
Citation: Yang, Y.; Wang, B.; Zhao, C.

Deep Learning-Based Log Parsing for

Monitoring Industrial ICT Systems.

Appl. Sci. 2023, 13, 3691. https://

doi.org/10.3390/app13063691

Academic Editor: Andrea Prati

Received: 23 December 2022

Revised: 9 March 2023

Accepted: 10 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Learning-Based Log Parsing for Monitoring Industrial
ICT Systems
Yuqian Yang , Bo Wang and Cong Zhao *

National Engineering Laboratory for Big Data Analytics, Xi’an Jiaotong University, Xi’an 710049, China;
yuqian.yang@stu.xjtu.edu.cn (Y.Y.)
* Correspondence: congzhao@xjtu.edu.cn

Abstract: For rapidly developing smart manufacturing, Industrial ICT Systems (IICTSs) have become
critical to safe and reliable production, and effective monitoring of complex IICTSs in practice is
necessary but challenging. Since such monitoring data are organized generally as semi-structural logs,
log parsing, the fundamental premise of advanced log analysis, has to be comprehensively addressed.
Because of unrealistic assumptions, high maintenance costs, and the incapability of distinguishing
homologous logs, existing log parsing methods cannot simultaneously fulfill the requirements of
complex IICTSs simultaneously. Focusing on these issues, we present LogParser, a deep learning-
based framework for both online and offline parsing of IICTS logs. For performance evaluation, we
conduct extensive experiments based on monitoring log sets from 18 different real-world systems.
The results demonstrate that LogParser achieves at least a 14.5% higher parsing accuracy than the
state-of-the-art methods.

Keywords: Industry 4.0; monitoring; log parsing; log analysis; deep learning

1. Introduction

The recent development of information and communication technologies (ICT) has
promoted the progression of the industrial revolution from digital to intelligence (i.e.,
Industry 4.0 [1]). Industrial ICT systems (IICTSs) have been demonstrated to be a critical
component of smart manufacturing, as their failure causes catastrophic consequences, such
as manufacturing accidents and financial disasters [2]. Drawing increasing interest from
both industry and academia, effective monitoring holds great significance in preventing
IICTSs from variable and intense physical and cyber threats in practice [3].

Generally, the IICTS monitor aims to detect anomalies and predict threats by collecting
and analyzing operational information about system components [3]. Such monitoring
data are usually formed as logs, in which data mining methods are commonly applied
to knowledge extraction, i.e., log mining. Conventional log mining approaches have
three basic steps, i.e., log parsing, matrix generation, and data mining [4]. As the essential
premise of effective mining, log parsing identifies system-specified events according to the
corresponding logs. An example of log parsing is shown in Figure 1; the corresponding
even labels, such as super user action, informative report, event report, etc., are generated for
the next data mining tasks.

Existing log parsing methods usually depend on conventional data mining techniques,
such as clustering and iterative partitioning [4], and a few methods leverage program
source code, which is hardly available in practice [5]. However, parsing logs from complex
IICTSs have the following requirements, which cannot be satisfied simultaneously by the
current solutions:

• Generalization: The parser should be applicable to all logs with different textual prop-
erties. Conventional log parsing methods are based generally on the assumption that
words with high-presence frequencies in logs imply corresponding types of events,

Appl. Sci. 2023, 13, 3691. https://doi.org/10.3390/app13063691 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063691
https://doi.org/10.3390/app13063691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9040-2972
https://orcid.org/0000-0002-4317-5535
https://doi.org/10.3390/app13063691
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063691?type=check_update&version=1

Appl. Sci. 2023, 13, 3691 2 of 17

which, however, may not hold for IICTS logs. For example, according to our evalu-
ation results, such an assumption does not hold on the publicly available Web Log
dataset [6]. A parser with no log textual property requirement is necessary for IICTSs.

• Low human labor cost: The parser should cost less human labor while processing multi-
sourced logs. Conventional log parsing methods require a set of parameters tuned for
logs from each log source (i.e., a system component/device), which is quite expensive
considering the massively different log sources in practical IICTSs, especially when
the system needs to be continuously maintained. For example, logs collected from
the ThingWorx platform [7] contain 87 components’ logs. It is cost-effective to use a
parser specifically designed for such a multi-sourced log scenario, which just requires
affordable human labor.

• Transferability: The parser should be able to satisfy various task-specified parsing
requirements on logs (from the same source or different sources) with similar structures
(i.e., homologous logs). Conventional log parsing methods are basically driven by log
textual properties, and no information regarding successive mining tasks is considered.
In fact, for log mining, the parsing results of similar logs in different mining tasks
are obviously different, especially in IICTSs with multiple services. It is of great
significance to construct a parser that is capable of adjusting to different tasks and
producing task-specified parsing results on homologous logs.

Log level Timestamp Log message

TRACE 1535811118248 c.t.w.c.ThreadLocalContext TWEventProcessor-5
SuperUser <---- REMOVE security context
[user: SuperUser, depth: 0]

TRACE 1535811118248 c.t.w.c.ThreadLocalContext TWEventProcessor-5
<---- No security context - stack was empty

DEBUG 1535811118248 c.t.s.s.e.EventInstance TWEventProcessor-5
Completed event processing for :
Type.Thing:Entity.hello_world_timer:Event.Timer

DEBUG 1535811118248 c.t.s.s.i.SubscriptionStoreInMemoryThreadSafe Timer-6
There are no listeners for publisher Timer

INFO 1535811118248 c.t.s.s.i.SubscriptionStoreInMemoryThreadSafe Timer-6
Firing event Type.Thing:Entity.hello_world_timer:Event.Timer
with 1 subscribers

Input log file

Super user action

Informative report

Event detail report

Informative report

Event report

Event labels

Figure 1. A log parsing sample: generating corresponding event label according to log records.

Treating all logs from an IICTS as an aggregation of multiple runtime event sequences, we
present LogParser, a deep learning (DL) based log parsing framework for both online and
offline log analysis. Our contributions can be briefly summarized as follows:

1. We construct both offline and online DL-based parsers with no specific textual prop-
erty requirement for IICTS logs. Our approach can handle different task-specified log
parsing requirements on both heterogeneous and homologous logs.

2. LogParser unifies log parsing and matrix generation for consistent event labeling across
log mining tasks without task-specific preprocessing.

3. LogParser (code and data are available at github.com (https://github.com/jas0n-bot/
LogParser) accessed on 4 August 2020) achieves higher parsing accuracies than the
state-of-the-art methods on 18 real-world log sets. Specifically, our online parser has a
negligible accuracy loss compared to our offline parser and outperforms the existing
methods on heterogeneous/homologous multi-source log sets.

The rest of the article is organized as follows. The related works are presented in
Section 2. Section 3 provides the preliminaries of our work. Section 4 describes our
methodology. Our DL-based log parsing approach is explicitly presented in Section 5.
Section 6 demonstrates our evaluation methodology and results. We conduct a discussion
on parameter settings in Section 7. Section 8 concludes the article.

https://github.com/jas0n-bot/LogParser
https://github.com/jas0n-bot/LogParser

Appl. Sci. 2023, 13, 3691 3 of 17

2. Related Work

Log parsing is a fundamental issue in the operation of ICT systems in practice. Previ-
ous studies on log parsing have applied various clustering algorithms based on different
criteria such as word frequency or feature words. However, these methods often suffer
from low accuracy, scalability, or robustness. Heuristic algorithms have also been proposed
to address some of these issues, but they require manual tuning and domain knowledge.
Recently, machine learning techniques have been explored for log parsing, which can
potentially overcome some of the drawbacks of traditional methods.

One of the earliest efforts is the Simple Logfile Clustering Tool (SLCT) [8], which sets
the tone for successive clustering-based methods. It uses the frequency of fixed words
(tokens) in the log text as the basis for clustering. LogSig [9] uses word pairs as the feature
of one log record and then aggregates them into groups. The log template of each group is
generated based on the common pairs. LKE [10] takes the strategy that two clusters of log
records are simply joint if their distance is below a particular threshold, which suffers from
an obvious accuracy loss on complex log sets.

Other than the conventional clustering-based methods, many log parsers use heuristic
algorithms to analyze logs. IPLoM [11] heuristically parses logs by record length, which,
however, requires careful preprocessing since inappropriate preprocessing may cause
incorrect splitting. Drain [12] enhances IPLoM by maintaining a trie (prefix tree) for faster
searching, which, however, does not address the problem caused by the length-based
parsing in IPLoM. POP [13] aims to solve this issue by merging groups in the last step,
which surely improves the parsing recall and the overall parsing accuracy.

The natural language processing (NLP)-based log parser [14] uses latent Dirichlet
allocation (LDA) to perform the classification after the tokenization, semantic processing,
vectorization, and model compression steps. LogDTL [15] constructs a deep transfer neural
network model for log template generation, which applies the transfer learning technique
for data training augmentation purposes. NuLog [16] employs masked-language modeling
to vectorize input tokens with random masking. A two-layer neural network encoder
processes the vectorized input, and a Softmax linear layer produces a result matrix that
maps to event templates.

However, unlike LogParser, none of the methods above manages to address the issue
of parsing logs from multiple sources, especially from homologous data sources with a
different parsing task.

3. Preliminary

For ease of understanding, we briefly introduce some basic concepts in terms of DNN
design and text data processing used in the rest of the article.

3.1. DNN Layers

Word2vec [17] acts as the word embedding layer in a DNN. It is a two-layer neural
network that learns the contextual relationship of a certain word in a corpus of text. Specif-
ically, we use the continuous bag-of-word (CBOW) model, which uses the surrounding
context words to predict the current word.

Dropout [18] is a simple and effective filtering layer that reduces redundant informa-
tion, which can improve a DNN’s performance in terms of generalization. A typical usage
is to apply a dropout layer before a dense input layer.

The long short-term memory (LSTM) [19] network is a kind of recurrent neural net-
work (RNN) that can remember long-term information over several steps back. It has
been successfully applied to fields such as language translation, speech recognition, and
chat robots.

3.2. Batch Learning and Online Learning

In the field of machine learning, batch learning, the actual learning method used in
offline learning, takes in the entire training set and generates a model after a certain number

Appl. Sci. 2023, 13, 3691 4 of 17

of training iterations. In each iteration, all samples in the training set are used. The model is
evaluated according to its performance on a separate testing set. Online learning, however,
does not require access to the entire training set. It continuously consumes samples from
the input stream. The model is iteratively optimized based on each incoming sample. The
model is evaluated according to its performance on all consumed samples.

4. Methodology

Real-world log parsing tasks require both batch and stream processing modes, where
the former parses historical logs, and the latter parses continuously generated logs. Consid-
ering this, we design a deep learning-based framework comprising both offline and online
parsers for batch and stream processing, respectively. To achieve the three aforementioned
requirements of IICTS log parsing, we have the following specific designs:

• Log parsing consistency: For generalization, the event labels teach our parsers the
parsing standards directly without task-specific data preprocessing. Additionally, the
online parser needs to follow the same parsing standards as the offline parser. Our
framework, as shown in Figure 2, ensures this by periodically importing the offline
parser models into the online parser.

• Quality of log record representations: To lower the human labor cost of our method
(mainly for labeling log records), we significantly reduce the number of labeled records
required for model training by enhancing the quality of record representations. In
particular, we use word2vec [17] to vectorize the log records based on a neural network
trained on the corpus of all log text.

• Supervised learning by event labels: Our method leverages event labels directly to
train our neural network model, which enables it to adjust itself for different parsing
criteria. In this way, our method achieves the transferability that is needed for various
log parsing tasks.

Core

 Log stream
Online

parser

Offline

parser

Offline-

trained

model

Bottleneck

analysis

Hotspot

analysis

...

Anomalies

detection

Resource

scheduling

...

History

logs

Figure 2. Deep learning-based log parsing framework.

Since log parsing influences all subsequent log analyses and mining tasks, log parsing
accuracy should be considered the key metric. In particular, we have the following designs
to improve the accuracy of offline and online log parsing:

Accuracy of offline parsing: To attain high offline parsing accuracy, we design an
LSTM-based offline parser that exploits the natural contextual relevance of log messages,
which aids in recognizing the essential word representations. Our method leverages
vectorized log records, which are word representations in a unified semantic space.

Adaptability of online parsing: For stream processing, to achieve high parsing accu-
racy, online parsing needs to cope with the challenge of concept drift, i.e., the dynamic
changes in patterns in the data stream over time. To address this challenge, we propose an
online parser that incorporates BiLSTM [20] and attention mechanisms [21] to enhance its
adaptability to new data patterns.

5. The Deep Learning-Based Log Parsing Method

In this section, we explicitly present our deep learning-based log parsing architec-
ture, LogParser.

Appl. Sci. 2023, 13, 3691 5 of 17

5.1. Overview

The general architecture of LogParser is shown in Figure 2, whose workflow can be
described as follows. Firstly, all logs from the monitored IICTS are aggregated as a stream
pip, where each incoming log is replicated and stored in a historical log database. Then,
the offline parser, which is described in detail in Section 5.3, completes the parsing task by
outputting a matrix representing all processed logs and corresponding event labels. Such
results are used by successive mining tasks, such as bottleneck analysis [22], daily check
analysis [23], etc. Cooperating with the offline parser, the online parser, which is described
in detail in Section 5.4, periodically loads the latest offline model, and directly consumes
logs from the stream pip. It refines the model through online learning, which adaptively
learns different log events. Similar to the offline parser, the online parser generates a vector
representing the processed log and a label of the corresponding event type. Such results
are used by online analyses, such as anomaly detection [24], resource scheduling [25], etc.

5.2. Word Representation

In LogParser, we use word2vec [17] to vectorize input logs. Specifically, given a log
record composed of a sequence of T words x = {x1, x2, . . . , xT}, each word xt (1 ≤ t ≤ T) is
converted as a real-valued nw2v-dimensional vector et according to the embedding matrix
Ww2v ∈ R. Here, R represents the full vocabulary, and Ww2v is a size nw2v word embedding
learned by a word2vec neural network. We use the full log dataset to train our word2vec
model, where the CBOW model is selected due to its faster training speed.

5.3. Offline Parser

As shown in Figure 3, as a specifically designed recurrent neural network (RNN), our
offline parser has three major components:

• A word embedding layer that transforms x to e;
• An LSTM layer that extracts features from log records;
• A decision layer that identifies the log event type.

Additionally, to enhance the generalization capability, we integrate two dropout layers
into the offline parser, i.e., one between the word embedding layer and the LSTM layer and
another between the LSTM layer and the decision layer.

Fundamentally, the core layer of our offline parser can be formalized as follows:

ht = H(We′he′t + Whhht−1 + bh), (1)

ot = Whoht + bo (2)

where x is the input log record, i.e., the word sequence; h is the hidden vector sequence; o
is the output sequence of the LSTM layer; the W terms denote the weight matrices; H is the
hidden layer function; and the b terms denote the bias vectors.

LSTM

…

Input: Log file

ℎ1ℎ1 ℎ2ℎ2 ℎ𝑇ℎ𝑇

𝑦 𝑦

18/03/13 04:40:28 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL TERM

18/03/28 11:11:22 INFO spark.SecurityManager: Changing view acls to: dns

…

18/03/13 04:40:28 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL TERM

18/03/28 11:11:22 INFO spark.SecurityManager: Changing view acls to: dns

…

Dropout

Embedding layer

…

𝑒1
′ 𝑒1
′

𝑒2
′ 𝑒2
′

𝑒𝑇
′ 𝑒𝑇
′

…

𝑒1
′

𝑒2
′

𝑒𝑇
′

…Dropout

Softmax

LSTM layerDecision layer

argmax 𝑜1 𝑜1 𝑜2 𝑜2 𝑜𝑛 𝑜𝑛

Output: Label

…𝑥1𝑥1 𝑥2 𝑥2 𝑥𝑇 𝑥𝑇 …𝑥1 𝑥2 𝑥𝑇

Word2Vec

INPUT PROJECTION OUTPUT

SUM

Figure 3. Deep learning-based log parsing framework: offline architecture.

Appl. Sci. 2023, 13, 3691 6 of 17

Specifically, our hidden layer function H is designed as a standard LSTM, which is
built upon LSTM cells with four major components, i.e., input gate i, forget gate f , output
gate o, and memory cell c. Explicit cell implementation is as follows:

it = σ(We′ie
′
t + Whiht−1 + Wcict−1 + bi), (3)

ft = σ(We′ f e′t + Wh f ht−1 + Wc f ct−1 + b f), (4)

ct = ftct−1 + it tanh(We′ce′t + Whcht−1 + bc), (5)

ot = σ(We′oe′t + Whoht−1 + Wcoct + bo), (6)

ht = ot tanh(ct), (7)

where σ is the sigmoid function.
Then, the LSTM layer’s output o is transformed into o′ by the dropout layer. Finally,

the decision layer uses the Softmax function to calculate the probability distribution over
all log event types y as well as the predicted label ŷ:

y = so f tmax(Wo′yo′ + by), (8)

ŷ = argmax
i

(yi). (9)

One thing that should be noted is that, different from other kinds of data for mining, a
single log record contains limited words. Therefore, we believe that our offline parser can
be effectively trained upon a small training set, which will be verified further and discussed
in Section 6.

5.4. Online Parser

Since our online parser focuses on directly consuming streaming log records (i.e., one
at a time), it has to learn as quickly as possible. To address this issue, we use attention-based
BiLSTM to construct our online parser.

Specifically, as shown in Figure 4, our online parser has four major components, i.e., a
word embedding layer, a BiLSTM layer, an attention layer, and a decision layer. Two dropout layers
are placed before the BiLSTM and decision layers, respectively. The explicit component
descriptions are as follows.

BiLSTM

…

Input: Log file

ℎ 1 ℎ 1 ℎ 2 ℎ 2 ℎ 𝑇 ℎ 𝑇

𝑦 𝑦

18/03/13 04:40:28 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL TERM

18/03/28 11:11:22 INFO spark.SecurityManager: Changing view acls to: dns

…

18/03/13 04:40:28 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL TERM

18/03/28 11:11:22 INFO spark.SecurityManager: Changing view acls to: dns

…

Dropout

Embedding layer

…

𝑒1
′ 𝑒1
′

𝑒2
′ 𝑒2
′

𝑒𝑇
′ 𝑒𝑇
′

…

𝑒1
′

𝑒2
′

𝑒𝑇
′

…

Dropout

Softmax

BiLSTM layerDecision layer

argmax ℎ1 ℎ1 ℎ2 ℎ2 ℎ𝑇 ℎ𝑇

Output: Label

…𝑥1 𝑥1 𝑥2 𝑥2 𝑥𝑇 𝑥𝑇 …𝑥1 𝑥2 𝑥𝑇

Word2Vec

INPUT PROJECTION OUTPUT

SUM

ℎ 1 ℎ 1 ℎ 2 ℎ 2 ℎ 𝑇 ℎ 𝑇 …
Attention

+ +

Figure 4. Deep learning-based log parsing framework: online architecture.

Appl. Sci. 2023, 13, 3691 7 of 17

To start, the input log record x is converted as e′ through the word embedding and
dropout layers. Then, let

−→
h and

←−
h denote the forward and backward hidden layers,

respectively. The BiLSTM layer in our online parser can be formally described as follows:

−→
h t = Hlstm(e′t,

−→
h t−1, b−→

h
), (10)

←−
h t = Hlstm(e′t,

←−
h t−1, b←−

h
), (11)

ht =
−→
h t

⊕←−
h t, (12)

where
⊕

denotes the element-wise sum operation.
Then, an attention model (or mechanism) is added between the BiLSTM and decision

layers. Specifically, our attention model consumes h and adjusts the weights of the BiLSTM
output as follows:

gt = tanh(Whght + bg), (13)

αt = so f tmax(wT gt), (14)

o =
T

∑
t=1

αtht. (15)

Finally, the decision layer takes the re-calculated and filtered output o′ from the
attention model to determine the log event type ŷ (similar to our offline parser).

One thing that should be noted is that, since the training of BiLSTM is quite time-
consuming, we train our online parser only based on falsely predicted records to reduce
the training time.

6. Evaluation and Results

In this section, we evaluate the performance of LogParser. We first provide an expla-
nation of our experimental methodology and then present the corresponding evaluation
results of our offline and online parsers, respectively.

6.1. Experimental Methodology

Selected Datasets: For a comprehensive performance evaluation, we selected 18 dif-
ferent log sets collected from different practical systems, as shown in Table 1, where ‘Log
Size’ indicates the number of log records, and ‘Events’ indicates the number of log event
types. Specifically, HDFS [5] is generated in a private cloud environment using a bench-
mark workload. BGL [26] is a supercomputer log set collected at Lawrence Livermore
National Labs (LLNL) in Livermore, CA. Spark is collected from our three-node cluster
server that hosts our lab’s calculation tasks. Apache is an open-source Apache server access
log set. UofS [27] is a trace set containing all HTTP requests to the WWW server at the
University of Saskatchewan within seven months. Jul95 [27] is a trace set containing all
HTTP requests to the WWW server at NASA Kennedy Space Center in Florida, within two
months. Nginx is an open-source Nginx server access log set. Openstack [28] is generated
in CloudLab. Security Log [29] contains connection logs collected and used by Security
Data Analysis Labs. Thunderbird [26] is a supercomputer log set collected from Sandia
National Labs (SNL) in Albuquerque, NM. Big Brother [30] is a diagnostic log set from
IEEE VAST Challenge 2013. Web Log [6] is a publicly available web log set. ThingWorx [7]
contains system runtime logs collected from the ThingWorx platform, an Industrial In-
ternet of Things (IIoT) platform, and 4SICS-151020, 4SICS-151021, and 4SCIS-151022 [31]
are network traffic data captured from industrial network equipment by the industrial
cyber security conference 4SICS. EMSD includes 30 days of Energy Management System
logs (https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets accessed on
4 August 2020). IoT sentinel [32] contains the traffic emitted during the setup of 31 smart
home IoT devices.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

Appl. Sci. 2023, 13, 3691 8 of 17

Table 1. Summary of evaluation datasets.

Logs Log Size Events Description

HDFS 11197705 25 Hadoop runtime log

BGL 4747963 155 HPC Blue Gene/L runtime log

Spark 98671134 41 Spark runtime log

Apache 1643182 28 Apache server access log

UofS 2408625 9 University of Saskatchewan
WWW server access log

Jul95 1891714 7 NASA Kennedy Space Center
WWW server access log

Nginx
1067357
1067459
1067357

4
2

20
Nginx server access log

Openstack 189386 17 Openstack runtime log

Security Log 22694356 10 Connection log from
Security Data Analysis Labs

Thunderbird 211212192 40 HPC Thunderbird runtime log

Big Brother 68666 8 Big Brother diagnostic log data

Web Log 1125760 15 Security Repo access log

ThingWorx 1849361 12 ThingWorx platform log

4SICS-151020 246137 15 4SICS Geek Lounge Pcaps

4SICS-151021 1253100 19 4SICS Geek Lounge Pcaps

4SICS-151022 2274747 29 4SICS Geek Lounge Pcaps

EMSD 5764522 68 Energy Management System log

IoT sentinel 129371 19 IoT devices’ captures

Comparisons: We compared the performance of LogParser with that of multiple log
parsing methods, i.e., IPLoM [11], Drain [12], POP [13], and NuLog [16]. All comparatives
are implemented in Python. For POP, we used the single-node version. All parameters
were set first as recommended and then tuned according to the actual performance.

Evaluation Metric: We used the F1-score, or the harmonic mean of the precision and
recall, to evaluate the log parsing performance. Specifically, for a certain type of event,
precision is defined as the number of correctly predicted records divided by the number of
all records identified as such a type of event, and recall is defined as the number of correctly
predicted records divided by the number of all records actually labeled as such a type of
event (i.e., the ground truth).

Implementation: For the implementation of LogParser, to take advantage of state-
of-the-art techniques, we used Tensorflow (https://www.tensorflow.org/ accessed on 4
August 2020) (v1.7.0), an open-source software library for high-performance numerical
computation. More specifically, we used a high-level API of Tensorflow, Keras (https:
//keras.io/ accessed on 4 August 2020) (v2.1.5), to implement LogParser in Python. All
of our evaluations were conducted on a Linux server (with 64-bit Ubuntu 16.04.1, Linux
kernel 4.13.0) with an Intel Xeon E5-2650v4 CPU and 512 GB RAM.

6.2. Performance of the Offline Parser

In this set of experiments, we trained our offline parser and all comparatives for
three rounds on all 18 selected datasets and conducted log parsing for event identification

https://www.tensorflow.org/
https://keras.io/
https://keras.io/

Appl. Sci. 2023, 13, 3691 9 of 17

based on the best performing model from each log parsing method, respectively. Unless
specified, the training set drawn from each dataset contained 200 randomly selected log
records labeled with each type of event. If the number of records of a specific type of event
was less than 200, all records were used.

6.2.1. General Performance

Table 2 shows the log parsing accuracy based on IPLoM, Drain, POP, NuLog, and
our offline parser on all selected datasets. It is obvious that our method significantly
outperforms all comparatives on all datasets. Furthermore, we notice that the conven-
tional methods induce a quite low performance in certain scenarios, e.g., IPLoM on Jul95.
We believe that the reason for this is two-fold: First, such methods inherently require
domain knowledge for accuracy improvement while only basic data preprocessing was
conducted in our evaluations. Second, the classification is not conducted based on the
structural features of the log text. According to Table 2, on Nginx, when the classification
criterion is ‘request type’ (i.e., Nginx-4 events), all methods manage to achieve accurate
classification. However, when the criterion is changed to ‘protocol version’ (i.e., Nginx-2
events), unlike our offline parser, none of the comparatives demonstrates an acceptable
performance. NuLog, which adopted machine learning techniques, achieved higher log
parsing accuracy than other conventional methods. However, it still does not reach an
acceptable performance (less than 0.70 precision) on some datasets, i.e., Nginx-2, Nginx-20,
Thunderbird, Web log, and ThingWorx. We believe that this is due to the lack of task-
specific data preprocessing. The self-supervised learning approach could not automatically
adapt to the mining task requirement. Such results indicate that our offline parser manages to
support user-defined classification of log events that cannot be achieved by existing methods.

Table 2. Offline parsing result among all evaluation datasets.

IPLoM Drain POP NuLog Offline

HDFS 0.88 0.88 0.88 0.99 1.00

BGL 0.46 0.29 0.66 0.95 0.93

Spark 0.57 0.63 0.63 0.99 0.99

Apache 0.06 0.48 0.93 1.00 1.00

UofS 0.11 0.01 0.28 0.89 0.91

Jul95 0.00 0.91 0.28 1.00 1.00

Nginx-4 events 1.00 0.97 0.83 1.00 0.99

Nginx-2 events 0.08 0.50 0.53 0.65 0.99

Nginx-20
events 0.00 0.48 0.52 0.65 0.99

Openstack 0.73 0.74 0.72 0.99 1.00

Security Log 1.00 0.30 0.59 1.00 0.99

Thunderbird 0.07 0.04 0.26 0.67 0.93

Big Brother 0.18 0.54 0.55 0.73 0.95

Web log 0.00 0.05 0.08 0.12 0.96

ThingWorx 0.22 0.26 0.72 0.52 0.99

4SICS-151020 0.61 0.77 0.73 0.95 1.00

4SICS-151021 0.44 0.70 0.64 0.93 0.99

4SICS-151022 0.38 0.64 0.58 0.91 0.95

EMSD 0.27 0.60 0.46 0.74 0.95

IoT sentinel 0.54 0.65 0.54 0.88 0.95

Then, we further analyzed the results on ThingWorx, which implied that there are two
major reasons for the low accuracy based on comparatives: First, the comparatives can

Appl. Sci. 2023, 13, 3691 10 of 17

barely recognize certain types of events, e.g., the type five event ‘anonymous error message’
cannot be recognized by IPLoM (i.e., with 0.0 precision). Then, all comparatives induce low
recalls except for those from POP and NuLog, which are still significantly lower than that
from our method. Such results indicate that, unlike our offline parser, the existing methods
cannot effectively differentiate events in certain scenarios.

6.2.2. Impact of Log Set Size

We also investigated the impact of log set size on the performance of both our offline
parser and all comparatives. Specifically, for each dataset, we randomly selected subsets
with different sizes from the entire log set (i.e., 200 records labeled with each type of event)
for performance evaluation. For illustration, the results on HDFS and Spark are listed in
Table 3. As we can see in Figure 5, when the log set size increases, our offline parser induces
a negligible accuracy loss (or even enhances the accuracy, i.e., 4% on Spark), and Nulog
performs the same and even achieves a better accuracy (i.e., 1.00 accuracy) on Spark(4703).
We believe that overfitting caused our method to have a 5% lower accuracy than NuLog
on Spark (4703). Conversely, all conventional comparatives suffer from obvious accuracy
loss (e.g., POP, the best performing comparative, still induces 5% and 8% accuracy losses
on HDFS and Spark, respectively). The reason, we believe, is that certain unexpected
words appear relatively more frequently in large log sets, which hinders comparatives from
identifying the correct log event type.

104 105 106 107

Log Set Size (HDFS)

0.7

0.8

0.9

1

1.1

F1
-s

co
re

IPLoM
Drain
POP
NuLog
Offline

104 105 106 107

Log Set Size (Spark)

0.5

0.6

0.7

0.8

0.9

1

1.1

F1
-s

co
re

IPLoM
Drain
POP
NuLog
Offline

Figure 5. Offline parsing accuracy on datasets of different sizes.

Appl. Sci. 2023, 13, 3691 11 of 17

Table 3. Offline parsing result over different log size subset from HDFS and Spark datasets.

IPLoM Drain POP NuLog Offline

HDFS(5117) 0.97 0.91 0.93 1.00 1.00

HDFS(48472) 0.98 0.90 0.98 1.00 1.00

HDFS(513053) 0.98 0.98 0.98 1.00 1.00

HDFS(4938022) 0.77 0.94 0.94 1.00 1.00

HDFS(11197705) 0.88 0.88 0.88 1.00 1.00

Spark(4703) 0.80 0.89 0.90 1.00 0.95

Spark(53908) 0.76 0.89 0.89 1.00 1.00

Spark(547260) 0.66 0.89 0.87 1.00 1.00

Spark(4927590) 0.58 0.87 0.83 1.00 0.99

Spark(11215954) 0.56 0.85 0.82 0.99 0.99

6.2.3. Performance of Multi-Source Log Parsing

In this set of experiments, we compared the performance of LogParser to those of
all comparatives on logs from multiple sources. To achieve this, we randomly selected a
subset of log records with sizes from 100 k to 300 k from different log sets in Table 1 and
constructed a heterogeneous multi-source log set (see Table 4) and a homologous multi-source
log set (see Table 5), respectively. Specifically, heterogeneous represents logs generated by
different components, and homologous represents logs generated by similar components.
The experimental results are demonstrated in Figure 6 and Figure 7, respectively.

Table 4. Heterogeneous multi-source dataset.

Label Source Dataset Subset Size Subset Events

heter_s1 HDFS 191469 14

heter_s2 Spark 336890 23

heter_s3 Apache 175383 14

heter_s4 BGL 355266 23

heter_s5 Openstack 113885 9

heter_s6 Security Log 67833 5

heter_s7 Thunderbird 140007 7

Table 5. Homologous multi-source dataset.

Label Source Dataset Subset Size Subset Events

homo_s1 Nginx 41369 3

homo_s2 Nginx 40002 2

homo_s3 Web Log 149702 9

homo_s4 Apache 120006 6

homo_s5 Nginx 91379 8

homo_s6 UofS 160008 8

homo_s7 Jul95 70787 4

Appl. Sci. 2023, 13, 3691 12 of 17

1 2 3 4 5 6 7
Number of Heterogeneous Log Sources

0.4

0.6

0.8

1

F
1-

sc
or

e
IPLoM
Drain
POP
NuLog
Offline

Figure 6. Offline parsing accuracy on heterogeneous multi-source datasets.

1 2 3 4 5 6 7

Number of Homologous Log Sources

0

0.2

0.4

0.6

0.8

1

F
1-

sc
or

e

IPLoM
Drain
POP
NuLog
Offline

Figure 7. Offline parsing accuracy on homologous multi-source datasets.

According to Figure 6, we can see that, as the number of heterogeneous log sources
increases, our offline parser has a negligible accuracy loss (i.e., no more than 5%), and
NuLog has a slight accuracy loss (i.e., no more than 10%), while the accuracy of all compar-
atives drops significantly (i.e., from 29% to 32%). The reason, we believe, is that integrating
heterogeneous log records from new sources into the original log set changes the original
pattern of word distribution drastically. NuLog is able to learn the new pattern according
to its self-supervise mechanism. However, it was still less effective than our method, which
learned from labels. All conventional comparatives, however, rely on a single set of pa-
rameters to identify the event type of heterogeneous logs from multiple sources, which is
difficult to achieve and downgrades the performance significantly.

According to Figure 7, the results on the homologous multi-source log set are similar
to those on the heterogeneous set, and our offline parser (with an accuracy loss of no
more than 8%) outperforms all comparatives (with accuracy losses from 31% to 99%) more
obviously. The reason, we believe, is that all comparatives cannot differentiate log records
with similar textual structures but different event identification criteria, despite the fact that
we intentionally added the source index to enhance the dissimilarity between log records
during the evaluation.

6.3. Performance of the Online Parser

As described in Section 5.4, our online parser periodically loads the latest offline parser
and conducts online parsing of logs from incoming streams directly.

6.3.1. General Performance

According to our design, before the online parser is updated, each incoming log record
may imply a new type of event, i.e., the training set of the loaded offline parser contains

Appl. Sci. 2023, 13, 3691 13 of 17

no log record implying the same event type of such an incoming log record. We use r
to represent the ratio of log records implying new types of events to the number of all records
from the stream within a certain period of time. Theoretically, a higher r should induce a more
obvious impact on the online parsing accuracy, and an ideal online log parser should be
able to prevent the accuracy from downgrading when r increases. Therefore, in this set
of experiments, we evaluated the performance of our online parser on log streams with
different settings of r.

As streams, the log sets used by the evaluation of our offline parser (see Table 1)
were fed into our online parser, our offline parser, Drain, and NuLog, respectively, for
comparisons. Specifically, we fed complete log sets to our offline parser, Drain, and
to NuLog as our baseline and comparative, respectively. Furthermore, log sets with
r ∈ {0.2, 0.4, 0.6, 0.8, 1.0} were fed to our online parser, respectively, to study the impact of
r (for example, r = 0.2 represents that log records implying 20% of all event types are not
selected by the training set of the offline parser). Figure 8 shows the online parsing results
on the HDFS and Spark log sets (due to the page limitation, we only present such results for
illustration), which demonstrates the F1-scores of all methods when different numbers of
log records (up to 107) were fed.

104 105 106 107

Log Set Size (HDFS)

0.85

0.9

0.95

1

1.05

F1
-s

co
re

104 105 106 107

Log Set Size (Spark)

0.7

0.8

0.9

1

1.1

F1
-s

co
re

Drain NuLog Offline r=0.2 r=0.4 r=0.6 r=0.8 r=1.0

Figure 8. Online parsing accuracy on datasets of different sizes.

According to Figure 8, it is obvious that our online parser outperforms Drain in
all scenarios (i.e., from 2% to 15% in terms of accuracy), except for when r > 0.6 and
4703 records were fed on the Spark log set. NuLog, on the other hand, performs evenly
with our online parser since it already trained the whole dataset in advance. In cases of such
small dataset sizes with limited trained log event types, learning cost leads to a reduction
in the final accuracy.

For our online parser, as we expected, a higher r induces a more obvious accuracy
loss. However, the parsing accuracy increases as the number of log records fed increases.
When more than 5 million records are fed, a 1.0 F1-score is achieved, even when r = 1.0
(i.e., all incoming logs are with new event types). Meanwhile, for all settings of r, the
accuracy difference between our online and offline parsers keeps reducing, which becomes
negligible (i.e., up to 4%) when 50 k records were fed.

For certain cases, e.g., 4703 records, r = 0.2, more than 5 million records, and
r ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, our online parser achieves higher (up to 2%) accuracy com-
pared to our offline parser. We believe that this comes from the difference between the
offline evaluation procedure and the online evaluation procedure. The offline parser needs

Appl. Sci. 2023, 13, 3691 14 of 17

to find a global template to identify all log events, while the online parser only needs to
focus on the recent log records.

6.3.2. Performance of Multi-Source Log Parsing

In this set of experiments, we investigated the performance of our method on parsing
multi-source log records. Specifically, we used the same log sets shown in Tables 4 and 5 to
construct our heterogeneous and homologous multi-source log streams, respectively.

Online Parsing of Heterogeneous Logs: We first evaluated our online parser’s capa-
bility to adapt to five different structural patterns of the heterogeneous log steam as follows:

1. Full length, fixed order: all log records from each source were fed sequentially;
2. Short length, fixed order: 400 log records from each source were fed sequentially in an

iterative manner;
3. Medium length, fixed order: 5000 log records from each source were fed sequentially in

an iterative manner;
4. Medium length, random order: 5000 log records from a random source were fed in an

iterative manner;
5. Fully random: each log fed was from a random source.

Figure 9 demonstrates the results of our online parser on streams containing heteroge-
neous log records from different numbers of sources. It is obvious that our online parser
performs well on streams with all structural patterns except for the ‘short length, fixed
order’ one (i.e., the parsing accuracy is significantly downgraded on streams with six and
seven sources when r ≥ 0.8). Comparing to results under other settings, we believe that the
input stream structure has a significant impact on the performance of our online parser, and
it is quite challenging to achieve accurate parsing of streams with continuously shifting log
patterns (i.e., sets of log records with a relatively limited size from different sources). In this
case, the learning rate of the online parser might require explicit fine-tuning to guarantee
the parsing accuracy. However, since our online parser performs well (both in terms of
accuracy and stability) in the ‘fully random’ scenario, potential structural modifications
can be conducted on log streams in practice to guarantee the effectiveness of our solution.

0
0.2

0.4

r

0.6
0.80

1

n-source

0.1

1

0.2

2 3 4 5 6

0.3

7 8

1
- F

1-
sc

or
e

0.4

0.5

0.6

0.7

Figure 9. Online parsing accuracy on heterogeneous multi-source datasets legend from left to right:
(1) full length from each source; (2) fixed length (400) from every single source with fixed order;
(3) fixed length (5000) from every single source with fixed order; (4) fixed length (5000) from every
single source with random order; (5) fully random.

Online Parsing of Homologous Logs: Similar to that of our offline parser, we also
evaluated the performance of our online parser on homologous multi-source log streams.
The results are shown in Figure 10, which demonstrates that our online parser obviously

Appl. Sci. 2023, 13, 3691 15 of 17

outperforms Drain and NuLog (up to 75%/32% in terms of accuracy). Moreover, our online
parser performs evenly with our offline parser.

1 2 3 4 5 6 7

Number of Homologous Sources

0.2

0.4

0.6

0.8

1

F
1-

sc
or

e

Drain
NuLog
Offline
r=0.2
r=0.4
r=0.6
r=0.8
r=1.0

Figure 10. Online parsing accuracy on homologous multi-source datasets.

7. Discussion

In this section, we conduct an empirical study on the parameter settings of LogParser
for a comprehensive discussion.

7.1. Parameter Tuning of Word2vec

During our experiments, we observed that the parameter tuning of Word2vec was
extremely important to the performance of LogParser. In general, nw2v determines the
size of the vector et, i.e., the translation of a word xt and words appearing no more than
min_count times should be ignored. According to our experimental results, a high nw2v

leads to model overfitting and unstable performance, and a low nw2v causes excessive
information loss during the translation from xt to et, which severely downgrades the
final accuracy.

Realizing the properties above, for LogParser, we set nw2v = 30, which is relatively low
since log records normally have a smaller vocabulary compared to general texts without
affecting the translation effectiveness. The setting of min_count, however, is non-trivial. It
acts as a filter eliminating information that is non-essential for later training. For LogParser,
we used three.

7.2. Dropout Rate

The dropout rate is commonly recommended to be set as 0.5, i.e., the dropout layer
randomly ignores half of the inputs. However, according to our experimental results, a
0.3 dropout rate manages to slightly enhance the performance. We believe the reason is
that a dropout layer is applied before the LSTM/BiLSTM layer, and dropping information
too early could downgrade the final accuracy to a certain extent.

8. Conclusions

In this article, we present LogParser, a deep learning-based log parsing framework for
both online and offline IICTS monitoring. Specifically, LogParser requires no specific textual
property of IICTS logs and is designed to simultaneously parse multi-source logs with
different task-specified criteria. The results of extensive experiments based on 18 real-world
log sets demonstrate that LogParser obviously outperforms state-of-the-art offline and
online log parsers in terms of parsing accuracy (i.e., 59.3%/45.1%/40.3%/14.5% higher on
average). Furthermore, LogParser manages to achieve indisputable advantages over the
existing methods in heterogeneous/homologous multi-source log parsing scenarios (i.e.,
with a 46%/92% higher parsing accuracy at most).

Appl. Sci. 2023, 13, 3691 16 of 17

Author Contributions: Conceptualization, Y.Y.; data curation, Y.Y.; formal analysis, Y.Y. and B.W.;
investigation, Y.Y.; methodology, Y.Y. and B.W.; supervision, C.Z.; validation, Y.Y. and C.Z.; visualiza-
tion, Y.Y. and B.W.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y. and
C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Key Research and Development
Program of China under Grants 2020YFA0713900 and 2022YFA1004100; the National Natural Science
Foundation of China under Grants 61772410, 61802298, 62172329, U1811461, U21A6005, and 11690011,
and the China Postdoctoral Science Foundation under Grants 2020T130513 and 2019M663726.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, J.; Bagheri, B.; Kao, H.A. Recent advances and trends of cyber-physical systems and big data analytics in industrial

informatics. In Proceedings of the 12th International Conference on Industrial Informatics (INDIN), Porto Alegre, Brazil,
27–30 July 2014; pp. 1–6.

2. Wang, Y.; Hong, K.; Zou, J.; Peng, T.; Yang, H. A CNN-based visual sorting system with cloud-edge computing for flexible
manufacturing systems. IEEE Trans. Ind. Inform. 2019, 16, 4726–4735. [CrossRef]

3. Wan, J.; Tang, S.; Li, D.; Wang, S.; Liu, C.; Abbas, H.; Vasilakos, A.V. A manufacturing big data solution for active preventive
maintenance. IEEE Trans. Ind. Inform. 2017, 13, 2039–2047. [CrossRef]

4. He, P.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. An evaluation study on log parsing and its use in log mining. In Proceedings of the 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 28 June–1 July 2016;
pp. 654–661.

5. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M.I.T. Detecting large-scale system problems by mining console logs. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles, Big Sky, MT, USA, 11–14 October 2009; pp. 117–132.

6. Samples of Security Related Data. Available online: https://www.secrepo.com/ (accessed on 4 August 2020).
7. Thingworx Platform. Available online: https://developer.thingworx.com/en/platform (accessed on 4 August 2020).
8. Vaarandi, R. A data clustering algorithm for mining patterns from event logs. In Proceedings of the IEEE IPOM Workshop,

Kansas City, MO, USA, 3 October 2003; pp. 119–126.
9. Tang, L.; Li, T.; Perng, C.S. LogSig: Generating system events from raw textual logs. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011; pp. 785–794.
10. Fu, Q.; Lou, J.G.; Wang, Y.; Li, J. Execution anomaly detection in distributed systems through unstructured log analysis. In

Proceedings of the IEEE ICDM, Miami Beach, FL, USA, 6–9 December 2009; pp. 149–158.
11. Makanju, A.A.; Zincir-Heywood, A.N.; Milios, E.E. Clustering event logs using iterative partitioning. In Proceedings of the

The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009;
pp. 1255–1264.

12. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the 2017 IEEE
International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; pp. 33–40.

13. He, P.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. Towards automated log parsing for large-scale log data analysis. IEEE Trans. Dependable
Secure Comput. 2018, 15, 931–944. [CrossRef]

14. Aussel, N.; Petetin, Y.; Chabridon, S. Improving performances of log mining for anomaly prediction through nlp-based log parsing.
In Proceedings of the International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), Milwaukee, WI, USA, 25–28 September 2018; pp. 237–243.

15. Nguyen, T.; Kobayashi, S.; Fukuda, K. Logdtl: Network log template generation with deep transfer learning. In Proceedings of the
17th IFIP/IEEE International Symposium on Integrated Network Management, Bordeaux, France, 17–21 May 2021; pp. 848–853.

16. Nedelkoski, S.; Bogatinovski, J.; Acker, A.; Cardoso, J.; Kao, O. Self-supervised log parsing. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Bilbao, Spain, 13–17
September 2021; pp. 122–138.

17. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the
Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013.

18. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
20. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]

http://doi.org/10.1109/TII.2019.2947539
http://dx.doi.org/10.1109/TII.2017.2670505
https://www.secrepo.com/
https://developer.thingworx.com/en/platform
http://dx.doi.org/10.1109/TDSC.2017.2762673
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549

Appl. Sci. 2023, 13, 3691 17 of 17

21. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

22. Li, L.; Chang, Q.; Ni, J. Data driven bottleneck detection of manufacturing systems. Int. J. Prod. Res. 2009, 47, 5019–5036.
[CrossRef]

23. Ji, C.; Liu, S.; Yang, C.; Wu, L.; Pan, L. Ibdp: An industrial big data ingestion and analysis platform and case studies. In
Proceedings of the International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing,
China, 22–23 October 2015; pp. 223–228.

24. Zhang, F.; Kodituwakku, H.A.D.E.; Hines, J.W.; Coble, J. Multilayer data-driven cyber-attack detection system for industrial
control systems based on network, system, and process data. IEEE Trans. Ind. Inform. 2019, 15, 4362–4369. [CrossRef]

25. Li, X.; Wan, J.; Dai, H.N.; Imran, M.; Xia, M.; Celesti, A. A hybrid computing solution and resource scheduling strategy for edge
computing in smart manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 4225–4234. [CrossRef]

26. Oliner, A.; Stearley, J. What supercomputers say: A study of five system logs. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), Edinburgh, UK, 25–28 June 2007; pp. 575–584.

27. Arlitt, M.F.; Williamson, C.L. Web server workload characterization: The search for invariants. ACM SIGMETRICS Perform. Eval.
Rev. 1996, 24, 126–137. [CrossRef]

28. Du, M.; Li, F.; Zheng, G.; Srikumar, V. Deeplog: Anomaly detection and diagnosis from system logs through deep learning.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 1285–1298.

29. Sconzo, M.; Dorsey, D. Connection Log. Security Data Analysis Labs. 2014. Available online: https://github.com/sooshie/
Security-Data-Analysis (accessed on 4 August 2020).

30. Committee, I.V.C. Big Brother Data. 2013. Available online: http://vacommunity.org/VAST+Challenge+2013 (accessed on 4
August 2020).

31. Industrial cyber security conference 4SICS, T. Capture Files from 4SICS Geek Lounge. 2015. Available online: https://www.
netresec.com/index.ashx?page=PCAP4SICS (accessed on 4 August 2020).

32. Miettinen, M.; Marchal, S.; Hafeez, I.; Asokan, N.; Sadeghi, A.R.; Tarkoma, S. Iot sentinel: Automated device-type identification
for security enforcement in iot. In Proceedings of the 37th IEEE International Conference on Distributed Computing Systems,
ICDCS 2017, Atlanta, GA, USA, 5–8 June 2017; pp. 2177–2184.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00207540701881860
http://dx.doi.org/10.1109/TII.2019.2891261
http://dx.doi.org/10.1109/TII.2019.2899679
http://dx.doi.org/10.1145/233008.233034
https://github.com/sooshie/Security-Data-Analysis
https://github.com/sooshie/Security-Data-Analysis
http://vacommunity.org/VAST+Challenge+2013
https://www.netresec.com/index.ashx?page=PCAP4SICS
https://www.netresec.com/index.ashx?page=PCAP4SICS

	Introduction
	Related Work
	Preliminary
	DNN Layers
	Batch Learning and Online Learning

	Methodology
	The Deep Learning-Based Log Parsing Method
	Overview
	Word Representation
	Offline Parser
	Online Parser

	Evaluation and Results
	Experimental Methodology
	Performance of the Offline Parser
	General Performance
	Impact of Log Set Size
	Performance of Multi-Source Log Parsing

	Performance of the Online Parser
	General Performance
	Performance of Multi-Source Log Parsing

	Discussion
	Parameter Tuning of Word2vec
	Dropout Rate

	Conclusions
	References

