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Abstract: This paper aims at investigating powertrain behaviour, especially in transient dynamic
responses, using a nonlinear truck vehicle dynamic model with a parallel hybrid configuration. A
power split control was designed to achieve the desired drivability performance, with a focus on
NOx emissions. The controller was characterized by high-level model-based logic used to elaborate
the total powertrain torque required, and a low-level allocation strategy for splitting power between
the engine and the electric motor. The final task was to enhance vehicle drivability based on driver
requests, with the goal of reducing—in a hybrid configuration—transient diesel engine emissions
when compared to a conventional pure thermal engine powertrain. Different parameters were
investigated for the assessment of powertrain performance, in terms of external input disturbance
rejection and NOx emissions reduction. The investigation of torque allocation performance was
limited to the simulation of a Tip-in manoeuvre, which showed a satisfying trade-off between vehicle
drivability and transient emissions.

Keywords: parallel hybrid truck vehicle model; NOx emissions; torque allocation control logic;
phlegmatization; drivability and emission trade-off

1. Introduction

In recent years, an ever-increasing number of researchers have focused their efforts on
the substantial challenge of powertrain electrification in an attempt to deal with new gov-
ernment requirements that aim at reducing pollutant emissions and fuel consumption [1].
In this context, the Research and Development (R&D) departments of several automobile
companies are engaged in the development of innovative powertrain solutions to replace
vehicles with fuel motorization. A slow and progressive transition from internal combus-
tion engine vehicles (ICEVs) to zero emissions vehicles (ZEVs), battery electric vehicles
(BEVs), and fuel cell electric vehicles (FCEVs) is occurring, along with the development of
hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs).

As proposed in [2], several possible topological architectures can be implemented in
HEVs, where two or more sources of power/energy are combined to achieve the required
power necessary to propel the vehicle. HEV vehicles combine the ICE power with an
electric traction motor, which is powered by an energy storage device generally known as
battery pack. The most common configurations adopted to couple different power sources
can be summarized as parallel hybrid [3], series hybrid [4] or combined series–parallel
architectures, with a mechanical power-split [5–8] or innovative magnetic split [9]. Dif-
ferent control strategies have been investigated and proposed to achieve optimal energy
management [10] between different power sources. HEVs combine the advantages of
electric motor drives—having quick acceleration—with good ICE performance at constant
speeds. On the other hand, vehicle drivability [11] is highly affected, as during rapid
torque transients—due to drivers’ abrupt accelerations—noise and vibrations [12] can
occur during engine start/stop conditions [13] in mild hybrid electric vehicles.
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Besides this aspect, sudden driver torque requests can generate an increase in NOx
emissions, as investigated in [14] during tip-in/tip-out manoeuvres. Hence, control
strategies should act in a multiphysics way, also considering—besides optimal energy
management—NOx and CO2 emissions [15] and, more generally, the reduction of pollutant
emissions into the environment [16].

The aim of this paper is to address the topics of both drivability enhancement and the
reduction of pollutant emissions; thus, the development of a vehicle model that is able to
predict and highlight all these aspects is required—as carried out in [17], where Gear Shift
Patterns were optimized to fulfil multiple constraints in terms of customer requirements
such as drivability, NVH performance, emissions, and fuel consumption. These last two
aspects were considered in [18] to evaluate fuel savings and NOx benefits when predictive
control is applied to a mild hybrid truck, using dynamic programming with backtracking.
Conversely, [19] proposed a novel real-time Energy Management Strategy (EMS) that was
integrated with a model to use physical considerations to estimate energy consumption
during gearshifts in Dual-Clutch Transmissions (DCT).

The development of a transmission model with a high level of accuracy is necessary to
describe the dynamic behaviour of the whole system well, although its complexity can be
reduced with appropriate simplifications—as carried out in [20] with a hybrid model of a ve-
hicle driveline that was partially lumped and partially distributed to investigate vibrational
phenomena inside the transmissions known as “shuffle” and “clonk”. A methodology
for the evaluation of clunking noises during gearshifts was also proposed in [21] using a
nonlinear lumped parameter model of DCT, developed in an Amesim environment, while a
Matlab/Simulink environment was adopted in [22] for the evaluation of NVH performance
in the DCT transmission of a C-segment passenger car. Coming back to hybrid vehicles,
mathematical models of both conventional and mild hybrid powertrain were developed
in [23] through the integration of a conventional manual transmission-equipped powertrain
and an electric motor as a secondary power source, in order to study the performance
of partial power-on gear shifts through the implementation of torque hole-filling by the
electric motor during gearshifts.

Besides the modelling of mechanical components, an appropriate tyre model can
have relevant effects on simulated dynamics, as they have also a considerable influence on
damping effects inside the powertrain. [24] demonstrated, using appropriate identification
techniques aimed at describing tyre torsional dynamics in the frequency range 10–50 Hz,
that damping is more accurately represented if modelled as hysteretic and not as viscous
when the tyre load is low. Conversely, [25] proposed three different tyre models, e.g.,
modelled as a simple torsional spring, adopting a linear slip model, or assuming a fixed
relaxation length; these last two models introduced nonlinearity, as an instantaneous slip
ratio was considered. The relaxation length was estimated from the steady state tyre
properties in [26] and included wheel load and slip dependencies. The adoption of this
parameter is necessary for the description of interactions between tyres and roads, as all
the other chassis components influence vehicle dynamic properties through tyre contact
forces and torques.

A lumped LuGre tyre ground contact model was modelled in [27] and in [28], where
the developed dynamic friction tyre model was able to accurately capture the transient
behaviour of the friction force observed during transitions between braking and acceleration
phases. Other researchers have instead used software for tyre dynamics to compute the
forces acting on the tyre and hence on the steel wheel for other purposes, such as fatigue
assessment [29].

The parallel mild hybrid architecture of a heavy commercial vehicle developed for
this research study is similar to the one adopted in [30], but with the improvement of
implementing three different control strategies for the direct control of vehicle acceleration,
vehicle speed control, and torque control, with superposed active damping of drive train
oscillations. The torque distribution between the two power sources is managed as a
different task from the regulation task (oscillation damping), adopting a specific control
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algorithm that does not require the implementation of an optimisation problem. Moreover,
as regards the linear model used for the design of the controller, an accurate tyre model
with a fixed relaxation length is adopted—thus decoupling the kinematic behaviour of the
driving rear tyres from the free rolling condition, as carried out in [25].

The developed model should also be able to reduce drivetrain vibrations; different
works addressing this aim can be found in literature. In [31], a control for vibration
reduction was developed for hybrid vehicles and experimentally validated, with two
different controllers that reduced both the vibrations due to engine torque ripple and ones
related to the driveline. Conversely, the root locus technique [32] has been adopted for anti-
jerk control designs capable of preserving the driveline from oscillations. To improve NVH
performance, a magnetic differential for vehicle drivetrains was developed in [33], while a
controller for driving the engine—in order to actively damp driveline oscillations—was
proposed in [34] to improve drivability and passenger comfort.

The present paper aims to propose an accurate nonlinear vehicle model and a model-
based torque allocation control to achieve both improved vehicle drivability and pollutant
emissions performance. The controller is designed in two steps with different aims: high-
level logic was used in order to aim at providing a total powertrain torque able to satisfy the
desired drivability performance in terms of longitudinal acceleration dynamics, through
the integration of a direct feedforward term with a feedback contribution designed based
on the Linear Quadratic Regulator (LQR) theory [35–37]; meanwhile, the low-level control
allocation is designed to split the torque between the engine and the electric motor for
emissions reduction purposes. The main contribution of the paper is to:

• propose a nonlinear dynamic model that considers the main vehicle nonlinearities, e.g.,
the elastic and damping behaviour of the torsional damper and the transient model
of the tyres’ dynamics—thus representing a reference model for vehicle performance
assessment and torque controller validation;

• show the benefits introduced by the proposed controller in terms of dynamic perfor-
mance, driveline oscillations, and NOx emissions;

• test the controller’s robustness against the presence of unpredictable external inputs,
e.g., a sudden road slope.

The paper is organised as follows: in Section 2 the nonlinear truck model—developed
in a Matlab/Simulink environment—is shown and its characteristic dynamic equations
are described, while in Section 3, the torque allocation control—based on the driver’s
intentions—is designed to reduce driveline oscillations and improve emissions performance.
In Section 4, the controller performance is investigated to analyse the dynamic response of
the powertrain and to evaluate the reduction of engine emissions. Finally, the conclusions
of the work are discussed in Section 5.

2. Hybrid Vehicle Powertrain Layout

In this paper, a P0 mild parallel hybrid electric powertrain with a diesel engine
was adopted. In this system architecture, better known as a belted alternator starter
(BAS) [38,39], the internal combustion engine (ICE) and the electric motor (EM) are com-
bined by means of a belt and work together to supply the necessary power to the vehicle.
The EM is not able to propel the vehicle by itself; hence, it helps the ICE when extra power
is required, behaving as a power booster [10]. With this configuration, an efficient engine
start/stop functionality was ensured as well as the storage of energy in the battery during
regenerative braking. Then, the power unit system was connected to the wheels through a
gearbox and a differential.

The implementation of a parallel mild hybrid allowed us to benefit from the relevant
advantages of the cooperation of EM and ICE, such as emissions reductions in case of slower
transient behaviour in the ICE—better known as phlegmatization [40]—while the EM
covered possible aggressive driver torque requests thanks to its high bandwidth—typical
of electrical machines.
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2.1. Matlab/Simulink Nonlinear Truck Model

The truck, shown in Figure 1, was modelled by means of a block-oriented approach [41,42],
using a customized library of driveline components and adopting a user-friendly graphical
interface—as shown in Figure 2. For each system component, it is necessary to define the
dynamic laws by means of mechanical equilibrium principles, defining dynamic constants
and constraints, and imposing the initial conditions. The input/output quantities of each
component depend on the component topology. The Simulink model was grouped into
subsystems, i.e., the engine, clutch damper, gearbox, differential, and wheels (2 driving and
2 driven), and a longitudinal truck vehicle model with longitudinal load transfer computation.
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Moreover, the model included the bi-linear elastic and damping behaviour of the tor-
sional damper, the linear characteristic of the left and right-half shafts, a transient, nonlinear
model for the tyres, and a Pacejka magic formulation [43] for road–tyre interactions.

Inside both the front and rear-tyre Simulink blocks, a wheel sensor was modelled, in
order to apply a time delay and the effects of signal quantization to the simulated-wheel
angular speed signal, to better reproduce experimental conditions.
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2.2. Dynamic Equations

All the dynamic equations reported in this section are written in agreement with the
free body diagrams of the drivetrain components and of the vehicle, which are reported
in Figure 3.
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2.2.1. Power Source: ICE and EM

In the parallel hybrid configuration analysed, the ICE and the electric motor were
connected by means of a belt, with a certain transmission ratio τb = ωEM/ωICE; hence, the
total driving torque Te, assuming 100% belt transmission efficiency, is given by:

Te = TICE + TEM τb (1)

The maximum torque of both the ICE and EM are reported in Figure 4. It is evi-
dent that the EM characteristic is symmetrical with respect to zero in case of traction or
regenerative braking.
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Figure 4. Torque characteristics of ICE and EM.

The acceleration of the engine
..
θe was obtained from the equilibrium between the

driving torque Te, and the resistive torque of the primary shaft Tp, according to:
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..
θe =

Te − Tp

Je
(2)

where Je is the equivalent moment of inertia of the power source, so it depends on the ICE
and EM inertias, which are related by the transmission ratio of the belted system as follows:

Je = JICE + JEM τ2
b (3)

2.2.2. Transmission: From Clutch Damper to Differential

The torque at the primary shaft Tp was obtained from the bi-linear clutch damper
behaviour—whose nonlinear characteristics are reported in Figure 5—according to Equation (4):

Tp = Tcd = kcd
(
θe − θp

)
+ ccd(

.
θe −

.
θp) (4)

where kcd and ccd are the torsional stiffness and the torsional damping of the clutch
damper, respectively.
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The angular speed of the gearbox primary shaft
.
θp is related to the secondary shaft

angular speed
.
θs by the kinematic relationship:

.
θp =

.
θs τd (5)

where τd is the global driveline transmission ratio, depending on the actual gearbox
gear ratio and the differential gear ratio, while the available torque at the secondary
shaft—considering driveline efficiency ηd—is given by:

Ts = ηd τd Tp = 2 Tds,L/R = 2[ks(θs − θR) + cs(
.
θs −

.
θR)] (6)

As reported in Equation (6), the drive shaft torque Tds,L/R was lumped using a viscous
damper cs and a torsional spring ks. Instead, the torque TG = Ts − Tp corresponds to
the torque supported by the gearbox constraints. Finally, torque dissipations due to
transmission bearings [44] were modelled, but not reported in the FBDs of Figure 3.

2.2.3. Vehicle and Wheels

The vehicle model considers the longitudinal dynamics and load transfer caused by
the vehicle acceleration ax, which is computed from the equilibrium equation—reported
in Equation (7)—of the forces acting on the vehicle, i.e., the longitudinal forces on the
tyres Fx,FL, Fx,FR, Fx,RL, Fx,RR, where the subscripts FL, FR, RL, RR refer to the front-left,
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front-right, rear-left and rear-right wheels, respectively, the aerodynamic force Fa and the
resistance force Fi due to the road slope angle α.

ax =
∑4

n Fx,n − Fa − Fi
Mv

(7)

The term ∑4
n Fx,n—where the subscript n refers to the FL, FR, RL, RR wheels—sums all

the longitudinal forces on the four wheels, while the two terms Fa and Fi are as described
by Equation (8): {

Fa = 0.5 ρ Sv Cd V2

Fi = Mv g sin α
(8)

Regarding the aerodynamic terms, ρ is the air density, Sv is the vehicle front area, Cd
is the aerodynamic drag coefficient, and V is the vehicle speed. Moreover, each tyre is
described by an additional degree of freedom, and since vehicle lateral dynamics are not
taken into account, the angular accelerations

..
θF and

..
θR are the same for the two wheels at

the front and rear axles, and are computed according to Equation (9):
..
θF =

−Tb,F−Fx,F Rw−Tr,F
Jw,F

..
θR =

Tw−Tb,R−Fx,RRw−Tr,R
Jw,R

(9)

where Tw = Tds,L/R is the wheel torque coming from the half shaft—which participates
only for the rear wheels—Tb,F and Tb,R are the braking torques, and Tr,n (Tr,F for the front
and Tr,R for the rear) is the rolling resistance torque, which has a quadratic relationship to
the wheels’ rotational speed θn, according to Equation (10):

Tr,n = Fz,n Rw ( f + K
.
θ

2
n) (10)

The terms f and K are the constant and quadratic coefficients of the rolling resistance
and Fz,n is the vertical load on each wheel, which is computed considering the static load
distribution between the two axles—by means of parameter γ—and the dynamic load
transfer due to vehicle longitudinal acceleration, using Equation (11):{

Fz,F = m g γ
2 − m hG ax

2 L

Fz,R = m g (1−γ)
2 + m hG ax

2 L

(11)

where L is the vehicle wheelbase and hG is the height of the vehicle’s centre of mass,
whereas Fz,F and Fz,R indicate the vertical load on the front and rear wheels, respectively.
For each wheel, the longitudinal tyre slip is computed using Equation (12):

σ =
ωRw −V

ωRw
(12)

For sake of simplicity, the tyre model assumes a constant relaxation length Lt, even
if—for more accurate results—it should be considered dependent on the vertical load and
longitudinal slip [26]. Introducing the relaxation length, it is possible to correct the tyre
slip, obtaining a transient slip for each tyre. Finally, the Pacejka formulation was adopted
in the tyre model to evaluate the longitudinal force Fx,n on each tyre, as a function of the
different constant Pacejka parameters and three main dynamic quantities:

Fx,n = f (Fz,n, µ, σ) (13)

where µ is the tyre–road friction coefficient.
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2.2.4. NOx Modelling

As proposed in [14], the NOx emissions were modelled considering the transient
dynamics of the ICE. It has been experimentally proven that, in case of sudden acceleration
by the driver, there is a spike in NOx emissions—which is expected to be 80% higher than
the steady state value. Thus, in the Simulink model, a transfer function of the second
order was adopted with a variable gain with respect to the engine torque TICE. The NOx
emissions were estimated using the transfer function reported in Equation (14):

NOX(s) = G(TICE(s)) H(s)Te(s) (14)

where G(TICE(s)) is a variable gain between the steady state NOx and the engine torque,
while the second order transfer function H(s) is defined as:

H(s) =
ω2

n
s2 + 2ζωn + ω2

n
(15)

where ωn and ζ have been properly tuned to reproduce the transient dynamics relationship
between the NOx emissions and the engine torque proposed by [14]. The NOx model
here adopted takes into account only the engine-out emissions, without considering an
after-treatment system device.

3. Closed Loop Control System

In this paper, the torque allocation control logic was designed to improve the vehicle
drivability, to damp driveline oscillations, and to reduce engine emissions. The schematic
diagram of the control strategy is reported in Figure 6. The total torque requested by the
high-level part of the control logic Te was obtained using the FeedForward (FF) contribu-
tion Te,FF, supported by the FeedBack (FB) intervention Te,FB. The total torque was then
elaborated by the control allocation strategy (low level) to split the contribution between
the engine TICE and the electric motor TEM that were the input for the nonlinear model
described in the previous section.
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3.1. High-Level Control Strategy

The gas pedal position (GPP) imposed by the driver was converted into a requested
torque Tdr through the steady-state engine map in Figure 4 and then filtered out with a
cut-off frequency of 2 Hz to elaborate the FF contribution Te,FF.

The FB terms were designed based on a five-state linearised model, whose state
space representation was defined according to the methodology presented in [11], where
the effect of the torsional damper and load transfers was neglected with respect to the
nonlinear model: { .

x
}
= [A]{x}+ [B1]v + [H] (16)
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where v = Te is the control output and {x} is the state vector, composed as follows:

{x} =
[
x1 x2 x3 x4 x5

]T
=
[

θp
τd
− θR

.
θR

.
θp

.
θF Tt

]T
(17)

where Tt = (Fx,RL + Fx,RR) Rw is the steady-state driven wheel torque. Matrices [A], [B],
and [H] are described in [11]. The coordinate system of the state-space in Equation (16) is
converted from the state vector {x} of the error dynamics representation, as follows:{ .

e
}
= [A]{e}+ [B1]

{
v′
}

(18)

where {e} =
{

xRe f

}
− {x} and v′ = Te,FF − v, with

{
xRe f

}
represents the reference state

vector, which is elaborated from the driver requested torque Tdr:{
xRe f

}
=
[

Tdrτd
ks

.
θRe f

.
θRe f τd

.
θRe f Tdrτd

]T
(19)

The reference wheel speed
.
θRe f is obtained by integrating the reference accelera-

tion
..
θRe f , defined based on the driver’s intention (Tdr and τd), and the measured wheel

speed
.
θF,m:

..
θRe f =

Tdrηdτd − 0.5 ρ Sv Cd (
.
θF,mRw)

2
Rw −Mvg( f + K

.
θ

2
F,m)Rw(

Jw,F + Jw,R + MvR2
w + Jeηdτ2

d
) (20)

The measured wheel speed
.
θF,m, as mentioned in Section 2, was obtained using simu-

lated sensor dynamics that introduced a communication time delay and the digitalization
of the continuous measurement signal (zero order hold technique).

The FB torque contribution was then calculated as a full state feedback law:

v′ = −[KFB]{e} (21)

where the feedback gains, saved in [KFB], are elaborated based on the LQR design—as
proposed in [35,36]. The LQR control allowed the asymptotical stability of the closed loop
system and the minimisation of the quadratic performance functional J:

J =
∞∫

0

({e}T [Q]{e}+ rv′2)dt (22)

where [Q] = diag(1e− 9 1 1/τ2
d 1 1e− 9) is a diagonal weighted matrix where the

elements relative to angular speeds are emphasized with respect to the other states.
Finally, the feedback matrix [KFB] was obtained as:

[KFB] = r−1[B1]
T [P] (23)

where P is the solution of the algebraic Riccati equation.
The total requested torque was then formulated as:

Te = v = Te,FF − v′ = Te,FF + [KFB]{e} (24)

To implement a full state feedback controller, a Kalman filter was also designed to
estimate the state vector x̂, based on the inputs of the nonlinear vehicle model v and on its
measured vector y.

{y} =
[
ωe ωF

]
= [C]{x} (25)

where [C] =
[
0 0 1 0 0; 0 0 0 1 0

]
is the output matrix.
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3.2. Control Allocation

The total torque Te was then split between the ICE and the EM by the control allocation
strategy. In this paper, the ICE provided the main torque contribution and the EM only
intervened to compensate for the dynamic limits of the engine, e.g., when the driver
requested a sudden torque through the GPP. The scheme of the control allocation strategy
is reported in Figure 7.
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the engine.

As explained by several authors [14–16], the dynamic performance of the ICE is usually
limited to reduce the engine emissions that may occur in presence of extremely dynamic
torque requests. To accomplish the same task, a rate limiter was introduced into the control
allocation strategy to saturate the maximum torque rate of the engine. Therefore, the torque
of the EM, TEM, is given by the difference between the total torque request Te and the
output torque requested to the ICE. As indicated in the scheme, the EM torque request is
limited by a rate limiter, which was set at a higher level with respect to the ICE rate limiter.

In order to obtain the full benefits achieved by the methodology proposed in this
paper, the energy stored in the battery should be sufficient to guarantee the requested
activation of the electric motor. This energy management strategy is responsible for storing
energy in the battery when the engine is more efficient, with lower polluting emissions.
To exploit the benefits of this methodology, a more comprehensive design for the energy
management system is required, but this is out of the scope of this paper.

4. Results

The torque allocation control designed in the previous section was finally applied
to the nonlinear model described in Section 2 in order to evaluate its reference tracking
performance, torque split efficacy between the ICE and the EM, and its influence on
NOx emissions.

4.1. Reference Tracking Performance

The main purpose of the torque allocation control is to satisfy drivers’ requests in terms
of vehicle longitudinal acceleration. The driver’s intention, expressed in terms of a reference
longitudinal acceleration ax,re f =

..
θRe f Rw, is converted into a total torque request Te, which

is obtained by the sum of the FF and FB contributions. The simulation results obtained
during a tip-in manoeuvre—i.e., an instantaneous wheel torque request—are shown in
Figures 8 and 9, where the influence of the two controller contributions is highlighted.
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contribution (a) and with FF + FB integration (b): longitudinal acceleration (top left), front wheels,
rear wheels, and primary shaft speeds (top right), rear axle deformation (down left) and torque Tt.
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The control, with and without the activation of the FB contribution, provided a sat-
isfactory reference tracking performance for the speed states. However, the presence of
the FB contribution improved the transient vehicle response, with an evident oscillation
reduction for the whole set of states. This also implies a considerable improvement in
vehicle acceleration performance and in the consequent amplitude of the corresponding
jerk (i.e., derivative of the vehicle acceleration), with beneficial implications for vehicle
comfort. The advantages provided by the FB integration were paid off with a peak torque
request of about 20% higher than that of controller with only the FF term activated.

The FB intervention also represented a fundamental contribution to the rejection
of external disturbances that may affect controller tracking performance. Indeed, the
FF formulation was based on the simplified linear model, and did not include motion
resistance increments due to sudden road slopes. The influence of step disturbances on the
road slope is analysed in Figure 10.
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Figure 10. Control torque request (a), road slope (b), longitudinal acceleration (c) and weighted states
errors (d) during a tip-in manoeuvre with the FF + FB controller mode.

The application of the torque requested by only the FF term would compromise the de-
sired performance of the torque controller if external disturbances or uncertain/unmodelled
dynamics affected the vehicle dynamics. Indeed, the FF formulation did not include
the influence of the road slope, since this is a quantity that is difficult to measure or
estimate—thus not representing a suitable input for feeding into a control logic. For this
reason, the intervention of the FB term is essential to compensate for the higher vehicle
motion resistance by applying an additional torque contribution that is able to bring the
longitudinal acceleration back to the reference value; this was automatically achieved
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with an acceptable worsening of state errors and without any information related to the
road profile.

The effect of the FB contribution was, however, influenced by the design of the LQR
cost function and the selection of the weights qi and r. The optimal control theory [35,36]
suggests that the ratio qi/r is responsible for the trade-off between reference tracking
performance and energy consumption. A sensitivity analysis of the weight r on the torque
controller performance is shown in Figure 11.
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Figure 11. Vehicle acceleration (a), jerk (b), total power requested (c) and weighted rear speed error
(d) during a tip-in manoeuvre with different r weights.

For low r values, the FB contribution aims at improving the reference tracking per-
formance by reducing state errors and the amplitude of the vehicle acceleration and jerk
oscillations. This advantage is obtained with a transient peak power request, i.e., the
product Te

.
θe of the engine and the electric motor. Vice versa, an increment of r would save

more energy by reducing the total power request, but with an evident decline in terms of
vehicle performance and comfort.

4.2. Control Allocation Evaluation

The previous section focused attention on the performance of the FF + FB controller in
order to ascertain a reference total torque Te that is able to dampen oscillations in vehicle
acceleration, even in the presence of external disturbances, e.g., a road slope. However, the
torque controller is not designed to take into account the powertrain’s limits in terms of
engine/electric motor torque saturation and dynamic constraints. Indeed, the ICE is usually
operated at low frequency dynamics to reduce combustion emissions when a steep torque
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is requested, e.g., during a tip-in manoeuvre. The presence of a redundant driving source,
i.e., the EM, allows the ICE’s limitations to be overcome in terms of combustion emissions
without compromising the vehicle’s drivability. To evaluate the influence of ICE dynamics
on the torque controller performance, a sensitivity analysis of the ICE rate limiter (see the
scheme in Figure 7) is reported via the simulation results shown in Figures 12 and 13.
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hybrid configuration (b) for different constraints on the ICE torque slope saturation.

The results presented in Figure 13a show how the dynamics of vehicle acceleration
are affected by the rate limitation on the ICE-requested torque TICE. The lower the rate
constraint on the TICE, the higher the overshoot and the rising time of the acceleration.
These results are well explained, as the rate saturation on the torque requested by the ICE
drastically influences the total torque Te—see Figure 12a—demanded by the controller,
which acts in order to reduce the states errors and so the acceleration error. The presence
of an electric machine, with a typically faster response and lower emission issues than a
combustion engine, allows the ICE to operate at lower frequency dynamics—thus achieving
the desired performance in terms of vehicle acceleration, as shown in Figure 13b. The
performance of the hybrid configuration is totally unaffected by limitations on the engine
torque rate.

An important consequence of the results presented in Figures 12 and 13 is that the
redundancy of power sources can also produce effective advantages in terms of the NOx
emitted by the ICE. Indeed, assuming that the correlation between NOx emissions and the
ICE output torque is expressed by Equation (15) [14], the benefits of reduced ICE dynamics
are reported in Figure 14.
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Figure 14. NOx emissions during a tip-in manoeuvre with the hybrid configuration for different
constraints on the ICE torque slope saturation.

The hybrid configuration is then able to achieve the desired drivability performance,
with a reduction of almost 80% in the transient NOx overshoot peak for the case of a
100 Nm/s torque rate saturation.
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5. Conclusions

The paper presents a methodology for designing a torque allocation control strategy
aiming at improving vehicle performance and NOx emissions. The results obtained can be
summarized in the following final remarks:

• The high level of the torque control logic generated a total torque demand that satisfied
the performance requirements in terms of vehicle speed and acceleration. Both the
FF and FB contributions were designed based on a simplified version of the more
accurate non-linear model. The FB contribution was fundamental in improving the
vehicle’s transient response, damping the acceleration and jerk oscillations. Differing
calibrations of the FB gains can cope with different trade-offs between state error
tracking performance and the power required to minimize errors;

• The paper also showed how the FB contribution was effective in rejecting external
disturbances, e.g., the road slope, by compensating for the FF contribution with an
additional contribution—thus satisfying the desired reference tracking performance;

• The control allocation strategy proved to produce a satisfactory vehicle drivability
performance, even in the presence of tighter constraints in the ICE torque rate. The
hybrid architecture showed outstanding robustness properties against variations in
the ICE torque rate when compared to the ICE-only configuration. The redundancy
offered by the fast dynamics of an electric machine represents an effective way of
establishing the best combination between emissions and dynamic performance.

The results confirmed the methodology’s efficacy for vehicle drivability performance
and engine-out emissions. However, there is still potential scope for exploring the impact of
the torque control strategy on other important features related to hybrid powertrains, e.g.,
energy management performance, clutch engagement, and regenerative braking benefits,
which are reserved for future activities.
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