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Abstract: Ultrasonic testing (UT) is one of the most popular non-destructive evaluation (NDE)
techniques used in many industries to evaluate structural integrity. The commonly used NDE
techniques are basic inspection techniques, such as visual testing (VT), penetration testing (PT),
and magnetic testing (MT), and advanced inspection techniques, such as UT, radiography testing
(RT), eddy current testing (ECT), and phased array ultrasonic testing (PAUT). Among the numerous
advanced techniques, ultrasonic testing (UT) is usually used for the inspection of welds in various
industries. However, the application of UT still has some shortcomings to overcome. One major
shortcoming that reduces the precision of UT is the extra signals from the geometrical interface of a
specimen. UT uses the reflection indications of the ultrasonic beam. However, the reflection signals
from the welding interface and geometry along with the target flaw signal produce mixed signals. The
inspectors use a 1-D reflection outcome called the ultrasonic A-scan to evaluate the welding integrity.
The mixed ultrasonic A-scan signals are often very difficult to analyze because inspectors must
distinguish the target flaw signal of welding from the mixed ultrasonic A-scan signal, which includes
the flaw indication as well as the background signal. Therefore, a method to distinguish between the
flaw signal and the background signal must be developed for the efficiency of UT. Autoencoder is an
artificial neural network that is made for feature extraction from the input. Denoising autoencoder
(DAE) is one of the derivative models of the autoencoder which adds or eliminates random noise
signals to extract the prominent features. DAE is already widely used in the denoising of images
and sound data. The characteristics of DAE are used in this research to distinguish the ultrasonic
flaw signal from the mixed ultrasonic A-scan signal. For the training, 2463 mixed A-scan signals
were obtained from 45 different standard blocks in which 5 different types of flaws were embedded.
For testing, we used 1000 mixed A-scan signals. The performance of the network was evaluated
using a point-by-point comparison method. The autoencoder was trained to denoise the background
signal from the mixed ultrasonic A-scan, and the target flaw signal was extracted from the original
A-scan signal.

Keywords: ultrasonic testing; flaw signal extraction; denoising autoencoder; nondestructive evalua-
tion; artificial neural networks

1. Introduction

Recently, the nondestructive evaluation (NDE) market worldwide has been growing
rapidly due to strict regulations on public safety and product quality, continuous advances
in electronics, automation, and robotics, high adoption rates of Internet of Things (IoT)
devices, and the need to evaluate aging equipment [1]. NDE is a crucial and efficient
method for evaluating structural integrity because it does not harm or damage the inspected
subject. Among various NDE techniques, ultrasonic testing (UT) is the most commonly
used technique, accounting for 31.10% of the market share [1]. While UT is a versatile NDE
method, it is commonly used for inspecting welds in pipes or storage tanks and requires
a skilled inspector for accuracy because the results highly depend on the inspector’s
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capabilities [2]. The main obstacle in using UT is that the method is highly sensitive to
the testing environment and geometry of the testing material. UT uses the propagation of
ultrasonic waves in a testing material, and the ultrasonic beams are reflected, deflected,
and attenuated by internal flaws or the molecular structure of the testing material. The
ultrasonic waves are also diffracted by the internal or external geometry and weld interface
of the object, and these indications, other than those from flaws, are called background
noise. Evaluating UT mainly involves distinguishing between the reflected ultrasonic
waves that indicate flaws from those that do not. This evaluation requires the capability
of the inspector. When there are too many indications other than the flaw indication, the
evaluation becomes much more complex. Typically to overcome the obstacle, the Hilbert
transform or the threshold setups are used. The most frequently used method of getting
rid of the random noise is the threshold setup. However, the threshold setup only is useful
when used in the field because it is only a method of showing signals that exceed the
reference level, rather than removing noise or extracting the flaw signal. Additionally,
the Hilbert transform is a phase-shifting method that multiplies h( f ) to a signal in the
frequency domain. This method is not a frequently used method since it has a chance of
distortion of the original signal due to the multiplication. There still does not exist a clear
solution to getting rid of random noises.

An autoencoder is an artificial neural network (ANN) often used to extract input
features. A denoising autoencoder (DAE) is one of the derivative models of the autoencoder
that adds or eliminates random noise from the input to extract prominent features. DAE
is already widely used for denoising noisy image or sound data. Munir et al. [3] used the
autoencoder technique to enhance ultrasonic classification performance. Gondora et al. [4]
used DAE to denoise medical images, and Ishii et al. [5] used DAE for the reconstruction of
the clean speech spectrum from reverberant speech. Lee et al. [6] proposed a derivative of
DAE called noise learning-based denoising autoencoder (nlDAE) to enhance the denoising
performance of neural networks. Saad et al. [7] denoised seismic random noise to enhance
the signal-to-noise ratio of seismic data using DAE.

Since DAE is often used to denoise noisy images or signal datasets, its implementation
to the ultrasonic 1-D signal, known as ultrasonic A-scan, should be effective. Using DAE, it
would be possible to get rid of random noise and extract the flaw signal from the mixed
ultrasonic A-scan signal. Figure 1 shows an example of a mixed 1-D ultrasonic signal
with a flaw indication and background noise. (a) The figure shows the region where
the initial signal and wedge noise exist. (b) The figure presents the flaw signal, which
is the target signal of this study. (c) The figure shows the welding interface signal and
the geometrical signal from the specimen. As shown in Figure 1, an A-scan is a mixture
of various signals from the UT procedure. Distinguishing the flaw indication from the
ultrasonic 1-D outcome is very difficult because there are too many indications from other
aspects of the inspected weldment.
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Figure 1. Ultrasonic A-scan signal with the flaw indication and the background: (a) initial signal and
wedge noise; (b) flaw signal; (c) weldment interface signal and geometrical signal.

2. Methods and Materials
2.1. Specimen Information

In this study, the A-scan flaw signals acquired from 45 different standard blocks that
had 5 types of flaws were used for the dataset. The specimens were made by FlawTech [8]
and Sonaspection [9]. Figure 2 shows the specimens used in this study to acquire the data.
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Figure 2. Specimens used in the acquisition of data.

The specimens illustrated in Figure 2, had 5 different types of flaws: crack, lack of
fusion, slag inclusion, porosity, and incomplete penetration.

2.2. Data Acquisition

The A-scan data from the flaws were collected with an ultrasonic testing system shown
in the figure below. Figure 3 presents the equipment used for the UT inspection of the pipe
weldment specimen. The UT equipment used in this study digitalized the ultrasonic data
so that it could be displayed on a laptop where a developed UT program was installed.
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Figure 3. Digitalized UT system and inspection of pipe weldment specimen.

In addition to the ultrasonic testing system, a total of 18 types of ultrasonic testing
probes or transducers were used to acquire the ultrasonic A-scan data. The ultrasonic
transducers were made by three different companies, Krautkramer, GE, and Olympus.
Each type of transducer included three angles of incidence, 45◦, 60◦, and 70◦. Table 1 shows
the probes used for the acquisition of the ultrasonic A-scan data.

Table 1. Probes used in acquisition of the data.

Krautkramer GE Olympus

MWB 45-2 WB 45-2 WB 45-4 MWB 45-2 WB 45-2 A430S (45◦)
MWB 60-2 WB 60-2 WB 60-4 MWB 60-2 WB 60-2 A430S (60◦)
MWB 70-2 WB 70-2 WB 70-4 MWB 70-2 WB 70-2 A430S (70◦)

2.3. Denoising Autoencoder

Autoencoder is a type of ANN that reconstructs the network inputs referring to its
features. Most of the time, the autoencoder is used for dimension reduction and feature
extraction. The overall goal of an autoencoder is to enable the network to learn how to
reconstruct input data so that the reconstructed output is equal to the input. After the
encoding process by the encoder, the latent space of the autoencoder learns the input
features. After decoding in the decoder, the network reconstructs the input based on the
features learned in the latent space.

The autoencoder explained above is prone to the risk of overfitting since it aims to
reproduce or reconstruct the outputs from the inputs [10]. DAE is a derivative of many
autoencoder techniques and is more robust than the ordinary autoencoder technique and
can be used for correction of errors. It introduces random noise to the original input, and
the noisy input becomes the new input and goes through the encoder so that the features
of the input are learned or encoded. In the decoder, the non-noisy version of input is
reconstructed by the features of the noisy input. Then, the loss is calculated by comparing
the output to the original input without noise, and it is expected to reconstruct the clean
input that does not contain the random noise. Suppose that there were two types of inputs,
x, the non-noisy signal, and x̃, the noisy signal. In DAE, the encoder, as the x̃ is compressed,
tries to map the features of x̃ to the latent space and the decoder reconstructs the non-noisy
version of x̃ which in this study is referred to as x′. Then, the mean square error (MSE)
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between x′ and x is calculated. As the MSE decreases, the x′ becomes similar to x. Figure 4
schematically illustrates the architecture of the DAE. Equation (1) shows the mathematical
expression of denoising process [11,12].

Denoising(x′, x) = minimize[MSE(x′, x)], (1)
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Figure 4. Architecture of the conventional denoising autoencoder.

Further details of DAE can be found in Refs. [11–14].
The ordinary DAE extracts the features from the noisy input x̃. The features of the

noisy input are saved in the bottleneck hidden layer, and the decoder reconstructs the signal
with the saved features. Then, the output, which is the reconstructed input by the DAE, is
compared to the validation (the original signal without noise) and the loss is calculated.
The DAE learns to decrease the loss, and after sufficient training, the output should look
like the original input. Nauman et al. [11] used this ordinary denoising autoencoder to
denoise and classify various types of flaws with different noise levels.

In this study, however, we utilized the characteristic of decoder, which compares the
output to the validation. We used the original mixed A-scan signal as the corrupted input
x̃, and the algorithm tried to reconstruct the non-noisy flaw signal from x̃. We used the
zero-padded flaw signal (x) as the validation for calculation of MSE. Figure 5 shows the
difference of ordinary DAE and proposed DAE. Also, Figure 6 presents the mechanism
used in this study to extract the flaw signal from the mixed signal.

Before passing the input through the proposed DAE, a validation signal should be
created from the input so that it can be used to minimize the loss. As explained earlier,
the original A-scan signal used in this study is a mixture of the flaw signal and other
signals, such as those from the geometrical interfaces. The additional signals are manually
zero-padded, referring to the pre-marked gates indicating the location of the flaw during
the acquisition of A-scan data. A sample validation signal is shown in (b) of Figure 6. The
features of the input are encoded in the bottleneck hidden layer, as with the ordinary DAE.
The decoder then uses these features to reconstruct the input and produce the output. The
network then compares the output to the validation signal to reduce the mean squared
error (MSE) loss. The comparison between the validation signal and output is represented
by the arrows across (b) and (c) in Figure 6. As the MSE loss decreases, the output of the
proposed DAE becomes more similar to the validation signal, and the DAE learns to extract
the flaw signal.
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Figure 5. Difference between ordinary denoising autoencoder and one used in this study: (a) the
inputs (x̃) and outputs (x′) of the ordinary denoising autoencoder that the noisy input is denoised
throughout the autoencoder; (b) the inputs (x̃) and outputs (x′) of the DAE used in this study that
the autoencoder extracts the flaw signal out of the mixed signal and denoises the other extra signals
beside the flaw signal.
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Figure 6. The architecture of proposed denoising autoencoder in this study: (a) The input or x̃ used
in this study where it goes through the denoising autoencoder and its features are saved in the
bottleneck hidden layer; (b) The flaw signal or x that is used as validation where all of the extra
signals beside the flaw signal are zero-padded. The validation is used for the MSE calculation with
the output; (c) The output or x′ that is reconstructed through the denoising autoencoder where it is
compared to the validation signal and the autoencoder learns to extract the flaw signal.
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3. Ultrasonic Signal Database
3.1. Database Construction

The ultrasonic A-scan data were acquired using the equipment and ultrasonic trans-
ducers introduced earlier. A total of 2463 A-scan flaw signals were acquired and used to
create a database of various A-scans acquired from standard block specimens. The database
is organized by the type of flaw each A-scan includes, with 630 different crack signals, 378
different lack of fusion signals, 623 different slag inclusion signals, 344 different porosity
signals, and 488 different incomplete penetration signals. The number of flaw signals
acquired from the standard block specimens using UT is presented in Table 2.

Table 2. Data acquired from the ultrasonic testing.

Flaw Type Data (#) Total (#)

Crack 630

2463
Lack of Fusion 378
Slag Inclusion 623

Porosity 344
Incomplete Penetration 488

All 2463 A-scan signals consist of a mixture of the background signal from the weld
interface and internal geometry, as well as the flaw signal. Figure 7 displays the mixed
ultrasonic A-scan data for each type of flaw. During the acquisition process, the gates
where each flaw signal is located in the mixed signal are marked. To train the DAE, the
background signals for all 2463 data points were zero-padded based on the previously
marked gates.

Figure 7 illustrates the five types of flaw signals used in this study, which are typical
flaws in weldments. (a) Shows the typical crack signal in welding obtained by UT, which is
the most fatal type of flaw that could occur in welding. (b) Presents the conventional lack
of fusion signal in welding obtained by UT. (c) Shows the ordinary slag inclusion signal in
welding obtained by UT. (d) Displays the typical porosity signal in welding obtained by
UT, which is often difficult to evaluate as the amplitudes are relatively low. (e) Presents the
typical incomplete penetration signal in welding obtained by UT. Flawless signal samples
are not included as they do not contribute to the network’s goal of flaw signal extraction.

3.2. Neural Network Architecture

To implement 1-D A-scan flaw signal data into the neural network, a DAE was
designed and modified. The DAE was designed in Keras of Tensorflow, an open-source
deep learning software by Google. The algorithm included an input layer with the same
number of nodes as the sampling point of the given signals, i.e., 4096. Next, the encoder
with three convolutional layers and two max pool layers follows. The max pool layers are
in between the first, second, and third convolutional layers. The bottleneck hidden layer
as known as the latent space was designed with the max pool layer where the number of
points of input is compressed to 512 points. Then, the decoder has two convolutional layers
and three up-sampling layers. Through the decoder, the output becomes the same size
as the input. For learning complex relationships of data, the rectified linear unit (ReLU)
is used as an activation function for adding nonlinearity to the network [12]. Then, the
mean square error is used for the calculation of loss between the reconstructed output and
the zero-padded flaw signal that is manually made earlier. Figure 8 shows the training
process of the DAE proposed in this study as a diagram. In addition, Figure 9 presents the
architecture of the denoising autoencoder. The model is saturated at the 45th epoch. The
dropout technique is added to the overall procedure of encoding and decoding because
even though the denoising autoencoder is more robust than the ordinary autoencoder,
there still exists a risk of over-fitting.
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4. Results and Discussion
4.1. Performance of the Proposed DAE

At training, the loss of the model started as 0.0019, but it is saturated at the 45th epoch
to 0.0005 and it is early stopped at the end of the 50th epoch. After the training, 1000 mixed
ultrasonic A-scan signals were used to test the performance of the DAE. Figure 10 shows
some samples of the testing signals and the flaw signals extracted from the mixed signal
via DAE. The upper signals of Figure 10 are the mixed A-scan signals that are named the
original signals, and the bottom signals are the flaw signals that are extracted from the
original signals via the DAE used in this study.
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Figure 10. The examples of the performance testing of each flaw types: (a) A-scan mixed crack
signal (original signal) and extracted crack flaw signal from the original signal; (b) A-scan mixed
lack of fusion signal (original signal) and extracted lack of fusion flaw signal from the original signal;
(c) A-scan mixed slag inclusion signal (original signal) and extracted slag inclusion flaw signal from
the original signal; (d) A-scan mixed porosity signal (original signal) and extracted porosity flaw
signal from the original signal; (e) A-scan mixed incomplete penetration signal (original signal) and
extracted incomplete penetration flaw signal from the original signal.

The flaw signals extracted from the original signals share some similarities. The
amplitudes of the reconstructed flaw signals are reduced compared to those of the original
signals, and some of the extracted flaw signals still contain remnants of the background
signals beside the flaw signal.

To evaluate the extracted signal, a point-by-point comparison method is suggested.
The validation dataset is zero-padded according to the pre-obtained gates by ultrasonic
testing experts, which indicate the location of the flaw. The evaluation method, or point-
by-point comparison method, involves subtracting all the data points in two different
datasets and averaging the outcome by the number of data points. This helps evaluate the
performance of the extracted signal dataset, where the better the performance, the smaller
the value will be. Table 3 shows the point-by-point comparison of the extracted flaw signal
and the flaw signal zero-padded by the pre-obtained gates.
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Table 3. Point-by-point comparison of extracted flaw data, training dataset, and testing dataset must.

Performance Training Testing

Number of data (#) 2463 1000
Average of maximum

amplitudes 0.6729 0.6281

Average difference of data
points 0.02764 0.03282

Table 3 shows the point-by-point comparison of the extracted flaw signals and the
zero-padded flaw signals in both training and testing. The training dataset demonstrated
better performance, as the average difference value was lower. However, for the testing
dataset, the average difference value was not significantly high. The average difference
indicates that, on average, the data points have that amount of difference from the original
flaw. If there were distortions in the data, the average difference would be much larger,
considering the average of the maximum points.

4.2. Discussion

From the testing procedure, it was observed that most of the flaw signals were ex-
tracted properly. However, there were some reconstructed signals that failed to extract the
flaw signals properly from the original signal. When the amplitude of the target signal is
relatively small, the neural network could not extract the flaw signal as expected. Instead,
the flaw signal as well as the background signal from the weld interface and the geometry
are also denoised by the denoising autoencoder. Additionally, some loss of amplitude is
witnessed. Figure 11 shows some examples that did not extract the flaw signal as expected.
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Figure 11. The examples of signals that are not extracted properly: (a) A-scan mixed crack signal data
and extracted crack signal from flaw #150; (b) A-scan mixed slag inclusion signal data and extracted
slag inclusion signal from flaw #892.

Both signals (a) and (b) from Figure 10 share some characteristics in common. Firstly,
the flaw signals have relatively low amplitude when observed in the mixed signal. Moreover,
the peak amplitudes of denoised signals are low compared to that of signals in Figure 9.

There could be several reasons that the autoencoder used in this study did not perform
well on signals with small peaks. One reason could be the shortage of samples or training
data. The autoencoder learns the features of signals, and most of the signals are acquired
from the peak amplitude. This means that the amount of data with particularly low
amplitude is not enough for the neural network to learn. Another reason could be the
pattern of signals. Most of the training data had a similarity when extracting the flaw
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signal. Most of the background signals have a smaller amplitude compared to that of the
flaw signal. This characteristic of the training data would mislead the DAE to consider
that all signals with small amplitude are extra signals to be deleted. Lastly, the original
data were not regularized. Some of the original A-scan data had very low amplitude. By
regularizing the signals with the flaw signal’s amplitude, the DAE used in this study would
have learned much better.

5. Conclusions

In this study, an algorithm called denoising autoencoder (DAE) is developed to
extract the flaw signal from the mixed A-scan signal obtained by ultrasonic testing (UT).
Background signals have always been an obstacle to the evaluation of UT signals, especially
for unskilled inspectors. Although many attempts have been made to extract flaw signals
or denoise background signals using various techniques, these attempts have remained
largely unsuccessful. Most attempts to combine UT with artificial neural networks (ANN)
have focused on detecting flaws rather than extracting flaw signals from A-scan signals
obtained by UT. Although autoencoder has been used in previous research to denoise 2-D
image datasets or 1-D signal datasets, it was not particularly focused on the extraction of
flaw signals. Therefore, in this study, we propose a newly developed derivative of the DAE
that can be used to extract the target flaw signal from mixed A-scan signals.

For this research, a total of 45 weldment standard blocks, in which 5 types of flaws
were embedded, were used. The 5 types of flaws used in this study are cracks, lack of
fusion, slag inclusions, porosity, and incomplete penetration. The total number of A-scan
signals used in the training of the DAE is 2463.

For the training of the DAE, we zero-padded the acquired A-scan signals and manually
removed the background signals. The zero-padded data are used as validation data in the
ordinary DAE process so that they can be compared to the output and update the weights,
thereby reducing the loss. After training, most of the background signals from the original
mixed A-scan signals disappeared, and the flaw signals were properly extracted from the
mixed A-scan signals.

The MSE loss of the model started at 0.0019 but ended at 0.000508, which shows that
the DAE used in this study worked well. A point-by-point comparison method was used to
evaluate the performance of the network. For training data, there was an average difference
of 0.02764, and for testing data, there was an average difference of 0.03282. The result of
the point-by-point comparison also shows that the network worked well.

However, there remained some problems to be solved. First, the amplitude of the
extracted flaw signals was reduced. Second, some parts of the mixed signal were not
denoised well. Lastly, some flaw signals of the signals with low amplitude were not
extracted as expected. The causes of these errors came from the shortage of data used in the
training. The DAE was trained using A-scan data acquired from the peak amplitude, which
caused a shortage of low amplitude data and became the reason for the error. Another
reason could be the pattern of signals. The characteristic of the dataset could mislead the
network to denoise every smaller signal. Lastly, the dataset was not regularized. The flaw
signals with low amplitude could be regularized, and by regularizing signals with the
amplitude of flaw signals, the DAE would be able to learn to treat the flaw signals with low
amplitude.

The overall result of this study suggests that the proposed DAE is practical for extract-
ing flaw signals from A-scan signals obtained by UT. Although some revisions should be
made for the actual usage of the proposed model in the field, they can be completed in a
short period of time. Through this model, experts who practice UT will be able to work
more effectively and efficiently. The proposed DAE in this study would be a great solution
for experts in the nondestructive evaluation (NDE) field, and the implementation of the
proposed DAE in the NDE field is expected soon.
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Abbreviations

UT Ultrasonic testing
NDE Nondestructive evaluation
VT Visual testing
PT Penetration testing
MT Magnetic testing
RT Radiographic testing
ECT Eddy current testing
DAE Denoising autoencoder
IoT Internet of Things
ANN Artificial neural networks
nlDAE Learning-based denoising autoencoder
MSE Mean squared error
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