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Featured Application: The potential use of bacteria and their enzymes for the degradation of
plastic waste and the recovery of value-added products considering bio-up recycling for the
circular economy.

Abstract: A polyethylene terephthalate (PET)-degrading bacterium identified as Stenotrophomonas
maltophilia PRS8 was isolated from the soil of a landfill. The degradation of the PET bottle flakes and
the PET prepared as a powder were assessed using live cells, an extracellular medium, or a puri-
fied cutinase-like enzyme. These treated polymers were analyzed using Fourier transform infrared
spectroscopy (FTIR) and scanning electron microscopy (SEM). The depolymerization products, iden-
tified using HPLC and LC-MS, were terephthalic acid (TPA), mono(2-hydroxyethyl)-TPA (MHET),
and bis(2-hydroxyethyl)-TPA (BHET). Several physicochemical factors were optimized for a better
cutinase-like enzyme production by using unique single-factor and multi-factor statistical models (the
Plackett–Burman design and the central composite design software). The enzyme was purified for
homogeneity through column chromatography using Sephadex G-100 resin. The molecular weight
of the enzyme was approximately 58 kDa. The specific activity on para nitrophenyl butyrate was
estimated at 450.58 U/mg, with a purification of 6.39 times and a yield of 48.64%. The enzyme was
stable at various temperatures (30–40 ◦C) and pH levels (8.0–10.0). The enzyme activity was signifi-
cantly improved by the surfactants (Triton X-100 and Tween-40), organic solvent (formaldehyde), and
metals (NiCl2 and Na2SO4). The extracellular medium containing the cutinase-type enzyme showed
a depolymerization yield of the PET powder comparable to that of Idonella skaiensis IsPETase and
significantly higher than that of Humicola insolens thermostable HiCut (HiC) cutinase. This study
suggests that S. maltophilia PRS8 is able to degrade PET at a mesophilic temperature and could be
further explored for the sustainable management of plastic waste.

Keywords: biodegradation; PET; Stenotrophomonas maltophilia; cutinase; Plackett–Burman design;
central composite design
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1. Introduction

Cutinase-like enzymes are gaining interest because some exhibit degradation activity
on polyethylene terephthalate (PET). Since the first report on a PET-active cutinase was
published in 2005 [1], reports on PET-depolymerizing enzymes have significantly increased
in recent years, after the publication of the Ideonella sakaiensis bacterium that was able to
grow using PET as the sole carbon source [2]. It is worth emphasizing that the amorphous
domain of PET can be more accessible to an enzyme attack than crystalline domains. Indeed,
thermostabilized PETase, acting at temperatures closer to the glass transition temperature
of PET, has shown a better depolymerizing performance [3]. However, mesophilic enzymes
and microorganisms could play an important role in the systems where high temperatures
are not suitable, such as in wastewater plants.

The annual production of plastics was estimated to be 348 million tons in 2017,
of which ~90% was derived from fossil fuels [4,5]. By 2030, it is expected to increase
to 590 million tons [6]. Owing to their expanding use and versatility, plastic products
have become a part of everyday life [7]. Polyethylene terephthalate (PET) consists of
ethylene glycol (EG) and terephthalic acid (TPA) monomers linked by ester bonds. It is
considered one of the most widely used synthetic polymers and has many applications
in drinking bottles, food packaging, and textile fiber materials [8,9]. In 2017, PET
production exceeded 30 million tons. Packaging materials always rank high, accounting
for ~40% of the total plastics produced [4]. They accumulate in urban solid waste,
landfills, and oceans, causing global environmental pollution [10]. This situation has
caused severe damage to marine life and threatened some species as most plastic waste
on land ends up in water bodies [11].

Plastics are recalcitrant materials for biological degradation. However, 30,000 non-
redundant enzyme homologs with putative activity in 10 different plastic types were
recently found using bioinformatics methods [12], supporting the current trend of devel-
oping enzymatic processes for plastic recycling. Nevertheless, only a small number of
fungi and bacteria capable of partially depolymerizing PET have been experimentally
studied [13]. The crystallinity of PET is one of the main obstacles to its biodegradation.
The enzymes that hydrolyze PET are serine hydrolases, such as cutinases, lipases, and
carboxylesterases. The I. sakaiensis enzyme, PETase (PET-active enzyme), mainly produces
mono(2-hydroxyethyl) terephthalic acid (MHET) and, to a lesser extent, terephthalic acid
(TPA) and bis(2-hydroxyethyl)-TPA [2]. The cutinases are part of the α/β family of serine
hydrolases that perform ester bond hydrolysis using the canonical Ser-His-Asp catalytic
triad. PET and cutin generally share small structural features; they have ester bonds that
can be cleaved by cutinases [14,15].

Plastic pretreatment is an important process before enzymatic depolymerization. Plas-
tic crystallinity is one of the main obstacles to an enzymatic attack [16]. Therefore, several
pretreatment strategies focus on increasing the amorphization. For example, extrusion
and micronization are processes widely used in the plastic industries that amorphize and
increase the exchange surface of plastics, facilitating an enzymatic attack. These tech-
nologies have maximized PET depolymerization by using an outperforming engineered
leaf-branch compost cutinase (LCC), resulting in an outstanding depolymerization yield
in a few hours [3]. At the laboratory level and for research purposes, as in this work, PET
and other polyesters can also be dissolved in organic solvents and then precipitated as
powders [17]. These polyester powders have a lower crystallinity and are suitable for
assessing enzymatic activities. On the other hand, green plastic pretreatments should be
developed for practical purposes and industrial processes.

In the present study, a bacterial strain capable of growing in a saline medium con-
taining PET as the sole carbon source was isolated from landfill soil. This strain was
identified as Stenotrophomonas maltophilia. S. melophilia is a gram-negative bacterium and
belongs to the γ-proteobacteria. It is present in water, soil, and plant rhizospheres and is
considered an opportunistic pathogen [18]. This species has previously been reported to
play a role in the bioremediation of various contaminants, including xenobiotics, oils, dyes,
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and polyaromatic hydrocarbons (PAHs) [19–21]. However, to our knowledge, this is the
first report of the PET-depolymerizing activity of an S. melophilia strain, and the purification
of an enzyme associated with this activity.

The S. melophilia PRS8-degrading activity of the plastic was assessed using plastic
weight loss, Fourier transform infrared spectroscopy (FTIR), and scanning electron mi-
croscopy (SEM). An enzyme with a cutinase-like activity was purified from a bacterial
enzyme production culture optimized for nutrients and physical parameters using the
Plackett–Burman and central composite design. The enzyme was purified for homo-
geneity and characterized to determine its stability and activity, using p-nitrophenyl
butyrate as the substrate. The enzymatic depolymerization of the PET flakes and pow-
ders was assessed by detecting and quantifying the PET hydrolysis products using
high-performance liquid chromatography (HPLC) and liquid chromatography-mass
spectrometry (LC-MS).

2. Materials and Methods
2.1. Chemicals

The PET flakes from mineral water bottles (Nestle) were used in this study. The PET
beads were obtained from Indorama. The nutrient broth (NB) and nutrient agar (NA) were
obtained from Merk (GmBH, Darmstadt Germany). A p-nitrophenyl butyrate (p-NPB)
standard solution (12 mM) in isopropanol was utilized. Methanol (MeOH), 1,1,1,3,3,3-
Hexafluoropropan-2-ol (HFIP) (≥99%), and chloroform (CHCl3) (stabilized with 0.6%
ethanol) were purchased from VWR Chemicals (Radnor, PA, USA). All the other media
and chemicals utilized in this study were of the highest commercial quality.

2.2. Collection of the Samples and the Isolation of the Bacteria

The soil samples were collected from a garbage dump. The bacterial strains were
isolated using serial dilutions and cultured on NA plates at 37 ◦C for 24 h. Then, the
isolated colonies were transferred to the NA broth for propagation and further analysis.

2.3. Screening of the Bacterial Isolates for PET Degradation

A total of 24 isolated bacterial strains were subjected to the PET biodegradation
screening. The assays consisted of assessing the ability of the bacteria to grow in a salt media
MSM [21] (composition in g/L: 1.0 K2HPO4, 0.2 KH2PO4, 0.1 NaCl, 0.002 CaCl2.2H2O,
0.1 (NH4)2SO4, 0.5 MgSO4.7H2O, and 0.01 FeSO4.7H2O) with a PET flake as the sole
carbon source. The PET flakes were washed with autoclaved water and sterilized with
70% ethanol, followed by exposure to UV light for 5 min. No differences between the PET
exposed and not exposed to UV light were detected through the FTIR spectroscopy analysis
(Supplementary Materials S1 and Figure S1). The cultures were prepared in 100 mL of a
culture medium in a 250 mL shake flask and incubated under shaking (150 rpm) at 35 ◦C
for one week. To enrich the potential degrading bacteria, 1 mL of the previous cultivation
was inoculated in the same medium with PET and incubated under the same conditions
for four consecutive times. A strain designated PRS8 was selected for further studies based
on its maximum growth.

2.4. Biofilm Assay for Bacterial Strain

The capacity of S. maltophilia PRS8 for the biofilm formation on PET was assessed
using a crystal violet staining method [22,23] adapted to the PET sheets. S. maltophilia
PRS8 was inoculated into the wells of a microtiter plate containing the pre-sterilized PET
flakes and incubated at 35 ◦C for 48 h. The biofilm-producing Pseudomonas aeruginosa
was used as a positive control, whereas the negative control was an uninoculated well.
After incubation, the PET flakes were transferred into clean Eppendorf tubes and washed
gently with sterilized deionized water three times. The PET flakes were then stained
using 0.5% crystal violet for 15 min and washed three times with water. After air drying,
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the samples were de-stained using 30% acetic acid for 15 min. After staining, the colored
samples indicated the presence of a bacterial biofilm on the PET.

2.5. Identification of the Bacterial Strain PRS8

The genomic DNA from the strain PRS8 was extracted using an Eco-Pure Genomic kit
(Product ode # E1075). The 16S rRNA gene was amplified using the universal primers F-
(ATTCTAGAGTTTGATCATGGCTCA) and R-(TACACACCGCCCGTCACACGGTACCAT).
The PCR reaction mixture consisted of 1 µL of each primer (10 mM), 10 µL of a Go-Taq
buffer, 3 µL of MgCl2 (25 mM), 1 µL of dNTPs (10 mM), 0.5 µL of Taq polymerase, 1 µL
of a DNA template (87 µg/mL) and 32.5 µL of deionized water. The temperature cycles
were for DNA denaturation at 95 ◦C for 3 min, annealing at 55 ◦C for 1 min, and extension
at 72 ◦C for 1 h and 40 secs per cycle for a total of 36 cycles. The reaction mixture was
incubated at 72 ◦C for 7 min for the final elongation. The PCR products were sent for
sequencing, and the gene sequence was deposited in a GenBank (accession code OK510364).
The sequences showing > 95% similarity were downloaded from the EzBioCloud database
(www.ezbiocloud.net (accessed on 11 October 2021)) to construct a phylogenetic tree using
the neighbor-joining method with the MEGA-X software [24].

2.6. Polycaprolactone Agar for Cutinase Activity

Polycaprolactone (PCL) agar plates were used to examine the polyesterase activity in
the isolated S. maltophilia PRS8. The plates were prepared using 1 g/L of polycaprolactone
(10 g/L of peptone, 0.2 g/L of CaCl2.2H2O, 5 g/L of NaCl, and 20 g/L of agar). The cultures
were then incubated at 35 ◦C for 48 h. The clear zones around the colonies indicated the
production of polyesterase [25].

2.7. Biodegradation of PET by S. maltophilia PRS8

Two milliliters of the overnight grown culture of S. maltophilia PRS8 in the nutrient
broth was centrifuged for 10 min at 10,000× g and the pellet was resuspended in 500 µL of
9 g/L NaCl. The sterilized PET water bottle pieces (2 cm × 2 cm), each weighing 30 mg,
were added to 100 mL mineral salt medium (MSM) in an Erlenmeyer flask and inoculated
with the PRS8 cells. A control with the PET flakes in the bacteria-free MSM was used
separately. The flasks were incubated in a shaker incubator at 35 ◦C and 150 rpm for 28 d.
The biodegradation was evaluated using analytical techniques, such as FTIR, SEM, and the
percentage weight loss assessment at the end of the experiment.

2.8. Analysis of the Degradation of PET by S. maltophilia PRS8
2.8.1. Determination of the Dry Weight of the Residual PET

The PET flakes were recovered after incubation and washed for 15 min in a 2% aqueous
solution (v/v) of sodium dodecyl sulphate (SDS). After they were rinsed with distilled
water, the pieces were dried overnight at 60 ◦C and then weighed [26].

2.8.2. Fourier Transform Infrared (FTIR) Spectroscopy

The PET flakes were subjected to FTIR spectroscopy (8400 Shimadzu, Kyoto, Japan, with
Hyper IR- 1.7 software for Windows). The FTIR spectra were normalized at 1410 cm−1 (aromatic
ring vibrations) according to the literature [27,28]. The spectra of the treated and control PET
flakes were recorded in a frequency range of 4000–400 cm−1 at a resolution of 4 cm−1 and at an
ambient temperature using a helium–neon laser lamp as a source of IR radiation.

2.8.3. Scanning Electron Microscopy (SEM)

Changes in the surface morphology of the PET flake pieces after incubation with S.
maltophilia PRS8 were determined using a scanning electron microscope (JSM-IT100). The
PET flakes were washed, as described in Section 2.8.1, and were gold-painted. The gold
painting was performed under a vacuum using evaporation to increase the conductivity

www.ezbiocloud.net
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of the samples. The PET piece from the control was examined along with the test sample
for comparison.

2.8.4. Preparation of the PET Powder

Two grams of the PET beads (Supplier: Indorama RamaPET N180, Klaipeda, Lithuania)
was dissolved in 50 mL of a mixed solvent of chloroform and HFIP (8:2), precipitated into
250 mL of methanol, and washed with methanol (3 × 100 mL). Subsequently, the obtained
powders were dried under a vacuum at 50 ◦C for 24 h prior to the degradation studies.

2.9. Standard Assay of the Esterase/Cutinase Activity

The reaction mixture was prepared at a final volume of 1800 µL. It consisted of
12 mM of p-nitrophenyl butyrate (p-NPB) as the substrate, 100 mM of the phosphate
buffer adjusted to pH 8.0, 200 µL Triton X-100, and 200 µL of the sample containing the
enzyme or the control (without the enzyme). Before adding the enzyme, the mixture was
pre-incubated at 40 ◦C for 10 min and then at 37 ◦C for 1 h. The reaction was stopped
using frizzing at −20 ◦C for 15 min. The absorbance of p-nitrophenol was determined
spectrophotometrically at 410 nm. The enzymatic unit was defined as the production of
1 µM of p-nitrophenol per minute.

2.10. Optimization of the Physicochemical Parameters for the Cutinase Production in S.
maltophilia PRS8

The fermentation parameters such as the temperature (25–45 ◦C), pH (5.0–10.0) in-
cubation time (24–72 h), and inoculum size (0.1–5%) were optimized for the maximum
production of the cutinase-like enzyme. Freshly grown cultures of PRS8 were inoculated
into a production medium consisting of 0.8% nutrient broth, 0.3% Na2HPO4, and 0.4%
tomato cutin, as previously described [29]. The cultures were incubated in a shaking
incubator at 150 rpm and 35 ◦C for 24 h. The samples were collected every 24 h, cen-
trifuged at 10,000× g at 4 ◦C for 10 min, and the supernatants were processed to determine
the enzyme activity and the protein estimation using the previously described methods
(Section 2.9). The optimization was based on a Plackett–Burman design (PBD) and a central
composite design (CDC) experiment, as described in the Supplementary Materials (S2).
A Fisher test (F-test) ANOVA and its accompanying probability P were used to statistically
analyze the model (F). A total of 10 components were optimized using the PBD, which
included glucose (NH4)2SO4, sucrose, NaNO3, K2HPO4, yeast extract, MgSO4.7H2O, KCl,
FeSO4.7H2O, cutin, and Na2HPO4. The optimized media was used for the bulk production
of the enzyme.

2.11. Bulk Production of the Crude Cutinase-like Enzyme

The enzyme was produced by cultivating S. maltophilia PRS8 in a 1000 mL production
medium with an optimal composition. It consisted of 13.0 g/L of glucose, 5.5 g/L of
(NH4)2SO4, 11.0 g/L of sucrose, 11.0 g/L of NaNO3, 3.0 g/L of yeast extract, 2.0 g/L
of K2HPO4, 2.0 g/L of MgSO4.7H2O, 3.0 g/L of KCl, 9.0 g/L of cutin, and 3.0 g/L of
Na2HPO4. The pH of the solution was adjusted to 8.0. The culture was inoculated with 2%
of a 16 h fresh culture of S. maltophilia PRS8 and incubated at 35 ◦C and 150 rpm for 48 h.
The cell-free supernatant was collected after centrifugation at 10,000× g for 10 min at 4 ◦C
and further processed for the enzyme purification.

2.12. Purification of the Cutinase-like Enzyme

First, the protein fraction of the cell-free supernatant was precipitated by gently adding
solid ammonium sulfate at 4 ◦C until saturation (70%). The solution was centrifuged
(10,000× g) at 4 ◦C for 10 min, and the precipitates were resuspended in a potassium phos-
phate buffer (pH 8.0). The residual ammonium sulfate was completely removed through
dialysis against the phosphate buffer, yielding a solution containing the crude enzyme. The
cutinase-like enzyme was purified through gel permeation chromatography [30] using the
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Sephadex G-100 packaged into a glass column 27 cm in length and 3 cm in diameter and
equilibrated with a phosphate buffer (pH 8.0). Three milliliters of the crude enzyme were
loaded onto the column, and elution was performed with the phosphate buffer (pH 8.0)
at a flow rate of 3.0 mL/5 min. The fractions with a high activity (assay in Section 2.9)
were pooled. The purity and molecular weight were determined using sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a standard protein marker
(Bio-Rad, Hercules, CA, USA).

2.13. Zymography

The cutinase-like activity was confirmed through zymography using α-naphthyl
acetate as the substrate. The gel was incubated in 20 mM of the Tris-HCI buffer (pH 6.5)
with 2% Triton X-100 for 10 min, followed by incubation in 50 mM of the phosphate buffer
(pH 7.5) supplemented with 1 mM of Fast Red TR and 3 mM of α-naphthyl acetate (Sigma,
St. Louis, MO, USA) at room temperature for up to 3 h to observe the red band, which
indicated the cutinase-like activity [31].

2.14. Effect of the Temperature and pH on the Cutinase Activity and Stability

The effect of the temperature on the enzyme activity was determined at 30–60 ◦C. The
effect of the pH was studied over a pH range of 3.0–11.0 at 40◦ for 150 min. The following
buffers (100 mM) were used: a sodium acetate buffer, pH 3.0–5.0; a potassium phosphate
buffer, pH 6.0–8.0; and a glycine-NaOH buffer, pH 9.0–11.0. The activities were determined
using the standard assay described in Section 2.9.

2.15. Effect of the Metals Ions

Two different concentrations of metal ions, 2 mM and 15 mM, for Ba2+, Ca2+, Cu2+,
Mg2+, Zn2+, K+, Hg2+, Fe2+, Ni2+, Co2+, Ni2+, and Na+ were assessed. The results were
expressed in terms of the residual activity (%) after 150 min at 40 ◦C using the standard
assay protocol (Section 2.9).

2.16. Effect of the Organic Solvents and the Surfactant

Various solvents, such as ethanol, methanol, acetonitrile, acetone, ethyl acetate,
propanol, butanol, and formaldehyde, and surfactants, such as sodium dodecyl sulfate
(SDS), Tween-20, Tween-80, and Triton X-100, were used in the enzymatic reactions for
120 min at 40 ◦C, and the residual activity was calculated using the standard assay condi-
tions (Section 2.9).

2.17. Enzymatic Depolymerization of the PET Flakes

Fifty milligrams of the PET flakes were treated with 0.7 mg of the enzyme in 100 mM
of potassium phosphate buffer, pH 8.0. The total reaction volume was 3 mL. The reaction
mixture was incubated for 72 h at 40 ◦C with shaking at 250 rpm [17]. The experiment was
performed in triplicate and included a negative control without the enzyme.

2.18. Analysis of the Enzymatic Depolymerization Products

The products of the PET enzymatic depolymerization were analyzed using reverse
phase liquid chromatography-mass spectrometry (LC-MS). A measure of 0.5 mL of the
sample was collected after incubation and diluted at a 1:1 ratio with dimethyl sulfoxide
(DMSO) and filtered through a 0.2 µm syringe filter. The sample was then shifted into an
Amicon Ultra filtration assembly (Pall Life Sciences, Ann Arbor, MI, USA) and centrifuged
using a Nanosep 3 K centrifugal device at 15,000× g for 20 min to remove the enzyme.
The filtrate was diluted with Milli-Q water in 1:2 and was used for the analysis of the
degradation products through LC-MS.
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2.19. Specifications for the LC-MS Equipment

The PET depolymerization products were determined using the LC-MS analysis.
The instrument consisted of a QExactive mass spectrometer coupled with a HESI source
from Agilent and an HPLC system. A hydrophobic C18 column (Kinetex® 1.7 µm XB-C18
100 Å, LC Column 50 × 2.1 mm) was used to analyze the products of the sample. The
flow rate was 400 µL/min. The mobile phase consisted of acetonitrile (A,20%) and 0.1%
formic acid (B,80%). The data were processed using the Chromeleon v. 6.8 software.
The autosampler temperature was fixed at 4 ◦C, with an injection volume of 15 µL. The
sample data were collected in the full scan mode between m/z (100–1500) in negative
ionization with a maximum resolution of 70,000 at 1 Hz, an injection time of 200 ms, and
an AGC target of 3e6.

2.20. DSC Analysis of the Residual PET

The differential scanning calorimetry (DSC) measurements were performed using a TA
Instruments DSC Q2000. The thermal transitions of the powders of pristine PET (untreated)
and PET treated with PRS8 were studied using nitrogen with a purge rate of 50 mL min−1

and a heating rate of 10 ◦C per minute. The samples were heated from room temperature
to 280 ◦C. The glass transition temperature (Tg), cold crystallization temperature (Tcc) and
melting temperature ™ were obtained from the DSC first heating curve. The crystallinity
percentage was calculated using the following equation:

Crytallinity % ( f irst heating cycle) =
(∆Hm − ∆Hcc)

(∆H◦m)
× 100 (1)

where ∆Hcc and ∆Hm are the heat of the cold crystallization (area under the cold crystal-
lization) and the heat of melting (area under the melting transition), respectively. ∆H◦

m is
the heat of melting for a 100% crystalline polymer estimated to be 140 J/g [17,32].

3. Results
3.1. Isolation and Identification of the PET-Degrading Bacteria S. maltophilia PRS8

Initially, 24 bacterial strains were screened for PET biodegradation from the plastic-
contaminated soil. By the end of the experiment, only three bacterial strains, designated
PRS3, PRS6, and PRS8, survived and grew very well during the rigorous screening period
while utilizing PET as the sole carbon source. The strain PRS8 was selected for further
study based on its rapid growth in the presence of PET.

PRS8 grew as yellowish, pointed, and small colonies on nutrient agar plates. The
microscopy was found to be gram-negative. The biochemical characterization yielded posi-
tive results for citrate, urease, and catalase. The gene sequencing of 16S rRNA revealed the
closest alignment to the phylum Pseudmonadota, genus Stenotrophomonas. A phylogenetic
tree constructed using the neighbor-joining method presented a 99% similarity of PRS8 to
Stenotrophomonas maltophilia. The sequence was submitted to the NCBI database under the
accession number OK510364 (Figure 1).
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position of the Stenotrophomonas maltophilia PRS8 strain and the representatives of some other related
taxa. For out group, Halomonas elongata was used.

3.2. Biofilm Assay of S. maltophilia PRS8

S. maltophilia PRS8 formed significant amounts of biofilms on both a microtiter plate
and the PET flakes after 48 h. It was comparable to the positive control, Pseudomonas
aeruginosa (Figure 2A,B), and suggested its capability to grow attached to some plastics.
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Figure 2. Biofilm-forming ability of S. maltophilia PRS8 compared to that of A. aeruginosa using
a crystal violet assay. (A) Biofilms formed on the PET flakes. (B) Biofilms on a microtiter plate.
(C) Absorbance (600 nm) of the attached cells after treatment with 30% acetic acid. The error bars
represent the standard deviation.

3.3. Qualitative and Quantitative Assay for the Cutinase Activity by S. maltophilia PRS8

The qualitative assays were performed by cultivating S. maltophilia PRS8 on a PCL agar
plate and incubating it at 35 ◦C for 48 h. After incubation, the clear zones were observed
around the bacterial colonies, revealing the hydrolytic action of the extracellular enzyme
against PCL (Figure 3A).
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Figure 3. Expression of the cutinase activity by the S. maltophilia PRS8 strain. (A) Clear zone around a
colony on the PCL agar showed putative cutinase activity. (B) Putative cutinase enzyme activity and
the total protein in the cell-free supernatant by the S. maltophilia PRS8 strain during the biodegradation
of PET as a carbon source in the MSM media.

The enzyme activity was determined in the samples collected from the degradation
experiment every 48 h. A gradual increase in the putative cutinase activity and the protein
content was observed during the first few weeks, followed by a gradual reduction at the
end of the experiment. The maximum cutinase activity was measured as 39.74 U/mL with
a protein content of 0.25 mg/mL after 22 days of incubation (Figure 3B).

3.4. Analysis of PET Depolymerization by S. maltophilia PRS8
3.4.1. Determination of the Dry Weight of the Residual PET after Film Degradation

The PET flakes were recovered from both the test and control flasks at the end of the
experiment after 28 d, and their weights were measured. Approximately 1.2% of the loss
weight of the PET flakes was determined, while no weight loss was found (Figure 4).
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Figure 4. Percent of the weight reduction in the PET flakes by the S. maltophilia PRS8 strain.
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3.4.2. Fourier-Transform Infrared (FTIR) Spectroscopy

The PET flakes treated with S. maltophilia PRS8 and the untreated PET flakes (control)
were analyzed using FTIR. The FTIR spectra were normalized at 1410 cm−1 (aromatic
ring vibrations), according to the literature [27]. The characteristic peaks (722, 870, 1016,
1098, 1244, and 1713 cm−1) [28] were clearly observed (full spectra in the Supplementary
Materials, Figure S3). The treated PET slightly reduced the intensity of the FTIR peaks at
722, 1098, 1242, and 1714 cm−1 (Figure 5) compared to the untreated PET flakes, indicating
a surface degradation by S. maltophilia PRS8.
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3.4.3. Scanning Electron Microscopy (SEM)

Changes in the surface morphology of the PET flakes were analyzed using SEM. PET
treated with S. maltophilia PRS8 showed holes, cracks, and roughness at different points,
while the untreated controls did not. These changes clearly indicated an enzymatic effect
on the PET flakes during incubation with cutinase from S. maltophilia PRS8 (Figure 6A,B).
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3.5. Parameter Optimization for Enzyme Production by S. maltophila PRS8

The maximum specific activity of the enzyme was obtained at 35 ◦C, pH 8.0, and an
inoculum size of 2% after 48 h of incubation (p < 0.05).

3.5.1. Plackett–Burman Design for Optimizing the Nutritional Condition

The PBD explained the influence of each element on the cutinase-like activity and
its statistical significance. The maximum activity was obtained in trial 14 (313.96 U/mg)
(Supplementary Materials, Table S1). Of the 11 factors, cutin, NaNO3, and (NH4)2SO4 were
found to have a considerable influence on cutinase-like enzyme production, as apparent
from the values of “Prob > F” for each element (Figure 7A). The model equation for the
enzyme activity (U/mg) (R) is expressed as follows:

Specific activity (U/mg) = 169.39 + 20.51A + 5.78B − 2.27C + 34.34D + 11.90E + 2.74G + 4.27H + 46.82J − 6.53K + 22.26L
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Figure 7. Pareto chart and a three-dimensional response surface plot showing the significant factor
with respect to the effect on the enzyme production. (A) Pareto chart showing the effect of the t-value
by the important factors [J, cutin; D, NaNO3, and L (NH4)2SO4] generated by the PBD. (B) Design
of the 3D response surface plot of cutin and (NH4)2SO4. (C) Design of the 3D response surface
plot between cutin and NaNO3. (D) Design of the 3D response surface plot between NaNO3 and
(NH4)2SO4.

The calculated model F-value was 9.56 with “Prob F” values < 0.050 and identified that
the model was statistically significant. According to the model, there was a high “F-Value”
of 3.81% attributed to noise. The “Prob F” values < 0.050 also showed that the model was
significant (Supplementary Materials, Table S2).

3.5.2. Optimization of the Significant Variable Using a Central Composite Design

A two-level CCD was used to screen the significant components obtained by the
PBD. The model included three elements and their influence on the enzyme activity
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in twenty runs: cutin (A), NaNO3 (B), and (NH4)2SO4 (C) (Supplementary Materials,
Table S3). The linear terms A, B, and C and the interactive terms AB, AC, and BC
were the significant model terms (Supplementary Materials, Table S4). The following
second-order polynomial equation obtained using the multiple regression analysis of
the experimental data describes the effect of cutin, NaNO3, and (NH4)2SO4 in enzyme
production expressed as the activity (U/mg):

Specific. Activity (U/mg) = 221.45 + 31.51A + 51.23B - 14.30C + 77.22AB + 51.02AC - 51.51BC

The model was found to be statistically significant, as implied by an F-value of 6.70 (p
< 0.050), In the model, there was a 0.21% chance that an “F-value” this large could occur due
to the noise. The response surface plot (AB) in (Figure 7C) showed that both factors had a
potential influence on the cutinase-like activity, with a maximum regression coefficient of
77.22, followed by AC (51.02) and BC (51.19) (Figure 7B,D).

3.6. Purification of the Cutinase-like Enzyme from S. maltophilia PRS8

A cutinase-like enzyme was successfully purified using size exclusion chromatography.
Its molecular mass was determined to be 58 kDa using SDS-PAGE (Figure 8B). Table 1
shows the various steps taken during the purification to measure the specific activity,
purification fold, and maximum yield.
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Figure 8. Purification profile of the cutinase-like enzyme. (A) Total protein and activity profile by
Stenotrophomonas maltophilia PRS8 through the Sephadex G-100 gel filtration column (B) SDS-PAGE of
cutinase by the S. maltophilia PRS8 strain after purification using column chromatography. Lane 1,
Zymogram; Lane 2, Eluate from Sephadex G-100; Lane 3, Protein marker 11–245 kDa.

Table 1. Purification steps of the cutinase-like enzyme from the S. maltophilia PRS8 strain.

Purification
Steps Volume (mL) Activity

(U/mL)

Total
Activity
(Units)

Protein
(mg/mL)

Specific
Activity
(U/mg)

Yield
(%)

Purification
Fold

Crude
Extract 500 138.13 69,068.18 1.65 70.47 100 1

(NH4)2SO4 200 260.40 52,081.82 1.18 153.42 75.40 2.17
Sephadex
(G-100) 90 373.28 33,595.91 0.75 450.58 48.64 6.39
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3.7. Characterization of Purified Cutinase
3.7.1. Effect of Temperature and pH on the Activity and Stability

The purified cutinase-like enzyme from S. maltophilia PRS8 showed a maximum
activity at a temperature between 30–40 ◦C, with an optimum temperature achieved at
40 ◦C. The enzyme was found to be stable at 40 ◦C, retaining 95% of its activity for 150 min
(Figure 9A). The purified cutinase revealed a maximum activity at a wide range of pH levels
(7.0–10.0), with an optimum pH of 8.0. The enzyme was stable at pH 8.0–9.0, retaining
100% activity at pH 8.0 for 150 min (Figure 9B).
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Figure 9. Effect of the temperature and pH on the activity and stability of the purified cutinase-like
enzyme from the S. maltophilia PRS8 strain. (A) Temperature profile. (B) Profile of the pH.

3.7.2. Effect of Metals Ions

Effects of the various monovalent and divalent metals on the cutinase activity were
evaluated at 2 and 15 mM (Table 2). Ca2+, Zn2+, K+, and Mg2+ enhanced the enzyme
activity at both concentrations (p < 0.005), whereas Hg2+, Ni2+, Cd2+, Ba2+, and Co2+

strongly inhibited the cutinase-like activity.

Table 2. Effect of metal ions on the activity of the cutinase-like enzyme from the S. maltophilia
PRS8 strain.

Metals
Residual Activity (%)

15 mM 2 mM

Control 100 ± 0.0 100 ± 0.0
Ca2+ 111.32 ± 0.6 102.34 ± 0.5
Fe2+ 98.82 ± 0.7 100.39 ± 0.6
Cu2+ 107.81 ± 1.0 100.78 ± 0.2
Co2+ 55.85 ± 0.2 58.98 ± 0.3
Ni2+ 100.39 ± 0.4 100 ± 0.1
Zn2+ 114.45 ± 0.5 107.42 ± 0.4
K+ 115.23 ± 0.5 111.71 ± 0.3

Cd2+ 1.95 ± 0.2 3.51 ± 0.3
Na+ 85.54 ± 0.1 91.79 ± 0.2

Mg2+ 107.42 ± 0.4 105.07 ± 0.3
Ni2+ 71.48 ± 0.3 66.01 ± 0.5
Hg2+ 0 ± 0.00 0 ± 0.00
Ba2+ 54.29 ± 0.1 55.46 ± 0.3
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3.7.3. Effect of the Organic Solvent and Surfactants

The influence of the various organic solvents on the cutinase activity was analyzed by
incubating the enzyme in a solution containing a 10% solvent for 120 min (Table 3). Among
the solvents, methanol, propanol, and acetone increased the cutinase activity, whereas
ethanol and butanol suppressed the enzyme activity over time (p < 0.05). The effect of the
surfactants on the enzyme activity was evaluated by treating of purified enzymes with
0.5 and 5% of each surfactant. Among the surfactants, Tween-20, Triton X-100, Tween-40,
Tween-60, and Tween-80 strongly enhanced the cutinase activity at both concentrations,
whereas CTAB and SDS suppressed the cutinase-like activity (Table 4).

Table 3. Effect of the organic solvents on the activity of the cutinase-like enzyme from the S. maltophilia
PRS8 strain.

Organic
Solvents (10%)

Residual Activity % (Min)

30 min 60 min 90 min 120 min

Control 100 100 100 100
Ethanol 54.26 54.26 45.29 42.60

Methanol 104.03 103.13 98.65 91.03
Acetonitrile 93.27 90.13 91.03 83.40

Acetone 97.03 96.86 96.41 95.51
Ethyl Acetate 103.13 98.65 96.41 92.82

Propanol 105.82 101.79 101.34 100
DMSO 98.20 95.06 94.61 94.17
Butanol 65.08 50.67 49.32 28.25

Formaldehyde 94.61 89.68 85.65 85.20

Table 4. Effect of the surfactant on the activity of the cutinase-like enzyme from the S. maltophilia
PRS8 strain.

Surfactants
Residual Activity (%)

0.5% 5%

Control 100 ± 0.00 100 ± 0.00
Tween-20 109.41 ± 0.30 106.66 ± 0.53
Tween-40 112.54 ± 0.72 116.47 ± 0.30
Tween-60 110.98 ± 0.81 110.58 ± 0.90
Tween-80 113.72 ± 0.70 105.09 ± 0.54

CTAB 11.76 ± 0.40 7.84 ± 0.31
SDS 0 ± 0.00 0 ± 0.00

Triton X-100 109.80 ± 0.21 112.15 ± 0.12

3.8. PET Bottle Flakes Degradation Products

The PET bottle flakes treated with the purified enzyme (pH 8 and 40 ◦C) produced
terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl)
terephthalate (BHET). These products were identified using LC-MS (Figure 10). TPA eluted
after ~2.51 min, while MHET and a trace amount of BHET eluted after ~3.93 and ~20.60
min, respectively. These results confirmed the PET hydrolyzing activity of the cutinase-like
enzyme from S. maltophilia PRS8.
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Figure 10. Analysis of the degradation products of the PET bottle flakes using the cutinase-like
enzyme. (A) Chromatogram of the product’s profile. (B) Mass spectra confirmed the identity of TA,
MHET, and BHET.

3.9. Activity on the PET Powder

The extracellular fraction (ECF) containing the cutinase-like enzyme activity against
the semicrystalline PET powder was assessed after 72 h of reaction at 40 ◦C and a pH
of 9. The product (BHET, MHET, and TPA) peaks obtained using HPLC were regarded
as the terephthalic acid equivalents (TPAeq), assuming that they all had the same molar
extinction coefficient e = 17.000 M−1 cm−1 due to the presence of the aromatic ring. Thus,
the total amount of the degraded polymer was calculated by the TPAeq and the molecular
weight 192 g/mol, corresponding to the PET repeating unit [17]. DMSO was used as the
co-solvent to maximize the solubility of the depolymerized products. No products were
detected in the negative controls (DMSO, PET, and the buffer) under the same conditions.
The enzyme concentration in the extracellular medium was estimated from the total protein
concentration and the enzyme fraction (58 kDa band) using SDS-PAGE. The PET depoly-
merization yield was 22.5%, with the main product being MHET, followed by TPA, and a
small fraction of BHET (Table 5). Interestingly, these results were comparable with those of
Ideonella sakaiensis IsPETase and superior to those of the thermostable cutinase HiCut from
Humicola insolens (Table 5).
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Table 5. PET powder depolymerization activity of the extracellular medium of S. maltophilia PRS8
compared to that of the enzymes. The reaction times were 72–73 h.

Enzyme Ratio
(E/PET) T (◦C) pH Degradation

Products (mg/L)
Relative Production (%) PET

Depolymerization
(%)

Ref.
TPA MHET BHET

Extracellular
medium 0.005 * 40 9 2246 38 60 2 22.5 This work

IsPETase 0.004 37 7.2 2304 24.2 73.7 2.1 23 [17]
Trx-

IsPETase 0.005 37 7.2 3230 31.5 66.7 1.8 32 [17]

HiCut
(HiC) 0.008 70 7.5 437 100 n.d n.d 12.7 [33]

* Estimated ratio based on the cutinase-like enzyme fraction present in the extracellular medium.

Thermal Properties and the Crystallinity of the PET Powders

The crystallinity and thermal properties of the treated (with the ECF) and untreated
PET powders were analyzed using DSC (Figure 11 and Table 6). The glass transition of the
untreated PET powder was clearly observed in the first heating curve (Tg ~83 ◦C). In the
case of the treated PET powder, the Tg was not clearly observed on the first heating curve,
probably due to overlapping with the onset of the cold crystallization process (~85 ◦C). The
Tg of the treated PET powder was observed in the second heating curve (Supplementary
Materials, Figure S3). It was observed that the temperature for the cold crystallization peak
(Tcc) became lower after the ECF treatment (110 ◦C compared to 127 ◦C for the untreated
PET powder), which was accompanied by a lowered enthalpy for the cold crystallization
(∆Hcc ~2.9 J/g compared to 9.0 J/g for the pristine PET powder, Table 6). In addition, an
increased Tm (247 ◦C) and crystallinity (21.1%) were observed after the PET powder was
treated with the ECF (compared to the Tm of ~242 ◦C and crystallinity of 19.3% for the
pristine PET powder). This result suggested that the degradation of the bulk PET materials
presumably occurred (or occurred faster) in the amorphous region of the PET powder,
which increased the relative content of the crystalline regions.
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Table 6. Properties of the PET powder untreated and treated with the extracellular medium containing
the cutinase-like enzyme.

Polymer Tg
(◦C)

Tcc
(◦C)

Tm
(◦C)

∆Hcc
(J/g)

∆Hm
(J/g)

Crystallinity *
(%)

PET
(untreated) 83 127 242 9.0 35.9 19.3

PET
(treated) - 110 247 2.9 32.4 21.1

* The crystallinity was calculated using Equation (1).

4. Discussion

S. maltophilia is a ubiquitous bacterium that has gained interest for its potential ap-
plications in bioremediation and agriculture, but at the same time, with concern as an
emerging opportunistic pathogen with multidrug resistance to antibiotics [18]. The strain
S. maltophilia PRS8, isolated from a landfill soil sample in this work, was not subjected to
pathogenicity or antibiotic resistance studies. However, their ability to form biofilms was
revealed using a crystal violet assay. This property was associated with the colonization of
various hydrophobic surfaces and infection processes in opportunistic strains [23].

Biofilm formation seems to be an important property of plastic-degrading bacteria.
For example, the biofilm formation by Rhodococcus ruber could induce a partial biodegra-
dation of polystyrene by with a gravimetric weight loss up to 0.8% after eight weeks [34].
S. maltophilia PRS8 also formed biofilms on the polystyrene microtiter plates and PET
flakes. Indeed, the PET flakes without pretreatment degraded by a gravimetric weight
loss of up to 1.2% over 28 days. The chemical composition of the S. maltophilia PRS8
biofilm is not yet known. However, biofilms not only facilitate cell adhesion to the plastic
flake but also provide a suitable matrix for the interaction between the extracellular
enzymes and the solid polymer [34]. In fact, the interaction mechanisms between the
biofilm and plastics are not yet clearly understood.

The ability of S. maltophilia PRS8 to degrade PCL indicates its production of an extra-
cellular cutinase-like enzyme. PCL (114.1424 Da) is a biodegradable aliphatic synthetic
polyester that shares some similarities with cutin, a natural polyester composed of hydroxy
and epoxy fatty acids [35]. PET, however, is an aromatic polyester, and several cutinases
have also shown the depolymerizing activity on PET [36]. The PET bottle flakes treated
with S. maltophilia PRS8 showed a clear roughness and cracks in the SEM analysis, and
a slightly reduced intensity of the characteristic PET peaks between 700 and 1800 cm−1

in the FITR analysis, compared to the non-treated PET. These results provide physical
and chemical evidences of the PET degradation capability of S. maltophilia PRS8 with the
participation of a cutinase-like enzyme.

The optimal nutritional conditions to produce a cutinase-like enzyme using
S. maltophilia PRS8 were obtained using the Plackett–Burman and central composite
experimental designs. The optimum activity of using p-NP-butyrate as a substrate was
achieved at 35 ◦C and a pH of 8.0 after 48 h. Cutin, NaNO3, and (NH4)2SO4 showed a
positive effect on the maximum production of the cutinase-like enzyme. These results
revealed that cutin induced the production of the enzyme, while the salts provided the
nitrogen required for the bacteria growth and the enzyme synthesis. The analysis of the
reciprocal interactions showed that the specific activity of the enzyme was enhanced
when cutin, NaNO3, NaNO3, and (NH4)2SO4 increased in the concentrations, and when
cutin increased and (NH4)2SO4 decreased. A similar result was reported for the esterase
production from Pseudomonas aeruginosa S3 [37].

A cutinase-like enzyme was successfully purified for homogeneity from the extracellu-
lar medium of S. maltophilia PRS8. It was obtained at 450.58 U/mg with a 6.39 purification
fold. The molecular weight was approximately 58 kDa. The enzyme activity was optimal
at 40 ◦C and a pH of 8.0 and was found to be stable at a wide range of temperatures (30
to 40 ◦C) and pH levels (8.0 to 10.0). Indeed, the S. maltophilia species was an attractive
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source of ester-active enzymes, and some lipases and esterases were cloned and charac-
terized (Table 7). The first characterized lipase for this genus was named LipSM54 and
was described as cold-active, solvent-tolerant, and alkaline [38]. A thermostable lipase,
LipSm [39], and a thermostable-alkaline-stable esterase [40] were also cloned and character-
ized. The gene sequences of the cutinase-like enzyme purified in this work is unknown.
However, it differs from the cloned ester-active enzymes in terms of the molecular weight
and optimum temperatures. In addition, the cloned enzymes were not tested against the
natural or synthetic polyesters. The purified cutinase-like enzyme from S. maltophilia PRS8
produced TPA, MHET and BHE from the PET flakes. A similar product profile was also
found after the treatment of PET with PETases [17] and cutinases [33].

Table 7. Ester-active enzymes from S. maltophilia.

Enzyme Strain MW (kDa) Sequence
(GenBank)

Optimum
Temperature (◦C) Optimum pH Reference

Cutinase-like PSR8 58 Unknown 40 8.0 This work
Lipase (LipSM54) GS11 52.8 KX353755 35 8.0 [38]
Lipase (LipSm) Psi-1 40.7 KC014616 64.5 8.0–9.0 [39]
Esterase (est7) OUC_Est10 76.6 MH253883 45 9.0 [41]

Some metal ions, surfactants, and organic solvents could be used as additives to
increase the enzyme activity. Some metal ions could stabilize the enzyme structure, and the
surfactants and organic solvents could facilitate the interaction with the hydrophobic poly-
mers. The cutinase-like enzyme activity was slightly increased by the various metal ions
(mono and divalent cationic) except for Cd2+, Co2+, and Hg2+, which strongly inhibited the
activity. The activity limitation in the presence of Cd2+ and Hg2+ revealed the presence of a
gathering of critical vicinal sulfhydryl [42]. However, Cu2+ and Ni2+ enhanced the relative
activity [43]. Regarding the surfactants, nonionic surfactants were reported to have an
important role in promoting cutinase activity [44]. Tween and Triton-100 showed a positive
effect, but the SDS and CTAB strongly inhibited the enzyme activity. The enzyme was
stable in the presence of the various solvents except for ethanol and butanol, which might
be due to a change in the structure of the bound substrate or the active site polarity [45].

The DSC measurements of the PET powders revealed an increased crystallinity after
the treatment with the extracellular fraction of S. maltophilia PRS, which suggested that
the enzymatic degradation of the PET powders primarily occurred at the amorphous
region, as reported in the literature [46]. Interestingly, it was previously reported that the
enzymatic degradation of the PET flakes using IsPETase from Ideonella sakaiensis resulted in
a slightly decreased crystallinity, which was attributed to the formation of the dimers after
the degradation that might have disrupted the crystallinity [47]. In our result, no dimer
(melting or crystallization) peak was observed using DSC, which was consistent with the
increased crystallinity after the enzymatic degradation by S. maltophilia PRS8. Thus, the
cutinase-like enzyme activity seemed restricted to the amorphous part.

Finally, the S. maltophilia PRS8 extracellular medium containing the cutinase-like
enzyme showed a PET-depolymerizing activity comparable to IsPETase and significantly
higher than the thermostable HiCut (HiC) from Humicola insolens. In a practical sense,
these results indicated that the S. maltophilia PRS8 extracellular medium produced sub-
optimal conditions that could be used directly in the PET degradation processes, with
the advantage of skipping the enzyme purification processes and costs. Of course, as an
emerging opportunistic pathogen, its biotechnological use involves a safety challenge.
An alternative would be using recombinant forms of S. maltophilia enzymes produced
in more safe hosts. In this line of study, we are currently sequencing the genome of S.
maltophilia PRS8.

5. Conclusions

In this study, a PET-active bacterium S. maltophilia PRS8 was isolated from plastic-
contaminated soil that could depolymerize PET at a mesophilic temperature. The strain



Appl. Sci. 2023, 13, 3686 20 of 22

PRS8 was observed to develop a biofilm on the PET surface that facilitated the bacterium
in the process of PET degradation. The cutinase-like activity in the degradation medium
demonstrated its role in the degradation of PET. The purified enzyme was stable to various
environmental factors and efficiently hydrolyzed PET at a mesophilic temperature. Consid-
ering its degradation potential against a recalcitrant polymer, S. maltophilia PRS8 and its
enzymes could be potential candidates for further utilization against PET waste and the
recovery of value-added products, considering bio-upcycling for the circular economy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13063686/s1, S1. UV PET treatment; S2. Experimental
Design; Table S1. Placket Burman design of factors with specific enzyme activity (U/mg) as response.
Table S2. ANNOVA for Placket-Burman Design; Table S3. Central Composite design of factors with
specific activity (U/mg); Table S4. ANNOVA for Central Composite design; Figure S1. FT-IF spectra
of PET flakes before and after UV exposure; Figure S2. Fourier-transform infrared spectra; Figure S3.
DSF analysis of PET samples. Reference [48] is cited in the Supplementary Materials.
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