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Abstract: Silicon nitride is a material compatible with CMOS processes and offers several advantages,
such as a wide transparent window, a large forbidden band gap, negligible two-photon absorption,
excellent nonlinear properties, and a smaller thermo-optic coefficient than silicon. Therefore, it has
received significant attention in the field of silicon photonics in recent years. The preparation of
silicon nitride waveguides using low-pressure chemical vapor deposition methods results in lower
loss and better process repeatability. However, due to the higher temperature of the process, when
the thickness of the silicon nitride film exceeds 300 nm on an 8-inch wafer, it is prone to cracking due
to the high stress generated by the film. Limited by this high stress, silicon nitride waveguide devices
are typically developed on wafers with a thickness of 4 inches or less. In this work, we successfully
fabricated a 400 nm-thick silicon nitride waveguide on an 8-inch wafer using a Damascene method
similar to the CMOS process for copper interconnects and demonstrated propagation losses of only
0.157 dB/cm at 1550 nm and 0.06 dB/cm at 1580 nm.

Keywords: LPCVD; silicon nitride; waveguide; low loss

1. Introduction

Photonic integration based on Silicon-On-Insulator (SOI) has grown rapidly over
the last decade. The main advantages of silicon photonics are the compatibility with
complementary metal-oxide-semiconductor (CMOS) infrastructure and the ability to realize
monolithic integration. These features enable the fabrication of highly integrated photonic
devices in large quantities at low cost. Silicon photonics are theoretically ideal for large-
scale complex integrated optical circuits, such as multi-wavelength coherent transceivers,
optical interconnection networks, and optical switching networks. However, the narrow
silicon bandgap (1.14 eV) and non-negligible multiphoton absorption effects in the near
and partial mid-infrared bands increase transmission losses and limit the application field
of silicon waveguides [1,2]. In contrast, silicon nitride (Si3N4) is also a CMOS-compatible
material with a moderate refractive index between silicon dioxide (SiO2) and silicon (Si),
a large energy band gap (5.0 eV), and a wide transparent optical window (0.25–8.0 µm),
which covers the visible to mid-infrared band [3,4]. This means that intrinsic silicon
nitride material has low absorption properties and can achieve low loss in broadband. Its
advantages are also manifested in the following aspects: 1. A lower thermo-optic coefficient:
it is one order of magnitude smaller than that of silicon, so that silicon nitride optical
components are much less sensitive to temperature than silicon optical components. This
makes them more suitable for applications that need to avoid the influence of temperature
and have better popularity. 2. Negligible two-photon absorption: two-photon absorption
limits the power handling capacity of the silicon waveguide in the near-infrared band; while
benefitting from the negligible two-photon absorption, the silicon nitride waveguide can
sustain much higher optical power, which makes it a more suitable material for nonlinear
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optics compared to silicon even with a lower nonlinear index. 3. A wide range of application
scenarios, including artificial intelligence, lasers, optical communication, biomedicine,
optical sensors, optical distance measurement, etc. [1,5–9].

For silicon nitride, there are two common deposition methods: plasma-enhanced
chemical vapor deposition (PECVD) and low-pressure chemical vapor deposition (LPCVD).
Although PECVD can achieve a thick silicon nitride film, the uniformity is poor compared
to that of LPCVD. Furthermore, the film deposited by PECVD is not stoichiometric and
contains more H-bonds (about 20%), which will generate a large absorption in the commu-
nication band and seriously affect the device loss due to the N-H and Si-H bonds [10,11].
Compared with PECVD, the silicon nitride film deposited by LPCVD has a more uniform
thickness and lower H-bond content. However, due to the difference in the thermal ex-
pansion coefficient between silicon nitride and substrate silicon (the thermal expansion
coefficient of silicon nitride is: 2.35 × 10−6/◦C, which is smaller than 2.61 × 10−6/◦C of
silicon) [11–17], the film deposited by LPCVD has larger stress due to higher process tem-
perature, and the stress will increase with the wafer size. Typically, in an 8-inch wafer, only
up to 300 nm-thick silicon nitride films can be deposited; otherwise, cracks will occur. Due
to the high stress, thick LPCVD silicon nitride waveguide devices are typically developed
on a 4-inch wafer and require a two-step deposition method. These factors limit low-loss
silicon nitride waveguides from achieving higher levels of integration and higher economic
value [2,4,18–20].

Although there are some reports on low-loss waveguides in recent years, such as
adjusting the precursor gas of the PECVD process [2], the report used N2 instead of NH3 to
reduce the H-bond content of the silicon nitride film deposited by PECVD. The loss of the
final silicon nitride waveguide is 2.1 dB/cm @1550 nm. This is still much higher than that of
the silicon nitride waveguide prepared by LPCVD of the same size. Secondly, there are also
reports that in order to reduce the stress of the silicon nitride film deposited by LPCVD [21],
the gas ratio of SiH2Cl2 and NH3 was adjusted so that the deposited film was a silicon
nitride film rich in silicon. Although this method reduced the stress of the silicon nitride
film, it also changed the material properties of the silicon nitride film, making it closer to
silicon material, which led to the loss of some advantages of the standard stoichiometric
ratio silicon nitride film. The loss of the final silicon nitride waveguide was 1.5 dB/cm
@1550 nm. In addition, some new special structures of silicon nitride waveguides have also
been reported [22,23]; although these waveguides have low loss, the limiting capability
of the optical field is weak, the critical bending radius is generally large (≥500 µm) for
integration, and the process is complex. Recently, an interesting idea was proposed: to
increase the confinement ability of the waveguide to the light field by integrating it with
other materials [24,25]. Still, because of our current conditions, some related explorations
can be carried out in the future. Therefore, the preparation of low-loss and high-limiting-
capacity silicon nitride waveguides still starts from the direction of how to prepare thick
standard stoichiometric ratio silicon nitride waveguides via the LPCVD process.

In order to solve the above problem, we proposed a method and successfully fab-
ricated silicon nitride waveguides with a thickness of 400 nm by LPCVD on an 8-inch
wafer in accordance with standard stoichiometric ratios. The silicon nitride waveguides
prepared via this process showed significant advantages of low propagation loss and small
critical bending radius. The measurement results show that the propagation loss is only
0.157 dB/cm at 1550 nm and 0.06 dB/cm at 1580 nm; for a bending waveguide with a
bending radius of 50 µm, the bending loss is only 0.013 dB, and for a bending radius of
80 µm, the bending loss is only 0.0095 dB. This greatly improves the integration of the
optical chip and achieves higher economic value.

2. Design of Silicon Nitride Waveguide

In silicon photonic integrated circuits, a rectangular optical waveguide is the basic
component, and a single-mode waveguide is commonly used to avoid inter-mode interfer-
ence and mode dispersion. In order to guarantee the single-mode condition of the Si3N4
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rectangular waveguide, we have simulated the mode properties of the Si3N4 waveguide
using the Finite Difference Eigenmode solver (FDE) in Lumerical’s Mode Solution software.
The structure is shown in Figure 1a; the thickness of the lower cladding layer is 3.6 µm,
the thickness of the core layer is 0.4 µm, and the thickness of the upper cladding layer is
2.6 µm.
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Figure 1. (a) Schematic cross-section of a rectangular Si3N4 waveguide, (b) Schematic of light
transmission in the waveguide.

To determine the single mode condition, the width of the silicon nitride waveguide was
scanned at a wavelength of 1550 nm, and the relationship between the waveguide width
and the effective refractive index (neff) of the waveguide is shown in Figure 2. According to
the orange dashed line, the width limit of the single-mode condition is 1.0 µm.
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Based on the above simulation, the critical bending radius of the waveguide with
a width of 1.0 µm was then simulated by the FDTD (Finite Difference Time Domain)
simulation module. The relationship between the bending loss and the bending radius
is shown in Figure 3. With the increasing bending radius, the bending loss decreases
exponentially. When the bending radius is larger than 50 µm, the bending loss of pre 90◦

bending waveguide basically remains smaller than 0.0092 dB, so we set the minimum
bending radius to 50 µm in the optical circuits.
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Figure 3. The simulation curve of the waveguide bending loss per 90◦ under different bending radii.

In order to test the waveguide, an edge coupler was used for the coupling between the
waveguide and the fiber in this work, considering the higher coupling efficiency, polarization
independency, and wider bandwidth compared to the grating coupler [26–28]. The structure
of the edge coupler is shown in Figure 3. In order to avoid damaging the coupler during the
deep trench process, the coupler tip is set 2 µm away from the deep trench.

Based on the structure shown in Figure 4, we set the mode field diameter (MFD) of
the light source to 2.5 µm, similar to that of the lensed fiber we used in tests; the effect
of the tip width (Wtaper) was firstly simulated with the length (Ltaper) of 100 µm. The
Wtaper was scanned from 0.1 µm to 0.4 µm, and the results are shown in Figure 5a. The
highest coupling efficiency of 88.1% was achieved at Wtaper = 0.3 µm, so we set the Wtaper to
0.3 µm in our design. Subsequently, the Ltaper was simulated with a Wtaper of 0.3 µm. The
Ltaper was scanned from 5 µm to 300 µm; the results are shown in Figure 5b. In the range of
5–50 µm, the condition of adiabatic coupling could not be achieved, which caused large
radiation loss. The coupling efficiency was stable after 100 µm, and a coupling efficiency of
88.6% was realized with a length of 200 µm.
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The final structural parameters of the inverse tapered edge coupler are shown in
Table 1. The simulation results are shown in Figure 6. It can be seen that the lightwave is
transferred to the well-confined waveguide from the input fiber through the edge coupler.

Table 1. Structural dimensions of the inverse tapered edge coupler.

Structural Parameters Size

Wtaper 0.3 µm
WWG 1.0 µm
Ltaper 200 µm
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3. Fabrication Process

The suggested fabrication process flow of the Si3N4 waveguide on an 8-inch CMOS
line is shown in Figure 7.
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(f) BOX layer anneal; (g) core layer deposition; (h) reverse etch; (i) CMP; (j) core layer anneal;
(k) cladding layer deposition.

Firstly, the BOX layer was split into two steps: 3 µm thermal SiO2 and 1 µm PECVD
SiO2. A 3 µm-thick SiO2 was grown on an 8-inch bare silicon wafer using a thermal oxide
process. The oxide was grown on both sides of the wafer in this process, which limited the
deformation of the wafer due to stress. Following this was the deposition of 1 µm SiO2 via
the PECVD process. We separated the BOX layer into two steps due to two considerations:
1. The texture of the SiO2 film deposited by the PECVD process was looser, and thus easier
to etch and reflow in the following annealing process. 2. The processing time of thermal
oxide increases drastically with the increase in thickness; reducing 1 µm can save much
time in the thermal oxide process. In addition, the loose PECVD SiO2 would harden in
the following annealing process to form the property close to thermal oxide. Secondly, a
layer of PECVD Si3N4 film was deposited as the hard mask (HM) layer in the etching of the
waveguide layer. Then the waveguide layer was patterned and etched on the BOX layer
with a depth of around 0.42 µm, which balanced the loss of the BOX layer in the following
chemical mechanical polishing (CMP) step. At the same time, in order to limit the stress of
the silicon nitride film on the wafer, as shown in Figure 8, we added a checkerboard stress
relief pattern that could make the film into a discontinuous state on the nonwaveguide
position on the wafer. Because phosphoric acid (H3PO4) has a very high selectivity ratio for
silicon nitride and silicon oxide, we immersed the wafer in phosphoric acid at 150 ◦C for
1500 s to completely remove the Si3N4 hard mask while ensuring that it did not damage
the BOX layer [29]. After removing the hard mask, the BOX layer was annealed at 1050 ◦C
for 3 h to make the SiO2 trench sidewalls reflow, thus reducing the roughness of the trench
sidewalls and harden the PECVD SiO2. Then, 430 nm Si3N4 was deposited by the LPCVD
process. In order to reduce the warpage of the wafer and improve the uniformity of CMP,
as shown in Figure 7h, after the deposition of the core layer, we removed all the silicon
nitride film in the nonwaveguide area to release the stress accumulation in the film, then
planarized the wafer surface with CMP. Since the H-bond was not completely released
from the film during the LPCVD deposition of the silicon nitride film [30], an annealing
process with 1050 ◦C for 3 h was applied after the CMP to release the remaining H-bonds
in the silicon nitride film. Finally, 2.6 µm SiO2 was deposited as the top cladding layer of
the waveguide by the PECVD process. Some SEM images of the intermediate steps are
shown in Figures 9 and 10.
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Through this process, we successfully fabricated a 400 nm-thick Si3N4 waveguide, and
to further check the waveguide structure, FIB and XSEM were used to inspect the cross-
section of the waveguide. The results are shown in Figure 11. The structural parameters
of the waveguide basically conform to our design with a smooth sidewall, and a straight
angle of 95◦ and no void is observed in the gap with 0.2 µm width, which is critical to
devices such as a directional coupler, multiplexer, and splitter.
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4. Device Characterization and Discussion

After the fabrication, we characterized the basic performance of the waveguide, in-
cluding propagation loss and bending loss. The test platform is shown in Figure 12c; the
light source was a tunable laser covering the whole C-band (model: Keysight 8164B). A
lensed single-mode fiber was used to couple the light from the laser into the waveguide,
and another lensed fiber was used to couple the light out of the waveguide to a power
detector. A cutback structure, as shown in Figure 12d, was used to measure the propaga-
tion loss. Considering the low loss of the Si3N4 waveguide, we increased the length of
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each waveguide in the cutback structures; the parameters needed to accumulate enough
propagation loss are shown in Table 2. Due to similar considerations, a set of waveguides
with a different number of bends are used to measure the bending loss; parameters are
shown in Table 3.
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Figure 12. (a) Finished 8-inch wafers, (b) silicon nitride chips, (c) semi-automatic test platform,
(d) layout design of the spiral and bending waveguides for the test.

Table 2. Structural parameters of the cutback structure.

No. Length Radius of Bending Waveguide

waveguide 1 12.72 cm R = 100 µm
waveguide 2 17.62 cm R = 100 µm
waveguide 3 22.52 cm R = 100 µm
waveguide 4 27.42 cm R = 100 µm

Table 3. Structural parameters of the bending waveguides.

Radius of Bending Waveguide No. Number of 90◦ Arcs

50 µm

bend1 24
bend2 72
bend3 120
bend4 168

80 µm

bend1 24
bend2 72
bend3 120
bend4 168

For measurement of the propagation loss and bending of the Si3N4 waveguide,
the transmission loss of the Si3N4 waveguides was scanned in the wavelength range
1490–1580 nm. The wavelength response of the cutback structures is shown in Figure 13a.
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Through linear fitting of the data, the propagation loss in the same wavelength range can
be calculated as the results shown in Figure 13b. It can be seen that the propagation loss of
the waveguide has a peak of 1.33 dB/cm at a wavelength of around 1500 nm, which is due
to the absorption loss of the Si-H bonding in the Si3N4. To reduce this loss, annealing with
a higher temperature and longer time is needed to further repel the H element in the film.
As the wavelength moves away from the absorption band, the propagation loss reduces
quickly to transmission of 0.157 dB/cm at 1550 nm and 0.06 dB/cm at 1580 nm. This is a
remarkable value compared to other reported works, as summarized in Table 4.
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Figure 13. The measurement result of the Si3N4 waveguide with a cross-sectional size of
0.4 µm × 1 µm (a) the transmission loss of the cutback structure in the wavelength range of
1490–1580 nm, (b) the fitted propagation loss in the wavelength range of 1490–1580 nm, (c) the
fitting line of bending loss @1550 nm per 90◦ bending waveguide for a radius of 50 µm, (d) the fitting
line of bending loss @1550 nm per 90◦ bending waveguide for a radius of 80 µm.

Table 4. Summary of propagation losses at 1550 nm for Si3N4 waveguides.

Ref. Waveguide Height × Width (µm) Wafer Size Propagation Loss (dB/cm) Deposition

[2] 0.4 × 0.7 8 2.1 PECVD
[12] 0.4 × 1.0 8 0.62 LPCVD
[21] 0.7 × 1.65 4 1.0 LPCVD
[31] 0.6 × 1.5 8 3.75 PECVD
[32] 0.9 × 0.8 4 0.4 LPCVD
[33] 0.77 × 1.75 4 0.05 LPCVD

This work 0.4 × 1.0 8 0.157 LPCVD

We further measured the bending loss by fitting the transmission spectrum of waveg-
uides with a different number of bends. The results are shown in Figure 13c,d for
two different bending radii; the bending loss is 0.0095 dB per 90◦ bending waveguide
for a radius of 80 µm and 0.013 dB even for a radius of 50 µm, which is very close to the
previous simulations.
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Table 4 summarizes the results of other groups and this work. It is clear that the Si3N4
waveguide with LPCVD has a lower loss than that of PECVD. Compared to other works
with LPCVD, this work is state of the art, especially on an 8-inch wafer.

5. Conclusions

In order to solve the problem of high stress caused by the preparation of thick silicon
nitride waveguides (≥300 nm) via LPCVD, this work used the filling of silicon nitride
in the BOX layer trench to prepare waveguides. For the deposition of the core layer, we
used a vertical furnace tube with a rotating holder during the deposition of the film, which
prevented the accumulation of stress in one direction. At the same time, in order to reduce
the stress, we set up a checkerboard stress relief pattern in the BOX layer; to make the CMP
more uniform and reduce the warpage of the wafer, we removed all the silicon nitride in
the nonwaveguide area before the CMP. Based on all these optimizations, we successfully
demonstrated Si3N4 waveguides with LPCVD on an 8-inch wafer. This showed brilliant
loss properties with a propagation loss of 0.157 dB/cm at 1550 nm and 0.06 dB/cm at
1580 nm. The bending loss is also characterized by 0.013 dB at a radius of 50 µm and only
0.0095 dB at a radius of 80 µm. All the results meet the state-of-the-art specifications with a
similar process.
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