calculate luminescence ages (OSL).

Sample ID De (Gy) ± Total (Gy/ka) ± Age (ka)

Dt1 Post IRSL river 14.91042 2.74 3.23 0.08 4.61

Dt1 IRSL 2 231.5025 16.55 3.48 0.09 66.62
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colored dashed line in Logs. Colors allow following the correspondence of the different strati-
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mm to 2 cm), sub-rounded, sub-angular, clay and silt matrix, loose to medium compact, rootlet 

Figure 11. (a) Photomosaic and (b) interpretative log of the western wall of (zones A and B) the
re-occupied archeological trench in Darbe-Astaneh prehistoric site. Event horizons are shown by a
colored dashed line in Logs. Colors allow following the correspondence of the different stratigraphic
units between the 2 zones. Description of Zone A: U1-1′: Cream to light brown, 30% clast (2 mm to
2 cm), sub-rounded, sub-angular, clay and silt matrix, loose to medium compact, rootlet structures,
non-stratify. U2-2′: Light brown, 40% clast (1 mm to 5 cm), rarely 10 cm, some part medium compact,
subrounded, subangular, silt and clay matrix, organic material, non-stratified, non-rootlet structures.
U3-3′: Brown, matrix-supported, non-laminated, 12% clast (2 mm to 10 cm), wet sediment, include
spring in the bottom, include marl and clay lens, organic material, sub-rounded, rootlet structures,
clay matrix. Units in Zone B: U1: This unit corresponds to an undifferentiated Neogene formation
including yellow to green marl deposit, matrix-supported, about 30% clast (2 mm to 3 cm and
rarely up to 7 cm); sub-angular to sub-rounded; poorly sorted; oligomictice; massive and medium
compact; wet with root in some part. U2: Similar unit U1 includes light brown to brown deposit;
matrix-supported; 30% clast (2 mm to 3 cm and rarely up to 23 cm); sub-angular to sub-rounded;
poorly sorted; oligomictice; massive with cracks from losing water, compact matrix; clay and silt as a
matrix with root structures. U3: Dark brown deposit; matrix-supported; 15% clast (2 mm to 2 cm and
rarely up to 10 cm); sub-rounded; poorly sorted; compact matrix; clay and silt as a matrix with root
structures; polymictice; massive; include cracks from losing water; some in unit 1 include organic
material (C14) in some part. U4: Red to dark brown deposit; matrix-supported; 5% clast (2 mm to
2 cm and rarely up to 10 cm); sub-rounded; poorly sorted; compact matrix; clay and silt as a matrix
with root structures; polymictice; massive; include organic material (C14) in some part. U5: Green to
red deposit, 4% clast (2 mm to 3 cm and rarely up to 7 cm); similar to unit 4; include cracks from lost
water; clay and silt matrix, sub-rounded; poorly sorted; compact; clay and silt as a matrix with root
structures; polymictic; massive; some part include organic material (C14) in some part. U6: Green
to light brown deposit; collapse caused to fault spring at the base unit; supported matrix; 2% clast
(2 mm to 1 cm and rarely up to 4 cm to 12 cm on the top at the unit); medium compact; sub-angular;
sub-rounded; poorly sorted. U7: Light brown deposit; massive; matrix-supported; 40% clast (2 mm to
3 cm and rarely up to 8 cm in some parts); sub-angular to sub-rounded; poorly sorted; some organic
material; rootlet structure. U8: Cream to light brown deposit; massive; compact; matrix-supported;
40% clast (2 mm to 3 cm and rarely up to 40 cm); sub-angular to sub-rounded; poorly sorted; some
organic material; rootlet structure; include gravel lines. U9: Gravely lines; green to brown deposit;
massive; grain-supported; clast (2 mm to 4 cm); sub-rounded; sub-angular; medium compact; poorly
sorted. U10: Light brown to green deposit; matrix-supported; clay and silt matrix; clast (2 mm to
1 cm and rarely up to 10 cm); organic material; rootlet structure; medium compact; sub-rounded.
U11: Light brown deposit; grain support; medium compact; 60% clast (3 mm to 4 cm and rarely up to
10 cm); sub-rounded; sub-angular, organic material; rootlet structure; medium sort; clay and silt
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matrix; polymictice. U12: Light brown deposit; compact; 40% clast (2 mm to 3 cm); organic material;
rootlet structure; sub-rounded; sub-angular. U13: Brown deposit; massive; 45% clast (2 mm to 3 cm);
sub-rounded; sub-angular; clay and silt matrix; include organic material (C14); rootlet structure;
oligomictice; poorly sorted. U14: Brown to green deposit; grain support; 70% clast (2 mm to 4 cm and
rarely up to 18 cm); rootlet structure; medium compact; sub-rounded; sub-angular; organic material;
erosion channel or slide. U15: Brown to green deposit; matrix-supported; massive; 15% to 20% clast
(2 mm to 2 cm and rarely up to 8 cm); organic material; clay and silt matrix; sub-rounded; sub-angular;
poorly sorted loose to medium compact at the end trench. U16: Brown to green deposit; grain support;
70% clast (2 mm to 4 cm and rarely up to 18 cm); oligomictice; rootlet structure; medium compact;
sub-rounded; sub-angular; organic material; erosion channel or slide; erosion channel or slide or
fluvial. U16-a: Gray to light brown deposit; grain-supported; 60% clast (2 mm to 5 cm); rootlet
structure; sub-rounded; sub-angular; silt and clay matrix; loose to medium compact; poorly sorted.
U17: Erosion channel or slide with a boulder to 40 cm; 60% clast (2 mm to 5 cm and rarely 8 cm to
40 cm); matrix-supported; silt and clay matrix; massive; loose to medium compact; sub-rounded.
U18: Red to brown deposit; fluvial deposit? Or fan deposit; grain-supported; massive; 75% clast
(1 cm to 6 cm); rootlet structure; sub-rounded; sub-angular; clay and silt matrix; medium compact;
poorly sorted; organic material (include organic material (C14) in some part). U19: Red to brown
deposit, and includes probable fluvial deposit or fan deposit; grain-supported; massive; 75% clast
(1 cm to 6 cm); rootlet structure; sub-rounded; sub-angular; clay and silt matrix; medium compact;
poorly sorted; organic material (include organic material (C14) in some part). U20: Gray to brown
deposit, and composed of fan deposit; grain-supported; 80% clast (2 mm to 6 cm); rootlet structure;
sub-rounded; sub-angular; silt and clay matrix; poorly sorted. U21: Lenses to color brown to gray
deposit; 40% clast (2 mm to 3 cm); rootlet structure; sub-angular; silt and clay matrix; non-lamination;
loose compacted; poorly sorted. U22: Light brown to brown deposit; and composed of fluvial channel
deposits; non-clear stratified; grain-supported; grain-supported at the base; clast (2 mm to 6 cm); 40%
clast at the base; sub-rounded; sub-angular; poorly sorted.

Paleoearthquakes are typically recognized in exposures of strike–slip faults from six
general types of evidence: (1) upward termination of fault displacement, (2) abrupt changes
in the vertical separation of strata as faults are traced upsection or downsection, (3) abrupt
changes in the thickness of strata or of facies across a fault, (4) fissures and sand blows
in the stratigraphic sequence, (5) angular unconformities produced by folding and tilting,
and (6) colluvial wedges shed from small scarps [5]. To decipher the diverse paleoseismic
events, we found evidence 1, 2, 3, and 6 to identify the events in the trench. In our paleoseis-
mological investigation of the trench photomosaic and logs (Figures 11 and 12), the main
fault plane was easily identifiable because the sediments display distinctly different colors
as the hanging wall appears, allowing us to propose at least nine paleo-earthquakes from
the top to base of the trench in two fault zones (Figures 13 and 14). They are named Ev1′

thought Ev9 from youngest to oldest, which can be identified as the event that occurred
between about 1225 and 1275 years and 71 to 61 ka years, respectively (Table 3).
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Figure 13. The back stripping scenario on the eastern wall of the trench (TC). The scenario confirms 
the seismic deformation of the events Ev1 to Ev4 by Doroud Fault activity. The red lines are faults. 
(a) Pre-event 1 and the after-deposit unit 2′. (b) Post-event 1 associated with cutting unit 2. (c) 
Pre-event 2. (d) Post-event 2 is associate with fissure-filled unit. (e) Pre-event 3. (f) Post-event 3 
possibility associated with cutting unit 23. (g) Pre-event 4. (h) Post-event 4 associated with fis-
sure-filled unit 23. 

Figure 13. The back stripping scenario on the eastern wall of the trench (TC). The scenario confirms
the seismic deformation of the events Ev1 to Ev4 by Doroud Fault activity. The red lines are faults.
(a) Pre-event 1 and the after-deposit unit 2′. (b) Post-event 1 associated with cutting unit 2. (c) Pre-
event 2. (d) Post-event 2 is associate with fissure-filled unit. (e) Pre-event 3. (f) Post-event 3 possibility
associated with cutting unit 23. (g) Pre-event 4. (h) Post-event 4 associated with fissure-filled unit 23.
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the seismic deformation of the events Ev5 to Ev9 by Doroud Fault activity. The red lines are faults. 
(a) Pre-event 5. (b) Post-event 5 with faulting and fault scarp formation. (c) Pre-event 6. (d) 
Post-event 6 cutting unit C1 (colluviums wedge). (e) Pre-event 7. (f) Post-event 6 associated with 
cutting unit 4. (g) Pre-event 8. (h) Post-event 8 associated with cutting unit 3. (i) Pre-event 9. (j) 
Post-event 9 associated with cutting unit 2. Read the text for details. 

Figure 14. The back-stripping scenario on the eastern wall of the trench (TC). The scenario confirms
the seismic deformation of the events Ev5 to Ev9 by Doroud Fault activity. The red lines are faults.
(a) Pre-event 5. (b) Post-event 5 with faulting and fault scarp formation. (c) Pre-event 6. (d) Post-event
6 cutting unit C1 (colluviums wedge). (e) Pre-event 7. (f) Post-event 6 associated with cutting unit 4.
(g) Pre-event 8. (h) Post-event 8 associated with cutting unit 3. (i) Pre-event 9. (j) Post-event 9
associated with cutting unit 2. Read the text for details.
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Table 3. Geometrical and seismic parameters of the Doroud Fault (obtained from TC studies).
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I’ Before
1250–1360

Base of
Unit 2 2 3.83 ± 0.10 3.35 ± 0.1 1.76 ± 0.1 11.57 ± 0.1 3.83 ± 0.1 7.55 7.03 7.15 7.03 7.4 49 15 7.3512 1.3127 7.4

II’ Before
1360–3440

Base of
Unit 2 2

Fissure size
similar to

Ev1′
3.35 ± 0.1 1.76 ± 0.1 11.57 ± 0.1 3.83 ± 0.1 7.55 7.03 7.15 7.03 7.4 49 15 7.3512 1.3127 7.4

III After 1560 Base of
Unit 22 22 0.093 ± 0.1 0.14 0.08 ± 1 0.02 ± 0.1 0.19 ± 0.1 6.4 6.03 6.31 6.22 6.33 49 15 7.3512 1.8125 6.1

IV Before
1560–1720

Base of
Unit 22 22

Fissure size
similar to

Ev1
0.16 ± 0.1 0.08 ± 0.1 0.02 ± 0.1 0.19 ± 0.1 6.4 6.03 6.31 6.22 6.33 49 15 7.3512 1.8125 6.1

V Before
1720–2385

Base of
Unit 16-a 16-a 0.194 ± 0.10 0.34 ± 0.1 0.18 ± 0.1 0.12 ± 0.1 0.4 ± 0.1 6.68 6.26 6.5 6.39 6.6 49 15 7.3512 4.6325 6.6

VI Before
2385–3235 Base of C1 C1 - - - - - - - ? ? ? ? 15 ? ? ?

VII Before
3235–8375

Base of
Unit 4 4 1.04 ± 0.10 1.87 ± 0.1 0.98 ± 0.1 3.61 ± 0.1 2.14 ± 0.1 7.33 6.84 6.99 6.85 7.2 49 15 7.3512 1.3127 7.2

VIII Before8375–
66620

Base of
Unit 3 3 0.63 ± 0.10 1.13 ± 0.1 0.59 ± 0.1 1.31 1.29 ± 0.1 7.13 6.68 6.85 6.71 7.02 49 15 7.3512 3.1626 7

IX Before
66620

Base of
Unit 2 2 0.5 ± 0.10 0.9 ± 0.1 0.47 ± 0.1 0.84 ± 0.1 1.03 ± 0.1 7.05 6.6 6.78 6.59 6.94 49 15 7.3512 2.1226 6.9

The quantities derived from measurements on three trenches and their restored logs. V means vertical separation; Ds, dip slip = (V.Sin–1δ); Ss, strike slip; Sn, net slip = (Ds2 + Ss2)0.5;
pitch or rake equals Arc Cos (Ss/Sn); L, rupture length; D, focal depth; A, rupture Area = L × F; Mw, energy magnitude or moment magnitude that equals 2/3 LogMo

g–10.7, where the
seismic or geologic moment equals µ × A × Sn, and here is the shear or rigidity module = 3 × 1011 (dyne/cm2). E.g.Mo

g = 3 × 1011 (dyne/cm2) × (49 × 105 (cm) × 15 × 105 (cm) ×
0.21× 102 (cm) = 4.63 × 1025 (dyne cm); Mw = 2/3Log4.63 × 1025–10.7 = 6.41.
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The parameters related to the activity of the fault on the surface and subsurface
calculated applying empirical relationships (Equations (1)–(6)) for strike–slip faults are
listed in Table 4.

Table 4. Parameter survey results for AD, SRL, RLD, RW, RA, and u using equations (Equations (1)–(6)).

Event Mw AD (m) [59–62] SRL (km) RLD (km) RW (km) RA (km2) U (m)

I’, II’ 7.4 2.35 70.79 ± 0.21 95 ± 0.7 29.5 ± 0.35 2137 ± 10 0.74

III, IV 6.1 0.089 12.88 ± 0.21 14 ± 0.7 7.9 ± 0.35 117 ± 10 0.71

V, VI 6.6 0.19 19.49 ± 0.21 22 ± 0.7 10.96 ± 0.35 234 ± 10 0.72

VII 7.2 1.65 61.65 ± 0.21 81 ± 0.7 25.7 ± 0.35 1479 ± 10 0.74

VIII 7 0.81 41.68 ± 0.21 53 ± 0.7 19.05 ± 0.35 870 ± 10 0.73

IX 6.9 0.54 33.88 ± 0.21 41 ± 0.7 16.21 ± 0.35 602 ± 10 0.73

Average displacement (m) [62]

M = 7.04 ± (0.05) + 0.89 ± (0.09) × log (AD) (1)

Surface rupture length (km) [63]

Mw = a × log (L) + b, a = 1.67, b = 4.24 (2)

Rupture area (km2) [62,64]

M = 3.98 ± (0.07) + 1.02 ± (0.03) × log (RA) (3)

Subsurface rupture length (km) [62]

M = 4.33 ± (0.06) + 1.49 ± (0.05) × log (RLD) (4)

Subsurface rupture width (km) [62]

M = 3.8 ± (017) + 2.59 ± (0.18) × log (RW) (5)

Maximum slip (m) [65]

Log (u) = 4.38 + 1.49 × log (Ls) (6)

M: Magnitude, normally Mw or equivalent, Mw: Moment magnitude (Mw = 2/3 log
M0 − 10.07), [66] L: Fault rupture length (km), a and b: Coefficients and standard error, RA:
Rupture Area (km2), RLD: Subsurface rupture length (km), RW: Subsurface rupture width
(km), u: Maximum slip, Ls: surface rupture length.

While our study focused on the transtenstive Doroud Fault in the Zagros region, we ac-
knowledge that blind faulting may also play a role in the partitioning and accommodation
of plate movement in the area. Blind faults are faults that do not reach the surface, and their
existence and activity can be difficult to detect without direct geological or geophysical
evidence. In some cases, blind faults can contribute significantly to the total slip rate and
seismic hazard of a region.

In the Zagros region, blind faults have been identified and studied in some areas,
and their potential impact on seismic hazard and tectonic deformation has been discussed
in previous research. However, the exact extent and significance of blind faulting in our
study area are not well-known, and further investigation would be necessary to fully
understand its role in the tectonic evolution of the region.

While our study did not explicitly consider the impact of blind faulting, we acknowl-
edge that it could be an interesting topic for further investigation, particularly in relation
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to the partitioning and accommodation of plate movement among different structures.
We believe that this point should be discussed in our manuscript to provide a more com-
prehensive context for our study and to highlight the potential avenues for future research
in the area.

The recognition of the most recent earthquake event (Ev1′) is based on three indepen-
dent lines of evidence. First, we have the abrupt upward terminations of two fault strands
(F1′ and F4′), capped by the most recent pond deposit, in Log fault zone A (latest event)
(Figure 13a,b). These faults are younger than 25 ± 1250 Cal BP, the age obtained for sample
DT1-C10 collected in Unit 2. However, note that the base of unit 2 is displaced 6 ± 180 cm
along the faults (F1′ and F4′); it may be a cumulative clastic deposited by different events,
hence the fault units 1-1′ and 1-2′ cutting and fault strands at the base of unit 1-2′. These
two fault strands, one near 0′ meter and the other near 3′ meter, and the event horizon
are at the base of unit 2. which is overlain by units 3 and 4 (Figure 15a,b). This event
occurred after the deposition of units 1-2. Therefore, using the parameters of the fault
plane (Table 3), the magnitude of the earthquake that caused this event (according to [51])
is obtained as Mw~7.4 (Tables 4 and 5). In earthquake rupture, the average length of the
surface rupture and the average subsurface length were 79.79 and 87.09 km, respectively;
the average width of the subsurface rupture was 29.5 km, the average area of the rupture
was 2137 km2, and the average slip was 0.74 m (according to [51]).
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Figure 15. Evidence for the Ev1 and Ev2 events from the fault zone A (a,b), and evidence for the
Ev3, Ev4, Ev5, and Ev6 events from the fault zone B (c,d). (a,b) Close-ups showing photomosaic and
interpretative sketch of the fault strands near meters 3′ and (1′-0′) offsetting units 1 and the fissure
filled by unit 2, as well as the older event horizon (dashed lines gray and blue), which abruptly
terminates upward at the base of the most recent undisturbed deposits (unit 2). (c,d) Close-ups
showing photomosaic and interpretative sketch of the fault F2 probable cutoff unit 23, fissure-filled
colluviums unit 22, cutting colluviums wedge by fault F2 and rupturing along F2, and scarp formation
near meters 19–20, as well as the event horizons (dashed lines blue, light gray, and dark).
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Table 5. The seismic catalog of the Doroud Fault correlated by results of paleoseismology. Historical
and instrumental data for earthquakes with magnitude more than MW > 5.5.

Mw Time Number

6.1 2006.03.31 1
7.4 1909.01.23 2
7.4 740 ± 37 AD 3
7.4 654 ± 9 AD 4
6.1 488 ± 42 AD 5
6.6 488 < EQ < 3158 AD 6
- 1497 ± 28 < EQ < 470 ± 53 BC 7
7.2 7448 ± 57 BC < EQ < 1497 ± 28 BC 8
7 EQ > 7448 ± 57 BC 9
? EQ > 16019 BC 10
? 20186 < EQ < 16019 BC 11
6.8 EQ > 66620 BC 12

The recognition of a second paleoearthquake is located in Log fault zone A, a fissure
fill localized at the base of units 1-2′, and shows the occurrence of an earthquake before
the deposition of units 1-2′ (Figure 13c,d). This event is well-characterized by two faults
F2′ and F3′, which are younger than 1360 ± 35 BP, which is the age obtained for sample
DT1-C9 collected in unit 1-1′; therefore, this event postdates 1360 ± 35 BP and predates
3440 ± 25 Cal BP. The event horizon of this event is the base unit 1-2′ (Figure 15a,b); the
earthquake magnitude of this event and other parameters related to the seismic activity of
the fault is similar to the event Ev1′ , which is given in Figure 10.

A third event, Log fault zone B, can be interpreted along the fault F2 ruptured unit
22. This event occurred after the deposition of unit 22, which affected the youngest-dating
unit 22. Hence, it postdates 1560 ± 255 Cal BP. This fault is younger than 3976 ± 152 cal BP,
the age obtained for sample number DT1-C4, collected from unit 22 (Figure 10). Therefore,
the event horizon of this event is the base of units 22 and 21 (Figure 13e (post-event),
f (pre-event) and Figure 15c,d). The calculated moment magnitude is Mw ~6.1 (Table 3).

The fourth event is identified with faults F4, F9, and F10, a tiny fracture in Log fault
zone B. This event can be interpreted along fault F4 and the fissure filled with sedimentary
deposits of unit 22 and the faults F10 and F9, the abrupt upward terminations of two fault
strands sealed by the surface soil of this fissure with the maximum depth and width, which
are 34 cm and 7.27 cm, respectively (Figure 13h). These faults and fractures are younger
than 1720 ± 30 Cal BP, which is the age obtained for sample DT1-C7 collected in unit 16-a.
The event horizon of this event is the base of the 16-a unit (Figure 15c,d). Moreover, this
event indicates the occurrence of an earthquake after the time of the deposited unit 16-a
(Figure 13g (post-event), h (pre-event)). The calculated moment magnitude is Mw ~6.1
(Table 3), and the average surface and average subsurface rupturing lengths were 12.88 and
14 km, respectively. The average subsurface rupture width was 7.9 km, the rupture area
was 117 km2, and the average slip was 0.71 m (according to [51]) (Table 4).

The fifth event can be interpreted with the cutting units 4 and C1 and rupturing along
F2 (Figure 14a (post-event), b (pre-event)) in Log fault zone B. The event horizon of this
event is the base of unit 22. This event occurred after the deposition of unit C1. Hence,
it postdates 2385 ± 35 Cal BP, the age obtained for sample DT1-C6 collected in unit C1,
and predates 1720 ± 30 Cal BP, which is the age obtained for sample DT1-C7 collected in
unit 16-a (Figure 10) (Figure 15c,d). Its calculated moment magnitude is Mw~6.6 (Table 3).
Moreover, the average surface and average subsurface rupture lengths were 19.49 and
22 km, respectively, the average subsurface rupture width and average rupture area were
10.96 km and 234 km2, and the average slip was 0.72 m (according to [51,58,59] (Table 4).

The sixth event was identified with colluvial wedge unit C1 in Log fault zone B, which
overlies and has eroded into the underlying units 1, 2, 3, and 4, as a colluvial wedge
developed following a surface rupture in Event 6. Unit 4 is cut by fault F2. The colluvial
wedge deposits resulting from the degradation of a fault scarp erosion which formed as a
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result of the normal component of the F2 fault (Figure 14c (post-event) and d (pre-event));
therefore, the deposits of wedge C1 are the result of the erosion and sedimentation of a
mixture of units 4 and 16-a indicating the earthquake occurrence before the deposited
unit C1 and after unit 4 (Figure 15c,d). We evaluated the maximum wedge thickness of
21.74 cm, which shows a vertical displacement of 19.43 cm at the top of unit 4 (Table 3).
The event horizon of this event is the base of the C1 unit. This event occurred after the
deposition of unit 4, which is a colluvial wedge sample DT1-C6, dated 2385 ± 35 Cal BP.
Hence, it postdates 2385 ± 35 Cal BP (Figure 10). The seventh event is identified with
faults F1, F2, F3, and F4 in Log fault zone B; the faults affect units younger than unit 4.
These faults are younger than 3235 ± 25 Cal BP, which is the age obtained for sample
DT1-C5 collected in unit 4 (Figure 14e (post-event) and f (pre-event)). This event occurred
after the deposition of unit 4; hence, it postdates 3235 ± 25 Cal BP (Figure 10). Several
distinct abruptly terminating upward fault strands, with the most demonstrative ones
observed between 18 and 20 m, provide evidence for event Ev7 (Figure 16a,b). The faults
F1, F2, F3, and F4 cut through unit 4 and abruptly terminate at the base of unit 16-a. Unit
4 is associated with average vertical displacements along the faults F1, F2, F3, and F4 with
a range of 100 ± 4 cm (Table 3). The event horizon has therefore been set at the base of
unit 4. The calculated moment magnitude is Mw ~7.2 (according to [51]) (Tables 4 and 5),
and other calculated seismic parameters are given in Table 4.

The eighth event is evidence of faults abruptly terminating upward and cutting units
along the faults in Log fault zone B. This event was found only in the southwestern part of
zone B and well-characterized by the abruptly terminating upward fault F11 at the base
of units 3 and F10, cutting through the lower units 3, 2, and 1 (Figure 14g (post-event)
and h (pre-event)). Unit 3 is associated with vertical displacements along the F10 that
are about 60 ± 3 cm (at the base of unit 3) (Table 3). Therefore, the event horizon of the
seven paleoearthquakes is set at the base of unit 3 (Figure 16c,d). This event occurred
after the deposition of unit 3; hence, it was younger than 8375 ± 35 Cal BP, which is the
age obtained for sample DT1-C20 collected in unit 3 (Figure 10). Using the fault plane
parameters (Table 3) and the same equation linking them to the earthquake magnitude
obtains Mw ~7, according to [51] (Table 4), and other calculated seismic parameters are
given in Table 4.

The ninth event is indicated by unit 2 being offset by faulting in Log fault zone B.
This event can be interpreted as a fault termination, with the fault F5 cutting through unit
2 and faults F6, F7, and F8 abruptly terminating upward at the base of unit 2. This event is
associated with vertical displacements in unit 2 along the F5, which was calculated to be
an average of 50 ± 0.1 cm (at the bottom of unit 2) (Table 3) (Figure 14i (post-event) and
Figure 14j (pre-event)). Therefore, the event horizon is set at the base of unit 2 (Figure 15c,d).
This event occurred after the deposition of unit 2. Hence, it is younger than 66.62 ± 5 ka,
which is the age obtained for sample Dt1 IRSL 2 collected in the middle of unit 2 (Table 2).
Using the fault plane parameter Tables 4 and 5 and the same equation linking them to the
earthquake magnitude obtains Mw~6.8 (according to [51]) (Table 3).
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Figure 16. The evidence for the Ev6 event (a,b) and the Ev8 and Ev9 events from the fault zone B
(c,d). (a,b) Close-ups showing photomosaic and interpretative sketch of the fault F1 and F3 strands
near meters 19 and offsetting units 4, as well as the event horizon (dashed line green), which abruptly
terminates upward at the base of the most recent undisturbed deposits (units 16-a and 4). (c,d) Close-
ups showing photomosaic and interpretative sketch faults F5, F6, F7, F8, F9, F10, and F11 strands
near meters 20 and 21 and offsetting units 3 and 2, as well as the event horizons (dashed lines red
and gray for base units 3 and 2) which abruptly terminate upward at the base of the most recent
undisturbed deposits (units 3 and 2).
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6. Discussion

The geomorphologic features of the strike–slip fault system along the MRF zone and
their effects on the outcrop patterns of lithological units, rivers, and gullies show the recent
right-lateral strike–slip motion and activity of the MRF. Active tectonics of this fault have
also caused large earthquakes. Considering recent activities along the DF, as described
above, it is important to conduct an accurate evaluation of the slip rate and offset on this
active fault; regarding the geological markers, rivers, and gullies, the maximum offset on
the DF is about 775 m, which may be observed as a right-lateral motion displacement of the
river in south Bagh-Lotfian in the southern segment of DF. However, there is clear morpho-
tectonic evidence related to the late Pleistocene–Holocene activity of the Doroud Fault on
satellite images. So far, many studies have been carried out to estimate the slip rate on the
Main Recent Fault: Talebian and Jackson [30] and Walpersdorf et al. [67] suggested 10–17
and 4–6 mm/yr, respectively; Bachmanov et al. [68] 10 mm/yr; Copley and Jackson [69]
and Vernant et al. [25] 2–5 and 3 mm/yr slip rate, respectively; Authemayou et al. [70]
3.5–12.5 mm/yr; Nankali [71], using GPS velocities, expanded a three-dimensional mechan-
ical model containing pre-existing faults with frictional properties and suggested a long-
term slip rate for the MRF (~2.3 mm/yr); and Alipoor et al. [59] estimated 1.6–3.2 mm/yr.
Our work is the first slip rate study along the Doroud Fault. To determine the slip rate in the
middle segment of the Doroud Fault, GPS RTK data were utilized (discussed in Section 4).
We conclude that the average cumulative dextral offset, horizontal and vertical, on the
Doroud Fault are about 10.5 m and 5.7 m, respectively, leading to a slip rate, horizontal and
vertical, of about 2.28 ± 0.42 mm/yr and 1.29 ± 0.23 mm/yr, respectively.

Our work is the first paleoseismological study along the Doroud Fault. The Darbe-
Astaneh trench site is located near the epicenter of the 1909 earthquake with the mapped
rupture (Figure 4). This site was selected based on remote sensing and field observations
for its relatively high sedimentary potential. It delivered well-expressed surface defor-
mation and adequate deposits for age determinations. This paleoseismic investigation
along the Doroud Fault demonstrates the occurrence of several large, infrequent, and ir-
regular earthquakes. Indeed, in our trench, nine paleoearthquakes were identified; the
fault hosted at least eight large (Mw ~5.5) earthquakes within the last 8375 ± 35 Cal BP,
and one older earthquake probably before some 66.62 ± 5 ka, and the youngest occurred
at 1250 ± 25 Cal BP. Indeed, the fault hosted four earthquakes of more than Mw ~7 and
four of more than Mw ~6 within the last 66.62 ± 5 ka. The occurrence of seven seismic
events within a short time interval may indicate that the seismic behavior of the Doroud
Fault can be characterized by the clustering of earthquakes. Figure 17 is a time diagram
that summarizes the observations from our trenching studies. The occurrences of seven
large earthquakes during the last ~3.3 ka, with a magnitude of more than an Mw which can
be attributed to ~6, suggest that the Doroud Fault could be characterized by a clustering
of events (A). The two oldest events of the nine events identified occurred at 8350 ± 35
to 66.62 ± 5 ka, respectively, in the absence of macroseismic activity in the time interval
between 3260 Cal BP to 8350 Cal BP, and in the time interval between 8350 Cal BP and
66 ka, two seismic gaps are observed, which can be attributed to a high rate of erosion,
sedimentation, or unconformity. In paleoseismology, the non-preservation of sedimentary
records is a recognized issue that can affect the identification of seismic events. Seismic
gaps identified in our study may be due to the non-preservation of sedimentary layers
that would have recorded the event rather than the absence of seismic activity. However,
our results still demonstrate a bimodal behavior of seismic activity in the area, as illustrated
in Figure 17, which shows a higher frequency of seismic events during the recent interval
and a lower frequency of events during the past interval.
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of the events identified for fault zone A and the black bracket associated with fault zone B. The vertical
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the temporal constraints on the timing of earthquakes based on trenching studies.

To account for the potential impact of non-preservation on our results, we carefully
examined the sedimentary records from the intervals we studied, and we found no evi-
dence of seismic activity during those periods. While non-preservation may still bias our
interpretation of the seismic gaps, our results remain significant as they demonstrate a
clear difference in the frequency of seismic activity between the two intervals. We acknowl-
edge the limitations of our study due to non-preservation and encourage future studies
to account for this issue by carefully examining the sedimentary record and considering
alternative methods of seismic event identification.

From the youngest paleoearthquake related to fault zone A with the age of 1250 ± 25 BP
(calendar year BP) to the 1909 earthquake, which is about 700 ± 37 years old, according to
paleoseismic results and historical earthquakes from the Berberian book [12], an earthquake
with even Mw~5.5 has not been reported along the Doroud Fault, so in the 14th to 20th
centuries, the Doroud Fault had no seismic activity, while other segments of the MRF
had seen seismic activity. Therefore, seismic migration occurred from the southeast to the
northwest. There is evidence of this migration of a cluster of events destroying Dinor in
913.08.07 and 1008.04.27: 34.61 N–47.50 E, Ms~7 and time: night/Sunday, and 1107.08.22,
center: 34.60 N–47.50 N, leaving a twentieth-century seismic gap to the southeastern part
of the Nahavand segment, which itself was ruptured during the 1316.01.05, center: 34.08 N–
48.40 E and Ms~6.5 earthquake [62]. Then, during the twentieth century, the 1909.01.23,
center: 33.38 N–49.28 E, UTC: 02:48, with Mw~7.4 Silakhor earthquake along the Doroud
segment of the Zagros Main Recent Fault was followed by the 2006.03.31, Mw~6.1, UTC:
01:01cent: UTC: 33.58 N–48.79 E 23 January 1909 Mw 7.4 31 March 2006 Mw 6.1 Chalanchu-
lan earthquake; the latter filled the gap left on the northwestern segment of the Doroud
segment by the 1909 event. The two major events in 1909 and 2006 on the Doroud Fault
in a time interval of approximately 100 years indicates the beginning of a new seismic
cluster. According to the obtained results, the seismic behavior of the Doroud Fault is a
cluster, and the recurrence interval of this behavior is about 700 ± 37 years obtained using
historical and instrumental earthquakes (Figure 17). Using paleoseismic and seismic data
can suggest an almost complete seismic catalog for events with a magnitude greater than
6 for the Doroud Fault (Figure 18 and Table 5). However, the geometrical, kinematical,
and seismic behavior characteristics of the Doroud Fault show that this fault has the ability
to create earthquakes with Mw~7.4 and surface ruptures.
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represents a centroid depth from 8 km; 1987 is the CMT solution from Harvard; the 2006 earthquake
with a centroid depth of 6 km is from [49]. The early fault plane solutions were based on the in-print
short-period polarities, and it is not probable to evaluate the consistency of these early solutions.
The figure is modified after [19].

7. Conclusions

Our analysis of the Doroud Fault in southwest Zagros has produced new insights into
its activity; in general, the fault is a hidden strike–slip, which also provides the first estimate
of the slip rate on the Doroud Fault and suggests that large earthquakes (6.6 ≥Mw ≥ 7.4)
have occurred along this fault in the past as a result of its activity. Minimum and maximum
horizontal slip rates of 1.82 and 2.71 mm/yr and minimum and maximum vertical slip
rates of 1.53 and 1.03 mm/yr for the past 4600 ± 900 BP are estimated. The fault’s relatively
high slip rate indicates its significance in accommodating dextral displacement and crustal
shortening. Trenching investigations along the Doroud Fault indicate approximately nine
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paleoearthquakes that may have occurred in the last 66.62 ± 5 ka years. We estimate that,
from the results of paleoseismology, the average recurrence interval of earthquakes with a
magnitude greater than 5.5 is ~104 ± 7 yr. Considering the earthquake that occurred in
2006, the next quake is expected to occur within the next ~90 years up to the first decades
of the 22nd century AD. According to paleoseismology studies, the Doroud Fault has the
seismic capability to cause earthquakes with a magnitude of more than 7.4 and a total
slip rate of about 3.83 ± 0.1 m, and another earthquake magnitude and slip rate are listed
in Table 3. An extensive surface rupture with an approximate length of 45 km has been
predicted to result from large earthquakes on the Doroud Fault.
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