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Abstract: Primary school mathematics is one of the most important subjects in primary school learn-
ing, and basic mathematical competencies are an important component of the response to academic
achievement. Improving students’ basic competence in mathematics is one of the important goals
of teaching mathematics in primary schools. Research has shown that experiential learning has an
impact on basic competencies in mathematics, attitudes toward mathematics, and self-efficacy in
mathematics. Therefore, this study explores the structural model that fits the relationship between
experiential learning and basic competencies in mathematics using a linear model. This study uses
a sample of 263 primary school students to explore the influential relationships between learning
engagement, mathematical attitudes, mathematical self-efficacy, and basic mathematical competen-
cies after experiential learning. The study revealed that the model had a good fit, with learning
engagement, mathematical attitudes, and mathematical self-efficacy all having significant effects
on basic mathematical competencies; in addition, behavioral engagement had insignificant effects
on mathematical attitudes and mathematical self-efficacy. This study can infer through one year
of experiential learning and based on the structural model developed that experiential learning in
mathematics can increase students’ learning engagement in mathematics learning and positively
influence mathematical attitudes and mathematical self-efficacy, thus positively influencing students’
performance in basic mathematical competencies.

Keywords: primary mathematics; experiential learning; basic mathematics skills; SEM model; mathe-
matical attitudes; mathematical self-efficacy

1. Introduction

Elementary school mathematics is one of the most important subjects in elementary
school learning, and basic mathematics skills are an important component of the response
to academic achievement. In recent years, more and more researchers have begun to look at
the impact of various forms of curriculum reform on psychological factors, and then to ex-
plore the impact of these psychological factors on basic mathematics skills. The elementary
school level is a critical period for the development and shaping of mathematical learning
abilities and habits, and it is important to explore the mechanisms by which mathematical
learning patterns affect basic mathematical abilities and improve various psychological
factors. Therefore, this study aims to investigate the relationship between the learning
engagement with mathematics and mathematics basic competence after experiential learn-
ing in mathematics; whether mathematical attitudes and mathematical self-efficacy play
a mediating role in experiential learning; and to make some suggestions for subsequent
model exploration and improvement.

With the introduction of China’s double reduction policy, how to improve the tradi-
tional teaching model, for example, using experiential learning in the classroom to develop
students’ positive mathematical attitudes, enhancing mathematical self-efficacy, and im-
proving basic mathematical competencies, is now the primary issue in education. Research
has shown that experiential learning has an impact on basic mathematical competence,
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mathematical attitudes, and mathematical self-efficacy. When teachers evaluate authentic
learning tasks, they need to use evaluation techniques, and in this case, the evaluator’s
approach to this evaluation is crucial [1–3]. Therefore, valid and reliable student learning
engagement scales, attitude scales, and self-efficacy scales will help in the identification of
such contexts and the implementation of instructional programs, as well as in responding to
the direct effects of student learning. The direct effects of student learning can be reflected
through the testing of Basic mathematical competencies.

Therefore, this study will examine the analysis of students’ learning engagement,
mathematical attitudes, mathematical self-efficacy, and basic mathematical competence
after the experiential learning of elementary school students as a sample, and establish the
appropriate pathways and model structures to provide an analytical model reference for
whether conducting experiential learning in elementary school mathematics in the future
can positively affect students’ basic mathematical competence, as well as to predict the
relationship and impact of experiential learning and basic competencies in mathematics.

2. Review of the Literature
2.1. Definition of Experiential Learning in Mathematics

Experiential learning in mathematics is a student-centered approach to learning math-
ematics in which students acquire new mathematical knowledge, skills, and attitudes
through a combination of practice and reflection, based on their existing knowledge and
experiences. In mathematics, experiential learning can promote elementary school students’
understanding of the meaning of numbers and calculations, etc., stimulate students’ in-
terest in exploring the wonders of elementary school mathematics, and effectively guide
them to develop a scientific way of thinking, while at the same time, it can increase stu-
dents’ motivation to learn mathematics and exercise their independent learning skills,
and the communication between teachers, students, and peers is promoted in the pro-
cess of operational practice, prompting communication and interaction between teachers
and students [4].

The new Chinese mathematics curriculum standards require that in a learning situa-
tion, the concepts, ideas, and tools of a discipline are used to integrate mental processes
and manipulative skills to solve problems in real situations, reflecting the process of “prob-
lem situation—modeling—solution verification”; the teaching approach should clarify the
knowledge and skills learned, and use various activities to teach and design. This is in
line with the concept of experiential learning in mathematics, which requires students to
formulate hypotheses, predict results, choose methods, and express their understanding
clearly, through communication and cooperation.

Experiential learning emphasizes that learning should create certain life situations
that are centered around facilitating the development of practical skills, allowing students
to have rich experiences, and allowing students to learn to express their own experiences
and know how to understand people’s expressions of their experiences, thus seeking to
provide an environment that engages students in social practices, engages them in inquiry-
based learning, and supports them in establishing a positive identity [5]. Problem solving,
hands-on learning by doing, and deep inquiry activities are all compatible with the concept
of experiential learning, so integrating mathematics classrooms with experiential learning
can be used to explore the role of experiential learning in facilitating mathematics learning
for elementary school students.

Students in the early elementary grades are still at the stage of intuitive thinking
and practical experience building. Therefore, the learning of computational and statistical
content in the mathematics classroom in the early grades is approached in a way that is
related to the experiential learning approach to mathematics, with an eye on students’
behavioral engagement, cognitive engagement, and affective engagement, and through
physical and mental engagement in concrete contextual practices to reflect on learning,
summarize experiences, and build knowledge systems [6].
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2.2. Definition of Basic Competencies in Mathematics

The basic mathematical ability includes four basic abilities: arithmetic ability, logical
thinking ability, spatial imagination ability, and problem-solving ability [7–10]. Arithmetic
ability refers to the ability to complete various operations quickly, correctly and reasonably;
logical thinking ability refers to the ability to think correctly using the forms, laws and
methods of logical thinking; spatial imagination ability is the ability of people to observe,
analyze and think abstractly about the spatial form of things; problem-solving ability is
the ability to use the mathematical knowledge or methods learned to apply to real life and
solve practical problems. These basic abilities are formed and developed gradually with
the accumulation of life experience and continuous learning, they have different levels at
the same time or at different times, and are closely related to each other, interlocking and
interpenetrating, forming a whole. Research shows that childhood is an important period
when human mathematical abilities begin to develop, a critical period for mastering mathe-
matical concepts, performing abstract operations, and beginning to form comprehensive
mathematical abilities [11–15].

Basic mathematical competencies are not innate; the family environment and learning
environment in which an individual lives plays an important role in his or her development,
and the individual’s own psychology and physiology also play an active and dynamic role
in development. Childhood is a critical period for the formation of good basic mathematical
competencies. According to the Soviet psychologist Kruchetsky, basic mathematical ability
should include nine components: the ability to do arithmetic, logical reasoning, the ability
to think in simple terms, the ability to reverse mental processes, the ability to think flexibly,
numerical memory, and spatial concepts, among which the ability to generalize is the core
of mathematical ability [15].

Chinese psychologist Lin Chongde, on the other hand, believes that the basic mathe-
matical ability is a multifaceted, multilevel, multiform, and multiconnected system con-
sisting of three abilities, arithmetic ability, logical thinking ability, and spatial imagination
ability, and five qualities of thinking, agility, flexibility, profundity, originality, and criti-
cality. The main factors that influence the development of students’ basic mathematical
competencies are mainly biological and socialization factors [16]. Among the socialization
factors, schooling factors play an important role. Additionally, among the schooling factors,
whether the educational and learning styles are appropriate or reasonable for the students is
included, and among all schooling factors, the two main ones are teachers and teaching [17],
such as experiential learning, which has a greater impact on the development of students’
basic competencies in mathematics.

3. Research Frameworks
3.1. Purpose of the Study

In this study, by sorting out the relationship between learning styles and learning
attitudes, learning styles, and self-efficacy, we focus on the effects of experiential learning
in mathematics on mathematical attitudes and mathematical self-efficacy on basic mathe-
matical competencies [18]. By investigating students’ behavioral engagement, cognitive
engagement, and affective engagement as well as mathematical attitudes and mathematical
self-efficacy after experiential learning in mathematics, we find out whether there is a
significant effect between each factor and basic mathematical competence.

3.2. Experiential Learning in Mathematics

Dewey emphasized that learning is the process of creating knowledge through the
transformation of experience [19]; David Kolb’s proposed Experiential Learning Theory
(ELT) emphasizes the role of experience in constructing knowledge [20]. By integrating
David Cooper’s learning cycle into teaching and learning activities, the study found that
experiential learning helped students achieve their learning goals while providing them
with irreplaceable exposure [21]. David Cooper’s learning cycle to introduce some skills in
critical reading instruction [22].
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Recent research has shown that teachers in learning with strong content knowledge
play a key role in student achievement [23]. Primary school mathematics teachers are
the ones who shape the mathematical knowledge and behavior of most students later
in life. Experiential learning is one implementable way to teach and learn [24]. Some
studies have shown that from kindergarten onwards, students’ reading and mathematics
achievements can be significantly influenced by the quality of classroom teachers and, most
importantly, these influences do not dissipate over time but they remain strong predictors
of future academic achievement [25]. Most school teachers are increasingly concerned
with student achievement in mathematical performance, mathematical skills, and attitudes
toward mathematics. To address these concerns, teachers then need to decide how to
improve their mathematics, for example, by modifying the content and skills emphasized
in the curriculum, changing or supplementing instructional materials, changing content
approaches, and changing the use of teaching and learning methods [26].

Due to their age, primary school students are curious and eager to learn. Research
has shown that in primary school mathematics, it is particularly important for students to
improve their attitudes and self-efficacy in mathematics by allowing them to truly learn
through ‘experience’ and by making effective and positive assessments of their learning.

3.3. Attitudes to Mathematics

Research shows that teachers can develop positive attitudes toward learning, even
when there is little family support as a starting point; teachers need to get students to see
mathematics themselves as challenging, interesting, and useful. Attitudes create a self-
perpetual cycle: children with positive beliefs about mathematics do well, which makes
them enjoy mathematics and feel good about themselves, and students with negative beliefs
fall further behind, which reinforces their low expectations and feelings [27].

Mathematical attitudes have multiple important effects on students’ mathematical
achievements. On the one hand, mathematical attitudes positively influence students’ math-
ematical achievements in the present; if students hold positive mathematical attitudes, they
are likely to enjoy the process of learning mathematics and put more effort into it, resulting
in good mathematical achievement [28,29], which is important for students’ success [30];
whereas students with negative mathematical attitudes may avoid or postpone the task or
even develop negative emotions, such as aversion [31,32]. On the other hand, mathematical
attitudes change as experience and knowledge are acquired [33], which in turn, affects the
subsequent mathematical achievement [34,35]. For example, a meta-analysis by Ma and
Kishor (1997) showed that many students have relatively positive attitudes toward mathe-
matics in their early education, yet their attitudes toward mathematics become increasingly
negative as they remain in education, thus hindering their mathematical achievement.
Although mathematical attitudes have an important impact on mathematical achievement,
there has long been more focus on external factors such as teaching methods and content,
and the relative neglect of the development of students’ mathematical attitudes.

There is also research that shows that attitudes are extremely important in problem
solving [36]. Positive attitudes can improve an individual’s academic ability, while negative
attitudes are associated with a low motivation to learn [33]. Mathematical attitudes play a
special and critical role in the process of teaching and learning mathematics [34]. As defined
by Ma and Kishor, mathematical attitudes include the liking or disliking of mathematics,
the tendency to engage in or avoid mathematical activities, the belief that one is good or
bad at mathematics, and the belief that mathematics is useful or useless [35]. Attitudes
toward mathematics have a significant impact on students’ mathematic achievements, and
several studies have shown a positive relationship between attitudes toward mathematics
and mathematics achievement [37]. If students have positive attitudes toward mathematics,
they may enjoy the process of learning mathematics and put in more effort to achieve
good grades in mathematics [29], which is important for students’ academic [30]. More-
over, even though mathematical attitudes can influence mathematics performance, the
specific mechanisms by which mathematical attitudes influence mathematics performance
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have rarely been studied and the development of students’ mathematical attitudes has
been neglected. Therefore, it is necessary to discuss in detail the mechanisms by which
mathematical attitudes affect mathematics achievement, so as to improve the importance
that parents and teachers attach to students’ mathematical attitudes and work together to
help students maintain the best mathematical learning attitudes and work together to help
students maintain the best mathematical learning attitudes and improve their mathematical
achievements. Park and Taekyung (2022) showed that according to the experiential learning
approach, teachers can adopt diverse teaching methods, such as learning by doing, simula-
tion, and participation activities [38]. Ramírez, María-José and Allison, Pete (2023) showed
that “enjoyable experiences” can positively influence attitudes over time [39]. Yvette also
found through her research that students prefer experiential learning that is facilitative
(creative thinking) and realistic (transferable to the real world) [40].

3.4. Mathematical Self-Efficacy

In education, many studies have confirmed the tremendous impact of self-efficacy on
student academics. Self-efficacy on students’ academic motivation [41], academic achieve-
ments [42], and other influences such as learning strategies [43] and perseverance in the
face of academic setbacks [44]. In light of this strong evidence, it is necessary for educa-
tional researchers and practitioners to explore the mechanisms underlying the development
of self-efficacy. Several researchers have conducted in-depth studies on the relationship
between mathematical self-efficacy and students’ mathematics achievement. Mathematics
achievement in this context is defined as students’ test scores or their performance in the
mathematics courses they take. Their findings suggest that mathematical self-efficacy is
a better predictor of achievement than mathematical anxiety, mathematical self-concept,
mental ability, prior mathematical knowledge, and perceived utility of mathematics [45–47].
Additionally, mathematical self-efficacy predicted mathematics performance better than
intelligence test scores and personality traits (agreeableness, self-awareness, and emotional
instability). Self-efficacy also influences learners’ self-awareness, emotional instability,
extraversion (openness), and self-esteem [48]. There is a consensus that mathematical self-
efficacy is strongly and positively related to student achievement in mathematics [49,50].
That is, high mathematical self-efficacy is associated with high achievement in mathematics,
while low mathematical self-efficacy is associated with low mathematics achievement.
Mathematical self-efficacy in mathematics learning was demonstrated by Zakariya us-
ing an innovative structural equation model with an instrumental variables approach to
demonstrate a causal relationship between students’ mathematical self-efficacy in mathe-
matical tasks and students’ mathematical achievement [51]. It is worth mentioning that
improving mathematical self-efficacy is central as an important way to improve students’
mathematical achievements. As previous research has shown, mathematical self-efficacy
not only predicts student performance in mathematics, but it also has a potential causal
relationship with achievement [51–54]. The pedagogical implications of this relationship
are that mathematics teachers have the opportunity to enhance student performance in
mathematics by strengthening mathematical self-efficacy and therefore, to improve student
academic performance in mathematics. For a student, a student with a high sense of mathe-
matical self-efficacy reduces his mathematical anxiety and thus his apprehension about his
mathematical performance, thus reducing the risk of failure in mathematics [51,55]. On
the other hand, these associations between mathematical self-efficacy and final learning
outcomes, such as the association between a student’s mathematical performance and
the risk of failure in mathematics, give greater credence to the idea that interventions
to improve students’ self-efficacy contribute to the meaningfulness of interventions that
improve students’ sense of efficacy.

Various studies have shown that self-efficacy tends to influence human behavior, as
people tend to choose what they believe is within their reach. People with a stronger sense
of self-efficacy are more confident that their efforts will lead to success and therefore put in
more effort; people with an emphasized sense of self-efficacy tend to be more optimistic
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when they encounter difficulties and are therefore less likely to give up. Mathematical
self-efficacy refers to the degree to which an individual is confident that he or she can
complete tasks in mathematical situations and mathematical problems [56]. Studies have
shown that mathematical self-efficacy is significantly and positively related to mathematics
achievement, and that mathematical self-efficacy has a positive effect on mathematic
ability [57].

Mathematical self-efficacy positively predicts mathematics achievement [58–60]; stu-
dents’ positive learning significantly influences math performance [61], and more confident
students tend to exhibit higher self-efficacy and are more likely to report higher levels of
mathematics performance.

4. Research Methodology
4.1. Initial Model Construction

This study is based on the structural model and measurement model of SEM (Struc-
tural Equation Modeling), using Amos24.0 for data analysis, model construction, and
validation. Based on the previous literature to explore and collate, measurement models
are built and analyzed by Amos24.0 in order to find the most appropriate model to fit
the sample data. The impact of experiential learning in primary school mathematics on
attitudes toward mathematics, mathematical self-efficacy, and the impact of primary school
mathematics experiences on basic math skills through the impact on attitudes toward
mathematics and mathematical self-efficacy is explored. A conceptual diagram of the
model for this study is shown in Figure 1.
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4.2. Research Hypothesis

A review of the literature shows that experiential learning in mathematics is useful for
the improvement of basic mathematical competencies. Basic mathematical competencies
are divided into numeracy, spatial reasoning, and problem-solving skills. Basic mathe-
matical competencies include numeracy, spatial, and reasoning competencies, which are
measurable through specific measurements. Based on the characteristics of basic mathe-
matical competencies, this study uses the structure and measurement models of SEM to
explore the structural model of optimal fit between mathematical attitudes, mathematical
self-efficacy, and basic mathematical competencies after implementing experiential learning
in mathematics.

Chin (1998) states that SEM models should be analyzed without making declarative
assumptions about each pathway, but rather by assessing the fit of the overall SEM model
to the sample [60]. Therefore, the first hypothesis of this study is that the expectation model
and the covariance matrix of experiential learning in mathematics do not differ from the
sample covariance matrix: S − ∑ (Θ) = 0, S is the sample covariance matrix and ∑ (Θ) is
the expectation model covariance matrix of experiential learning in primary mathematics,
thus forming the following research hypothesis.

Research hypothesis:
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Hypothesis 1 (H0). The expectation model for experiential learning in mathematics does not differ
from the covariance matrix to the sample covariance matrix.

Hypothesis 1 (H01). The basic mathematical ability model and covariance matrix do not differ
from the sample covariance matrix.

Hypothesis 1 (H02). The mathematical attitude model and mathematical self-efficacy model did
not differ from the covariance matrix and the sample covariance matrix.

Mathematical self-efficacy has been considered critical in terms of its impact on improv-
ing basic mathematical competencies. As a result, the following hypotheses
were developed:

Hypothesis 2 (H1). There is no difference in the impact of mathematical self-efficacy on basic
mathematical ability.

As this study also explores the psychological dimension, the impact of experiential
learning in mathematics on mathematical self-efficacy through attitudes toward mathemat-
ics, the following hypothesis was formed:

Hypothesis 3 (H2). There is a partial mediating effect of mathematical attitudes on mathematical
self-efficacy.

4.3. Research Tools

This questionnaire contains five sections: 1. sample statistical variables, 2. Learning
Engagement Questionnaire, 3. mathematical self-efficacy, 4. attitudes toward mathematics,
and 5. basic mathematics skills.

Sample statistical variables included the following: gender, grade level, and whether
or not they participated in after-school services. A 5-point Likert scale was used for all
of this study. The operational definitions for this study were mainly drawn from the
following: the Learning Participation Questionnaire (Cronbach’s α of 0.82) developed by
Kong Qi Ping (2003) [61], the Primary Mathematics Learning Efficacy Scale (Cronbach’s
α of 0.83) developed by Liu Dianzhi (2003) [62], Tapiahe Marsh (2004) [63], adapted and
revised by Lin and Huang (2014) [64], the Attitude Toward Mathematics Questionnaire
(ATMI) (Cronbach’s α of 0.92), and the Heidelberg University Basic Competence Test in
Primary Mathematics Scale in Germany, finalized by J. Haffner and K. Baron, adapted by
Dr. Li Li (2005), and revised the Chinese Basic Competence Scale in Primary Mathematics
(Cronbach’s α of 0.85), in line with Chinese primary school students [65].

4.4. Sample Study Estimation

SEM is a large sample analysis technique and SEM models require a ratio of observed
variables to a sample size of between 1:10 and 1:15 [66], so a sample size of between
200 and 400 is more appropriate. In this study, the revised and improved method of Mac-
Callum, Browne, and Sugawara (1996) was used and was programmed in R to calculate
the sample size using RMSEA [66]. In this case, H0 was set to 0.05 and the check power
was 0.08 in the RMSEA calculation; Hypothesis 1 was set to 0.06 in the RMSEA calcula-
tion for the opposing hypothesis and the resulting sample size requirement ranged from
89 to 125 for the condition of 525 degrees of freedom. The effective sample size for this
study is 263, which meets the sample size requirement for SEM analysis.

4.5. Method of Sampling the Study Sample

Primary school students in a public primary school were used as the target population
for this study. A total of 270 questionnaires were distributed, and 263 valid questionnaires
were returned after deducting those with incomplete answers. There were 146 boys and
117 girls in this questionnaire. There were 67 students in Grade 2, 134 in Grade 3, and 62 in
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Grade 6 in the questionnaire. The grades covered all stages of primary school, including
lower, middle, and upper primary school, and were consistent with the target population
of the Basic Competency Scale in Mathematics study and were representative of each
school level.

The subjects of this survey were from different grades in different schools in Ningbo,
Zhejiang Province, China, but all were classes that participated in experiential learning in
elementary school mathematics and were taught by teachers of the researcher’s experiential
pilot group. In the surveyed sample, the number of male and female students was similar;
the number of those who participated in after-school services was 223, and the number of
those who did not participate in after-school services was 40, with the majority of those
participating in after-school services.

4.6. Measurement and Structural Pattern Analysis
4.6.1. Validation of Convergent Validity

Validated factor analysis (CFA) is an important part of SEM analysis, and Thompson
notes that researchers need to analyze the measurement model before analyzing the struc-
tural model for SEM analysis, which correctly reflects the study’s confirmation of factors.
The reduction in the factors of the CFA variables measured in this study was modified
according to the second-order model proposed by Kline (2005) [67], where the measurement
model was examined before the structural model was analyzed, and if the fitness of the
modified measurement model was acceptable, then the second step, the full SEM model
evaluation, was carried out. In this study, CFA analysis was conducted for all the constructs.
The four constructs of the model are engagement in learning after experiential learning in
mathematics, which includes behavioral engagement, cognitive engagement, and affective
engagement; attitude toward mathematics, which includes self-confidence, mathematical
values, mathematical enjoyment, and mathematical motivation; self-efficacy in mathemat-
ics, which includes goal confidence, course competence, and course responsiveness; and
basic competence in mathematics, which includes mathematical operations, spatial logic,
and overall mathematics score.

After CFA analysis of the four constructs of experiential learning in mathematics,
attitudes toward mathematics, self-efficacy in mathematics, and basic competence in
mathematics, the factor loadings for all the constructs ranged from 0.64 to 0.87 and all
the p-values were significant; the component reliability of the constructs ranged from
0.77 to 0.90, respectively, and the convergent validity of the constructs ranged from
0.53 to 0.75 (see Table 1).

The CFA analysis of all the constructs revealed that the factor loadings were greater
than 0.5; the compositional reliability was greater than 0.6; the convergent validity was
greater than 0.5; and the square of the multivariate correlation coefficient was greater
than 0.5. In this study’s model, all the constructs met the criteria, except for mathematical
operations and spatial logic, which were slightly below 0.5 in the basic mathematical ability
but still within the acceptable range; therefore, these four constructs have convergent
validity [51,68].

4.6.2. Validation of Differential Validity

Discriminant validity is a test of whether two different constructs are statistically dif-
ferent from each other in terms of correlation. In this study, the AVE values were estimated
using Amos 24.0 and the Pearson correlation coefficients between each construct were
calculated after the AVE values were rooted, and if the standardized correlation coefficients
for each construct were greater than the rest of the constructs, then there was differential
validity between the constructs. Table 2 shows that the correlation coefficient of the mathe-
matical self-efficacy construct was 0.865, which was greater than the correlation coefficients
of the other constructs, so there was discriminant validity between the mathematical self-
efficacy construct and the other constructs; the correlation coefficient of the mathematics
attitude construct was 0.773, which was greater than the correlation coefficients of the
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other constructs, so there was discriminant validity between the mathematics attitude
construct and the other constructs; and the correlation coefficient of the mathematics basic
competence construct was 0.901, which was greater than the correlation coefficients of
the other constructs. The correlation coefficients of the basic competence construct were
greater than those of the other constructs, so the basic competence construct was found to
have differential validity of the other constructs; the correlation coefficient of the experi-
ential learning construct was 0.758, which was greater than those of the other three con-
structs, so the basic competence construct was found to have differential validity with the
other constructs.

Table 1. Confidence analysis of potential conformations.

Structure Title
Significance Estimates of Parameters Factors

Load Capacity
Question

Reliability
Component
Reliability

Convergent
Validity

Unstd. S.E. t. Value p Std. SMC CR AVE

Experiential
learning in

mathematics

Behavioral
engagement 1.000 0.772 0.596 0.801 0.574

Cognitive
engagement 0.871 0.089 9.787 *** 0.690 0.476

Emotional
engagement 1.052 0.104 10.127 *** 0.806 0.650

Basic
mathematical
competencies

Mathematical
operations 1.000 0.668 0.446 0.773 0.536

Spatial logic 1.062 0.124 8.581 *** 0.641 0.411
Total competence

scores 1.832 0.221 8.275 *** 0.867 0.752

Mathematical
self-efficacy

Target confidence 1.000 0.869 0.755 0.899 0.748
Course competence 1.213 0.070 17.251 *** 0.870 0.757

Course response 1.135 0.067 16.982 *** 0.856 0.733

Attitude to
mathematics

Sees mathematics
as fun 1.000 0.732 0.536 0.873 0.633

Mathematical
motivation 1.198 0.092 13.041 *** 0.868 0.753

Confidence in
mathematics 1.270 0.097 13.081 *** 0.862 0.743

Mathematical values 0.757 0.082 9.251 *** 0. 708 0.501

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. (Same as below).

Table 2. Construct differential validity analysis.

AVE Mathematical
Self-Efficacy

Attitude to
Mathematics

Basic
Mathematical
Competencies

Experiential
Learning in

Mathematics

Mathematical self-efficacy 0.748 0.865
Attitude to mathematics 0.598 0.769 0.773

Basic mathematical
competencies 0.812 0.247 0.140 0.901

Experiential learning
in mathematics 0.574 0.758 0.741 0.152 0.758

4.6.3. Overall Suitability of the Model

When validating SEM theoretical models, a good model fit is a necessary condition for
SEM analysis, with a better fit representing a closer match between the model matrix and the
sample matrix. Several indicators of overall model fit were evaluated in this study, including
χ2 check, ratio of χ2 to degrees of freedom, fit indicator (GFI), adjusted fit indicator (AGFI),
root means squared error of approximation (RMSEA), non-standard fit indicator (NNFI),
asymptotic fit indicator (IFI), comparative fit indicator (CFI), and standardized square
root (SRMR). The model indicators in this study are referenced from Schreiber, McDonald,
Boomsma, Stephenson, Hoyle and Panter, and Schreiber Stage et al. [55,69–73]. In addition,
three more indicators are needed in the model fitness, namely the Akira Pool Information
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Indicator (AIC), the Bayesian Information Indicator (BIC), and the Expected Cross Validity
Indicator (ECVI). The model structure of this study is illustrated in Figure 2, and the model
fitness is shown in Table 3.
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Figure 2. Statistical model of the structure of expectations for experiential learning in mathematics.

Table 3. Overall model fit of the desired model.

Adaptation Indicators Ideal Requirement Criteria Models

χ2 The smaller the better 515.808
DF (degrees of freedom) The bigger the better 61

Normed Chi-square (χ2/DF) 1 < χ2/DF < 3 1.124
GFI >0.9 0.971

AGFI >0.9 0.943
RMSEA <0.08 0.022

TLI (NNFI) >0.9 0.996
CFI >0.9 0.997
IFI >0.9 0.997

Hocltcr’s N (CN) >200 234.596
ECVI The smaller the better 0.489
AIC The smaller the better 128.58
BIC The smaller the better 235.745

As can be seen from Table 3, for this study model, the smaller the values of the fitness
indicators ECVI, AIC, BIC, and χ2, the better, and the greater the degrees of freedom the
better. The GFI, AGFI, NNFI, CFI, and IFI of the model fitness indicators are all greater
than 0.9 and the CN is greater than 200. The RMSEA is in the 95% confidence interval, it
does not contain 0.08, and it is less than 0.08, indicating that the RMSEA of less than 0.08 is
not a coincidence; therefore, the study model has good fitting.

4.6.4. Intermediary Effects

A mediating effect is an approximate significance test for the indirect effect of the
independent variable on the dependent variable through a mediator [74]. A system of
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equations can be specified to connect X to Y through multiple mediators [75] and few
showed that mediating effects can be computed through Amos to calculate standard error
values and point estimates, leading to a check Z value [76]. One inference technique
for mediated effects is the coefficient product method, which is known as the Sobel Test.
Although the Sobel Test has some uses as a complement to the Baron and Kenny method,
the Sobel Test has a major drawback in that it requires the sampling distribution of indirect
effects to be normal, but in actual sampling surveys, the sample usually presents a non-
sincere distribution. In recent years, Fairchild, Mac Kinnon, Taborga, and Taylo have
introduced a measure of effect size in which the proportion of variance in the response
variable is explained by the indirect effect, but this indicator also has the property of
influencing the variance in a response variable that has no proportion, so its value can also
be negative.

In this study, standard error values and point estimates were estimated by executing
the Bootstrapping procedure with 1000 replicate samples at a 95% confidence interval set
at the time of execution. As can be seen from Table 4, the point estimate for experiential
learning through mathematics on mathematical attitudes was 0.529, with a standard error
of 0.105, and a calculated check Z value of 5.038, which meets the standard value of Z > 1.96,
indicating that there is an indirect effect of experiential learning on mathematical attitudes;
the point estimate for attitudes through mathematics on mathematical self was 0.315, with
a standard error of 0.114, and a calculated mediated. The effect check Z value is 2.763,
which meets the criterion Z > 1.96, indicating that there is a direct effect of experiential
learning on attitudes toward mathematics; the point estimate of experiential learning
through mathematics on mathematical self-efficacy is 0.844, with a standard error of 0.130,
and the mediating effect check Z value is calculated to be 6.492, which meets the criterion
Z > 1.96, indicating that there is a total effect of experiential learning on mathematical There
is a total effect on self-efficacy.

Table 4. Mediating effects of the structural model.

SIE
Point

Estimate

Product of
Coefficients Bias Corrected 95% CI Percentile 95% CI

SE Z Lower Upper Lower Upper

Indirect effects
Experiential learning in

mathematics→
mathematical self-efficacy

0.529 0.105 5.038 0.365 0.788 0.365 0.788

Direct effect
Experiential learning in

mathematics→
mathematical self-efficacy

0.315 0.114 2.763 0.109 0.551 0.109 0.551

Total effect
Experiential learning in

mathematics→
mathematical self-efficacy

0.844 0.130 6.492 0.627 1.138 0.627 1.138

4.7. Model Path Coefficients

The analysis of the path coefficients of this model shows that the regression coefficients
of behavioral engagement on attitudes toward mathematics and behavioral engagement
on self-efficacy in mathematics are not significant, and the remaining constructs show
significant effects between the two (See Table 5).

4.8. Model Cross Validity

To further validate the stability of the model, this study verified the invariance of
the two cohorts by gender, the two cohorts with or without participation in after-school
services, and the three cohorts by grade level, respectively. This includes measuring the
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factor loadings, structural path coefficients, and factor covariances of the model, and if they
do not differ from each other, the model can be said to have considerable stability, i.e., cross
validity. In this study, using SPSS 26.0, the sample was divided into the following groups:
1. boys and girls; 2. those who participated in after-school services and those who did not;
and 3. grade 2, grade 3, and grade 6. The analysis was then conducted separately for the
different cohorts using Amos 24.0.

Table 5. Path coefficients in the structural model.

Structure Std. Non-Std. S.E. C.R. p SMC

Behavioral engagement→ Attitude to mathematics 0.238 0.090 0.047 1.909 0.056
0.318Cognitive engagement→ Attitude to mathematics 0.841 0.303 0.048 6.336 ***

Emotional engagement→ Attitude to mathematics 0.414 0.152 0.048 3.200 0.001
Attitude to mathematics→Mathematical self-efficacy 0.570 0.719 0.104 6.888 ***

0.525
Behavioral engagement→Mathematical self-efficacy 0.140 0.067 0.056 1.189 0.234
Cognitive engagement→Mathematical self-efficacy 0.309 0.140 0.061 2.314 0.021
Emotional engagement→Mathematical self-efficacy 0.249 0.115 0.058 1.997 0.046

Mathematical self-efficacy→ Basic mathematical competencies 0.586 0.368 0.093 3.962 *** 0.049

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. (Same as below).

As can be seen from Table 6, under the assumption that the structural model is cor-
rect, the two groups of boys and girls were compared. 1. The factor loadings were set as
equal between the two groups, and the model structure had a total of 26 factor loadings
that were set as equal (DF = 26), with a cardinality (CMIN) increase of 27.082, and the
p-value of the test result was 0.405, which did not reach the significance level (p < 2. In
addition to maintaining the limitations of the measurement model, three additional struc-
tural path coefficients were set, and the chi-squared value (CMIN) increased by 2.695, with a
p-value of 0.000, reaching a significance level of p < 0.05, indicating that the
three structural path coefficients were not equal. The coefficients are not all equal, but the
∆CFI is 0.000, which does not reach the standard indicator of 0.05 and meets the criterion of
∆CFI ≤ 0.05, so these three conformational path coefficients are in the acceptable range.
2. In addition to maintaining the structural model path coefficients, the settings of the
variance and covariance matrices are increased by one more, and the chi-squared value
(CMIN) increased by 0.498, with a check result of p = 0.000, reaching a significance level of
p < 0.05, but the ∆CFI is 0.000, not reaching the standard indicator of 0.05, and meeting the
criterion of ∆CFI ≤ 0.05, indicating that it is acceptable for this one variance and covariance
to be set equal, so this one variance and covariance are equal.

Table 6. Comparison of structural models without deformation for different gender cohorts.

Model DF CMIN p
NFI IFI RFI TLI

CFI ∆CFI
Delta 1 Delta 2 rho1 rho2

Measurement weights 26 27.082 0.405 0.006 0.007 −0.003 −0.004 0.908 −0.001
Structural weights 3 1.695 0.638 0.000 0.000 −0.001 −0.001 0.908 0.000

Structural covariances 1 0.498 0.480 0.000 0.000 0.000 0.000 0.908 0.000

Structural residuals 6 8.068 0.233 0.002 0.002 0.000 0.000 0.908 0.000
Measurement residuals 26 53.961 0.001 0.012 0.014 0.003 0.003 0.901 −0.007

As can be seen from Table 7, under the assumption that the structural model is correct,
there is a comparison of the two clusters of participants in after-school services with those
not participating in after-school services. 1. Setting the factor loadings equal between
the two clusters, the model structure has a total of 20 factor loadings that are set as equal
(DF = 20) and the chi-squared value (CMIN) increases by 23.519, with a check result
p-value of 0.264, which does not reach the significant level. In addition to maintaining the
limitations of the measurement model, six additional structural path coefficients were set
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and the chi-squared value (CMIN) increased by 2.258, with a p-value of 0.894, which did not
reach the significance level (p < 0.05), indicating that these six structural path coefficients
are all equal. 2. In addition to maintaining the structural model path coefficients, the
number of variances and covariance matrix increased by one setting, and the chi-squared
value (CMIN) increased by 0.382, with a check result p of 0.536, which did not reach the
significance level (p < 0.05), indicating that these one variance and covariance are all equal.

Table 7. Comparison of whether structural models are involved in after-school service clusters
without deformation.

Model DF CMIN p
NFI IFI RFI TLI

CFI ∆CFI
Delta 1 Delta 2 rho1 rho2

Measurement weights 20 23.519 0.264 0.005 0.006 −0.003 −0.003 0.893 −0.001
Structural weights 6 2.258 0.894 0.000 0.001 −0.002 −0.002 0.894 0.001

Structural covariances 1 0.382 0.536 0.000 0.000 0.000 0.000 0.894 0.000
Structural residuals 6 4.619 0.594 0.001 0.001 −0.001 −0.001 0.894 0.000

Measurement residuals 26 47.400 0.006 0.010 0.012 0.001 0.001 0.889 −0.005

As can be seen from Table 8, under the assumption that the structural model is correct,
the three clusters of Year 2, Year 3, and Year 6 were compared. 1. The factor loadings
were set as equal between the two clusters, and the model structure had a total of 40 factor
loadings that were set equal (DF = 40), with an increase in cardinality (CMIN) of 33.589,
with a p-value of 0.753, which did not reach a significant level. 2. In addition to maintaining
the limitations of the measurement model, adding 12 more structural path coefficients to
the settings increased the chi-squared value (CMIN) by 32.240 and the p-value for the test
result was 0.001, reaching a significance level of p < 0.05, indicating that the 12 structural
path coefficients were not equal. The structural path coefficients are not all equal, but the
∆CFI is 0.000, which does not reach the standard indicator of 0.05 and meets the criterion
of ∆CFI ≤ 0.05, so these 12 conformational path coefficients are in the acceptable range.
3. In addition to maintaining the structural model path coefficients, the settings of the two
variance and covariance matrices are increased by 2 more, the chi-squared value (CMIN)
increased by 5.493, and the check result p was 0.064, which did not reach the significance
level of p < 0.05, indicating that the 2 variances and covariances were all equal.

Table 8. Comparison of structural models without deformation for different grade clusters.

Model DF CMIN p
NFI IFI RFI TLI

CFI ∆CFI
Delta 1 Delta 2 rho1 rho2

Measurement weights 40 33.589 0.753 0.007 0.008 −0.006 −0.007 0.892 0.002
Structural weights 12 32.240 0.001 0.007 0.008 0.003 0.004 0.867 −0.025

Structural covariances 2 5.493 0.064 0.001 0.001 0.000 0.001 0.866 −0.001
Structural residuals 12 27.090 0.008 0.006 0.007 0.002 0.002 0.862 −0.004

Measurement residuals 52 101.304 0.000 0.021 0.026 0.004 0.005 0.849 −0.013

4.9. Model Application
4.9.1. Research Methodology

The experimental class implemented experiential learning strategies such as project-
based learning, thematic activity-based learning, mathematical activities, and experiential
learning combining interdisciplinary and practical activities; the control class conducted
regular classroom instruction, such as regular instruction based on the three-dimensional
objectives and key points of the lesson, but did not exclude the need for any cooperative
group inquiry activities. In this study, students’ engagement, mathematical attitudes,
mathematical self-efficacy, and mathematical process competence were pre-tested in the
two classes one semester after their first year of schooling. In the following year, the
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experimental class underwent a year of experiential learning based on experiential learn-
ing strategies, while the control class underwent regular traditional classroom teaching
during the year. At the end of the year, post-tests were administered to the experimental
class and the control class on the dimensions of engagement in learning, attitude toward
mathematics, self-efficacy in mathematics, and basic competencies in mathematics, and
data were collected and analyzed using SPSS 26.0 to analyze whether there were significant
differences in the dimensions of engagement in learning, attitude toward mathematics,
self-efficacy in mathematics, and basic competencies in mathematics after the year of ex-
periential learning. The data were used to compare whether experiential learning had a
positive impact on these dimensions.

4.9.2. Sampling Methods

The sample for this study was drawn from the two classes taught by the researcher.
The two classes were evenly distributed at the time of entry and the academic achievement
of the two classes differed significantly in the first month of the academic achievement
test, with the control class scoring 2.3 points higher than the experimental class. The
questionnaire was administered at the time of the survey and the pre-test was administered
to students when they first entered the primary school for one semester, a semester in
which both classes focused on familiarizing themselves with the rules of primary school
learning. Additionally, the classroom was taught in a traditional classroom; the post-test
was administered to the experimental class after a year of experiential learning, while the
control class also had a year of traditional classroom learning. During the sampling process,
67 questionnaires were distributed for both the pre-test and post-test, and 67 questionnaires
were returned. Of these, 34 were in the experimental class and 33 for the controller class
(see Figure 3).
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4.9.3. Data Analysis

The independent samples t-test and between-group analysis of the pre-test and post-
test data collected from the experimental and control classes using SPSS 26.0 showed that
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there were no significant differences between the two classes in the dimensions of student
engagement, mathematical attitudes, mathematical self-efficacy, and basic mathematical
competencies before the implementation of experiential learning; whereas there were sig-
nificant differences between the experimental class and the control class in the dimensions
of student engagement, mathematical attitudes, mathematical self-efficacy, and basic math-
ematical competencies after one year of experiential learning and one year of traditional
classroom learning. After one year of experiential learning, there were significant differ-
ences between the two classes in the dimensions of student engagement, mathematical
attitudes, mathematical self-efficacy, and basic mathematical competencies. There were no
significant differences between the post-test and the pre-test in the control class. The same
pattern was found in the sub-dimensions of student engagement, mathematical attitudes,
mathematical self-efficacy, and basic mathematical competencies when analyzed using
SPSS 26.0 (See Tables 9–11).

Table 9. Independent samples t-test for experimental and control classes.

Testing Time Structure p t Value Std.
Percentile 95% CI

Lower Upper

Pre-test

Student participation 0.817 0.770 0.095 −0.117 0.264
Attitude to mathematics 0.182 6.221 0.144 0.608 1.183

Mathematical self-efficacy 0.541 6.121 0.184 0.758 1.493
Basic mathematical competencies 0.112 0.798 0.178 −0.213 0.496

Post-test

Student participation 0.037 ** −28.353 0.093 −2.817 −2.446
Attitude to mathematics 0.000 *** −13.902 0.115 −1.832 −1.372

Self-efficacy 0.000 *** −15.284 0.113 −1.946 −1.496
Basic mathematical competencies 0.013 ** −14.991 0.160 −2.724 −2.084

Note: ** p < 0.05, *** p < 0.01, same below.

Table 10. Comparison between groups of pre and post-tests in the experimental and control classes.

Form Testing Time Structure R-Square F p

Comparison
between groups

Pre-test

Student participation 0.090 0.594 0.444
Attitude to mathematics 13.436 38.704 0.059

Mathematical self-efficacy 21.220 37.470 0.183
Basic mathematical competencies 0.336 0.636 0.043 **

Post-test

Student participation 115.948 803.870 0.000 ***
Attitude to mathematics 42.956 193.276 0.000 ***

Mathematical self-efficacy 49.602 233.610 0.000 ***
Basic mathematical competencies 96.760 224.728 0.000 ***

Table 11. Comparison of pre-and post-test means between the experimental and control classes.

Form
The Average Value of Each Configuration

Pre-Test Post-Test

Classes Student par-
ticipation

Attitude to
mathematics

Mathematical
self-efficacy

Basic
mathematical
competencies

Student
participation

Attitude to
mathemat-

ics

Mathematical
self-efficacy

Basic
mathematical
competencies

Control
classes 2.500 3.450 3.270 1.820 2.870 3.250 2.880 2.680

Experimental
classes 2.422 3.560 3.150 1.680 3.900 4.150 3.910 4.177

5. Conclusions
5.1. Whether the Model Assumptions Are Valid

As can be seen from the collated results (see Table 12), the results of hypothesis 1
of this study are all non-rejected, indicating that hypothesis 1 is valid, meaning that the
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structural model has a good fit; the results of hypothesis 2 are rejected, proving that
hypothesis 2 is not valid. Indicating that there is a significant difference between the effects
of mathematical self-efficacy and basic mathematical competence, and that experiential
learning and mathematical attitudes significantly different from mathematical self-efficacy
and basic mathematical competence. There is also a significant difference. Hypothesis 3 is
not rejected and the Z-values for the indirect, direct, and total effects of experiential learning
on mathematical self-efficacy are all significant at greater than 1.96; thus, there is a partial
mediating effect of experiential learning in mathematics on mathematical self-efficacy.

Table 12. Structural model assumptions and results.

Hypothetical Content Results

Hypothesis 1:
H0: The expectation model for experiential learning in mathematics does not differ from the

covariance matrix to the sample covariance matrix. No refusal

H01: The basic mathematical ability expectation model and covariance matrix do not differ from the
sample covariance matrix. No refusal

Hypothesis 2:
H1: There is no difference in the impact of mathematical self-efficacy on basic mathematical ability. Rejection

Hypothesis 3:
H1: There is a partial mediating effect of experiential learning in mathematics on

mathematical self-efficacy. No refusal

5.2. Implications of Structural Models

1. In this model analysis of experiential learning and basic competencies in mathemat-
ics, it can be found that there are significant effects of experiential learning in mathematics,
mathematical attitudes, mathematical self-efficacy, and basic competencies in mathematics.

2. From the model analysis, it is clear that effective experiential learning, which in-
creases students’ engagement in learning, develops positive attitudes toward mathematics
and enhances students’ self-efficacy in mathematics, which can influence students’ basic
competencies in mathematics. In other words, teachers’ adoption of experiential learning
can foster positive attitudes toward learning, promote the enhancement of students’ mathe-
matical self-efficacy, and develop good basic mathematical competencies in mathematics
learning.

3. Through this study, the impact of students’ behavioral engagement on basic compe-
tencies for learning was often overestimated. Therefore, it is important to shift the formality
of behavioral engagement in regular teaching and learning, and use different ways to
truly engage students’ minds and bodies in mathematics learning, so that it will have a
multiplier effect on promoting students’ mathematics learning and the formation of basic
mathematics skills.

5.3. Conclusions from the Experimental Learning

1. This study is based on the constructed SEM model for experiential learning research,
and the results of the data analysis from IBM SPSS 26.0 show that after one year of study,
there is a significant difference in learning participation, mathematical attitude, mathemat-
ical self-efficacy, and basic mathematical ability compared to the pre-test, which may be
due to the growth and accumulation of knowledge of mathematics after one year of study,
resulting in an increase in mathematical competence.

2. The experiential learning promoted changes in learning participation, mathematical
attitudes, and mathematical self-efficacy of the experimental class students, which also
promoted their desire, interest, and self-efficacy in learning mathematics, which in turn,
promoted the increase in their basic mathematical ability.

3. Due to the fact that before the experiential learning, the control class had better
mathematics achievement tests in the first semester than the experimental class, the control
class performed better than the experimental class in basic mathematics ability, while there
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was no significant difference in mathematics attitude, mathematical self-efficacy, and stu-
dent participation in the pre-test of the two classes. After one year of experiential learning,
the experimental and control classes showed significant differences in student engagement,
mathematical attitudes, mathematical self-efficacy, and basic mathematical competencies.
Therefore, based on the structural model developed, it can be inferred that experiential
learning in mathematics can increase students’ learning engagement in mathematics learn-
ing, which in turn affects mathematical attitudes and enhances mathematical self-efficacy,
and may lead to students’ increased interest and confidence in mathematics learning, which
in turn, affects students’ performance in basic mathematical competencies.

6. Contribution of This Study

In recent years, there has been an increasing amount of research on the development
and validation of SEM models, both in psychology and the social sciences. Most domestic
SEM models in China are currently utilized in psychology, and the more pedagogical ones
are also used to analyze the mediating role of mathematical attitudes and mathematical
self-efficacy and to explore the effects on academic achievement in mathematics. This
study explores the SEM model of the relationship between experiential learning and basic
mathematics skills in primary school mathematics by collecting various data from home
and abroad, and verifies that the model has a good fit and stability. In the analysis of the
model, it was found that there were significant effects between experiential learning in
mathematics, mathematical attitudes, and mathematical self-efficacy, as well as significant
effects between mathematical self-efficacy and basic mathematical competence. This study
combines two dimensions of mathematical attitudes and mathematical self-efficacy to
complement the previous relationship between mathematical attitudes as a single mediating
role and mathematical attainment or mathematical self-efficacy as a single mediating role
and mathematical attainment.

In addition, this study also presents theoretical models and conceptual model illustra-
tions in the thesis based on the suggestions of various scholars. Additionally, the sample
size, model identification, covariance check, and analysis methods are presented in detail
in the statistical analysis, which can provide reference ideas for the later development of
the model exploration.

In this study, a one-year experimental study was conducted in the researcher’s teaching
class and analyzed through pre-test and post-test data collection to demonstrate that expe-
riential learning in mathematics can effectively and positively affect students’ engagement,
mathematical attitudes, mathematical self-efficacy, and basic mathematical competencies,
and also provide a strong basis for model validation. It also provides a reference for the
active implementation of experiential learning in elementary school mathematics learning
at a later stage.

7. Future Research Directions for This Study

The focus of this study is on exploring a structural model based on a linear model
that is appropriate for the relationship between experiential learning in mathematics and
basic competence in mathematics. However, not all of the psychological factors in this
model, other than mathematical attitudes and mathematical self-efficacy, are discussed
in terms of whether they can be mediated to influence basic mathematical competence.
At the same time, basic competencies in mathematics are content competencies that are
directly reflected in test results, whereas the model does not explore whether experiential
learning through mathematical attitudes and mathematical self-efficacy also has a good
fit with process competencies in mathematics. Therefore, to address the above points, the
next study will explore the most effective way to improve the exploration and validation of
the model between experiential learning and basic mathematical competencies in primary
school mathematics.

Due to the age of the students and the limitations of the Chinese mathematics text-
books, experiential learning was taught and learned in numeracy, space, and statistics
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in the classes in this study, and it remains to be seen whether these experiential learning
strategies are equally effective in terms of general skills.
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