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Abstract: In the area of industrial Internet of Things (IIoT), digital twins (DTs) are a powerful means
for process improvement. In this paper the concept of a DT is explained and analysis possibilities
throughout the life-cycle of a product and its production system are explored. The main part of this
paper is focused on an approach to the analysis of manufacturing layouts and their parameters. The
approach, which is based on a state of the art bottleneck detection method, allows an intelligent
representation of the temporal process characteristics. The presented method is widely applicable for
any type of manufacturing layout and time-span. The use of elementary heuristics leads to traceable
results that can be used for further analysis or optimization. The results of this analysis method can
be integrated in a DT and combined with machine learning and explainable artificial intelligence
(XAI). The concept for a self-learning DT is explained and implementation possibilities are elucidated.

Keywords: manufacturing; digital twin; IIoT; bottleneck detection; visualization; machine learning

1. Introduction

Over the past years, the areas of more efficient production, smart manufacturing and
Internet of Things (IoT) have been emerging faster and faster. The well known term IoT
describes a vast array of entities with sensing and actuating capabilities that collect, analyze
and share data across other entities, programs and platforms and influence the state of
other entities [1]. A common definition of industrial IoT is proposed by Ben-Daya et al. [2]:
“Internet of Things is a network of physical objects that are digitally connected to sense,
monitor and interact within a company and between the company and its supply chain
enabling agility, visibility, tracking and information sharing to facilitate timely planning,
control and coordination of the supply chain processes". Integration of IoT in manufacturing
is known as Industrial IoT (IIoT). In the scope of IIoT, the application of digital twins (DTs)
is receiving enormous attention. Many researchers consider DTs as the most promising
current trend in the scope of product development, production design and operations
management [3,4]. By means of the application of DTs, engineers in product development
may benefit from the vast amount of information gathered in production processes and
in product operation [5]. The main elements of DTs are integrated multi-physics, multi-
scale, deterministic and probabilistic simulations of a complex technical system; they use
the best available analytical models in combination with continuously updated sensor
readings to mirror the state of its corresponding physical twin [4]. Meanwhile, a general
consensus can be observed that a DT consists of three parts: physical product or system,
virtual representation and connected data that tie these products or systems together [4].
Trauer et al. [6] list three key characteristics of DTs:
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• DTs are dynamic virtual representations of real technical systems;
• DTs are connected to the real technical system over the entire life-cycle;
• Data are exchanged bidirectionally between DTs and the real technical system.

The main characteristics of DTs are summarized in Figure 1.

original
system
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Figure 1. Characteristics of Digital Twins.

Whereas the first characteristic is obvious, the second requires closer examination.
A life-cycle of a product and its production system is shown in Figure 2.

Figure 2. Life-cycle of a product and its production system.

Both the development cycle of the product itself and of the production system are
shown in form of a V-model, which is the common process description model in model-
based systems engineering (MBSE) and is, for instance, proposed in the VDI guideline
2206 [7–9]. This process continues with the production operation and leads to product
delivery, product operation and product recycling; this also highlights the potential and
necessity of a circular economy. A large amount of research covers the production operation
stage and international standards such as the ISO 23247 [10] are already established. Other
areas of the product and production life-cycle are not as intensively researched, but they
may be very important and are thus also depicted in Figure 2. It is important to note that
this kind of holistic view on the product life-cycle is necessary to explore all connection
possibilities between a DT and the real technical system (product and production system). It
is important to note that early application possibilities of DTs already cover the development
of the functional and logical architecture of a product. Engineers need to define the
main functions of the new product and are required to deal with various kinds of data
(e.g., customer satisfaction surveys, product sales and product competitiveness analyses,
etc.) [4]. The amount of data exchanged between the real system and the DT is both
huge and scattered. By means of applying a DT that integrates all kinds of data in the
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physical space of the product, the engineers can gain an understanding of possible product
improvements [11]. This also underlines the importance of the third key characteristic:
the bidirectional data exchange. The new system can be improved making use of the
feedback from customers and the problems in product operation. Similarly, in later phases,
the analysis and integration of data is of paramount importance in order to improve
production. There are a lot of possible ways to improve production lines to produce items
more intelligently and more quickly. A few examples are shop floor routing, avoidance of
task delay and the optimization of setup times. Simplifying this very complex problem is
one of the most important factors in terms of efficiency. A key factor in smart manufacturing
is the throughput. Machines are principally responsible for throughput and are the first
elements which come to mind when thinking about improving this parameter. The machine
which has the biggest impact on limiting the speed of production is known as a bottleneck
machine. This knowledge is of great interest for manufacturing engineers and enables
one to increase throughput by improving this worst element. At the beginning of this
century, Roser et al. [12] presented the idea of the Active Period Method. This method uses
active and inactive time periods of production systems to determine the overall bottleneck.
The goal of this paper is a combination of a deeper investigation of the Active Period
Method, an investigation of real life industrial data sets, a systematic consideration of crucial
aspects and a sensible application of this method to real life data. Furthermore, the objective
is the development of a heatmap visualization, serving as input to the optimization of
the overall production line. Finally, the presented approaches are embedded into an
overall concept of a self-learning DT. Consequently, the paper is structured in the following
manner. Section 2 reports the results of an in-depth literature review. Based on these
results, the Active Period Method is discussed and validated in Section 3. An appropriate
visualization technique for the results of this method is presented in Section 4. Based on the
application to real life data, Section 5 explains the concept of a self-learning DT. The paper
concludes with a summary of results and an outlook to future research activities.

2. Literature Review

In this section, past research efforts at identifying and predicting bottlenecks within
an overall production system are presented (Table 1).

Table 1. Literature review on existing bottleneck detection methods.

Input Output Bottleneck Detection Method

Time series data of active periods Estimation of Sole and Shifting Bottle-
neck machines relative to observation
period

Active Period Method [13]

Time series data of blockage and star-
vation of machines

Identification of bottlenecks through
starvation of downstream machines
and blockage of upstream machines

Turning Point Method [14]

Time series data of active periods Average of active periods for each ma-
chine

Average Active Period Method [12]

Observations of process, inventory
states

Ranking of bottleneck sets Shop Floor Bottleneck Detection [15]

Arrival of Jobs Identification of bottleneck machine
pools through reinforcement learning

MINERVA: A Reinforcement
Learning-based Technique [16]

2.1. Bottleneck Detection in Manufacturing Systems

In 2001, ref. [12] came up with a practical bottleneck detection method which uses the
active periods of machines, the Average Active Period Method. The active periods of machines
are all periods in which a machine is not starved or blocked by surrounding machines.
Starvation means that a machine is unable to produce parts due to lacking incoming parts
to be processed. A machine is blocked if it cannot start processing because the current
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workpiece is finished but has not been removed from the machine. A machine is in an
active state even if it has broken down or is being equipped, because it could produce if the
technical issues would be solved. When applied to shop-floor data, a set of active periods
can be calculated. An example for transforming the series of states of a process into a set of
active periods is shown in Figure 3.

waiting
pro-

ducing
pro-

ducing repair
pro-

ducing waiting
pro-

ducing
tool

change
waiting

active period

Figure 3. An example of active periods in a schematic process timeline.

The next step is to calculate the mean and standard deviation over all active periods
for each machine in the set of machines

Ai = {ai,1, ai,2, ai,3, ..., ai,n}.

A visualization of this method can be seen in Figure 4.

Figure 4. An example on the Average Active Period Method. M1, M2, M7 and M8 refers to different
machines in the production process. We selected this subset of machines (sub-processes), because it is
appropriate for the visualization of the Active Period Method. M7 (red) is the sub-process with the
longest average active period.

The process in the graph above is active for 1.500 s on average before being interrupted
by a starved or blocked process. This is by far the longest Average Active Period in the
system. All other processes reach much shorter Average Active Periods in the graph, being
active for only one or two process cycles before interruption.

In 2004, ref. [13] came up with a new bottleneck detection method which also uses the
active periods of machines, called the Active Period Method. The idea behind this method
is that the longer a process is running without interruption by starvation or blockage,
the more likely it is the bottleneck. The two fundamental rules of this method are:

• At any given moment, the process with the longest uninterrupted active period is the
bottleneck.

• During the overlap at the end of the current longest uninterrupted active period and
the next one, the bottleneck shifts from one process to another.

A visualization of the method described in Algorithm 1 is shown in Figure 5. The figure
displays the active/inactive periods of the machines. The upper part of the diagram shows
the bottleneck scores for each machine. The bottleneck score measures the ratio between
the duration of a machine being a bottleneck and the total observation time of the analysis.
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Algorithm 1 Algorithm for the Active Period Method

Input: time series of active periods
Output: list of bottlenecks

1: sort list by starting times
2: for each starting time do
3: if f irst run then
4: pick entry with longest duration, add to bn_list
5: update last_bn_duration, last_bn_end
6: else
7: pick entry with longest duration
8: if end o f entry is a f ter last_bn_end then
9: add to bn_list

10: update last_bn_duration, last_bn_end
11: else if start o f entry is a f ter last_bn_end then
12: add to bn_list
13: update last_bn_duration, last_bn_end
14: end if
15: end if
16: end for
17: return bn_list

Figure 5. Example of Active Period Method.

In contrast to the Active Period Method, the Turning Point Method, presented by [14],
observes the shift from blockage to starvation. The duration of blockage and starvation are
accumulated separately for each machine and set into relation to the observation period. If a
machine is a bottleneck, the upstream machines will have a high blockage percentage and
the downstream machines will have a high starvation percentage. The bottleneck machine,
however, will have low values for both blockage and starvation. Thus, by analyzing the
values with respect to the neighbouring machines, one can determine a bottleneck machine.
Figure 6 shows an example. Here, machine M3 is the bottleneck, as it is the turning point
for the ratio of blockage and starvation percentages.
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Figure 6. Example of Turning Point Method.

Another method of determining bottleneck machines is suggested in [15], proposing a
walk through the manufacturing layout. This method also uses blockage and starvation
periods of machines. When there are machines which are starved, the bottleneck has
to be upstream, which means it is somewhere in a process before the starved machines.
If there are blocked machines, the bottleneck has to be downstream; thus, it occurs in
some later processes. During a walk through the production site, all streams are marked
whether the bottleneck is up- or downstream, leading to a set of one or more bottleneck
machines. Ref. [16] presented Minerva is a reinforcement learning-based technique, footing
on the arrival of jobs coming from the ERP program, which are assigned to machine pools.
This method determines a pool of machines as bottlenecks indirectly by maximizing the
throughput of the system by an optimal job scheduling. This leads to a machine pool whose
capacity needs to be expanded and therefore is a bottleneck pool.

2.2. Evaluation of Bottleneck Detection Methods

In this section the advantages and disadvantages of each bottleneck detection method
are discussed. An important aspect is the metric offered by the bottleneck detection al-
gorithms. Whereas [15,16] just identify a set of machines that are bottlenecks, the other
methods [12,14] offer a metric that measures how likely a machine is a bottleneck. The met-
ric of the Average Active Period is the average duration of the active periods for each
machine. The Active Period Method measures the duration of a machine being a bottle-
neck. This value is further split into the sole and shifting fraction and then returned as a
percentage of the total operation time. The Turning Point Method measures the percentage
of starvation and blockage times of each machine. The Average Active Period Method is
easy to implement, but does not offer detailed information on the identified bottlenecks.
In contrast, the Active Period Method as well as the Turning Point Method offer more
accurate metrics with more information on identified bottlenecks.

It is important to note that over the last two decades many approaches and algorithms
were proposed for the sensible application of bottleneck detection methods. A conclusive
approach for bottleneck detection was proposed in 2008 by Sengupta et al. [17]. Subra-
maniyan et al. [18] present a data driven algorithm to predict throughput bottlenecks;
Roser et al. [19] enhance an algorithm for including the detection of shifting bottlenecks;
both are based on the Active Period Method. The application in a simulation software is
explored by Leporis and Králová [20]; they also investigated the Active Period Method and
identified several advantages.

Another aspect that should be highlighted is the availability of a quality metric, e.g., the
accuracy. For the methods from [12,14], no statement on the accuracy is given, while the
Minerva method provides an accuracy, e.g., an accuracy of over 90% is reached by [18].
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The bottleneck detection method provided in [15] was tested in 20 different production
lines and a lot of bottlenecks not considered by experts before were identified.

Although some of the above methods cannot deliver a statement on their accuracy,
a big advantage is that they are real-time capable and are easily implemented. The following
quality criteria were decisive when choosing the method to be applied:

• Independent of production layout;
• Requires time series data only;
• Implementable in a small prototype;
• Delivers an interpretable metric.

The Active Period Method fulfils all these requirements and is therefore chosen for the
proposed bottleneck detection method.

3. Bottleneck Detection Method by the Active Period Method

In this section, the Active Period Method is discussed and validated. The unique
research contribution is the combination of a deep investigation of the method, an investi-
gation of real life industrial data sets, a systematic consideration of three crucial aspects
and a sensible application of this method to real life data. For this purpose, time series
data for operating states from several industrial companies were acquired and analyzed.
Subsequently, results were presented to shop floor experts of each company to access the
acceptance and practical applicability of the method.

3.1. Boundaries of Active Period Method

To obtain the mandatory information for calculating the Active Period Method,
the time series of operating states from the different machines of the overall produc-
tion system or line is necessary. These data then have to be converted into active periods.
Preprocessing the raw time series data is crucial; here, as in smart manufacturing a lot
of data are gathered, but the available data are typically not ready for further processing.
Assuming that most of the industrial companies use some kind of ERP or PPS software,
the following aspects are important in order to apply the Active Period Method:

• Correct interpretation of the operating states. Often, operating states are not
recorded correctly. As an example, concrete failure states are often not detected
by the system automatically but entered manually at the end of a shift. These errors
have to be corrected during preprocessing, which is a time-consuming task.

• Usage of the job schedule. In case of a task change, it is important to set the operating
state to free capacity in case the next task does not start immediately. Unsubstantiated
downtimes need to be investigated.

• Understanding of the production process. Without any understanding of the prod-
uct profile, the production layout and structure or special features of the production
process, the results of the Active Period Method can hardly be understood.

The Active Period Method works with almost any time series data, but as stated
above, sufficient knowledge on the production process is important, in order to avoid the
misinterpretation of results. In general, the Active Period Method tells which machines are
likely to be a bottleneck, not which machines are guaranteed to cause a problem and, thus,
false positive results are an issue.

3.2. Results

In Figure 7, an example of the results of the Active Period Method is shown, based
on the real production data of one of the industry companies. The graphic shows the data
from three different machines, 72908, 72925, 72928. These machines operated for four days.
It is clearly shown that machine number 72925 has the highest bottleneck scores, both sole
and shifting bottlenecks and, thus, should be examined first when trying to improve the
overall efficiency of the production system.
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Figure 7. An example for the result of the Active Period Method (top) visualized with status time
series (bottom).

The results were discussed with local experts familiar with the whole production
system. The feedback can be summarized as follows:

• General result. The Active Period Method is an appropriate approach to supervise
and measure the overall management of a production system. In addition to the
sole/shifting bottleneck probabilities, the time series of active and inactive states
constitutes a valuable input for production management. Together, these two results
provide meaningful and expressive information to judge production quality. In gen-
eral, the results mirror the experts’ personal opinion and experience on the production
system.

• Expressiveness of results and visualizations. The results and presented visualiza-
tions are judged as expressive and a good foundation for discussions of potential
production system improvements.

• Selection of relevant machines. It should be evaluated whether it is always the best
solution to use all available machines as input to the Active Period Method, or if it is
better to use an appropriately defined subset instead.

• Observation period. Different observation periods may well affect the results and
the quality of the bottleneck prediction of the Active Period Method.

4. Process Heatmap

The Active Period Method identifies potential bottlenecks and offers a corresponding
visualization for each machine. In this paper, we introduce a process heatmap as additional
analysis and visualization technique, displaying the overall production process topology
and the stability of the state of each machine, i.e., how likely the machine might turn into a
bottleneck when adapting the overall process topology. Thus, the process heatmap will
enable one to judge the health of the production system at once.

The basis for generating a process heatmap is the Active Period Method, because its
metric shows a strong tendency concerning which machine is closest to becoming a bottle-
neck in the manufacturing line. In addition there are no boundaries in relation to physical
layouts, so a lot of machine pools or manufacturing layouts can be regarded in different
observation periods.

For further investigation, a tangible manufacturing layout given from a planned
production line for a certain product is simulated, to demonstrate and validate the process
heatmap as intelligent analysis and visualization approach. To simulate the dynamics
of the overall production system, a simple model of storage and resistor components is
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introduced and all kinds of disturbances are modelled by a Gauss distribution. The cycle
times of the machines are adopted from the planned production line.

In a first step, the simulation loops over all machines and varies the cycle time from 95
to 120 percent of the calculated mean cycle time for each machine separately as shown in
Figure 8. Thus, the cycle times of all other machines are not changed. The density function
of the machine cycle times—if a Gauss distribution is used it would be the standard
deviation—can be estimated empirically from smart manufacturing data.
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(i)
Figure 8. Variation of the cycle times from 95% to 120% for each machine. (a) Variation of machine M1.
(b) Variation of machine M2. (c) Variation of machine M3. (d) Variation of machine M4. (e) Variation
of machine M5. (f) Variation of machine M6. (g) Variation of machine M7. (h) Variation of machine
M8. (i) Variation of machine M9.

The cycle time for each machine is varied in 60 steps and for each step the bottleneck
scores are calculated with the Active Period Method. The results are then plotted in a
diagram as shown in Figure 8. For visualization purposes, a sigmoid function in the form
of Equation (1) is plotted additionally, to show the correlation of this function with the
calculated data.

f (x) =
L

1 + e−k(x−x0)
(1)

Thereby L denotes the limiting value, k is the gradient of the sigmoid and x0 defines the
turning point. The variable x describes the average cycle time of the machine in seconds. For
a better visualization of these data, the calculated points of the scatter plot are summarised
into a color bar. The color bar groups together percentage ranges of bottleneck likelihoods
(Table 2), so that it is clearly visible how far a machine is from being a bottleneck. The
color coding in Figure 8 is the same as described in Table 2. In this figure, it can been seen
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that, if a machine has wide blue and green areas, it means that decreasing the machine’s
throughput, e.g., by slowing down the machine, will not increase its bottleneck score
significantly. Machine M4, for example, has a Bottleneck Score of nearly zero throughout
the range of 95% to 120%, whereas machine M1 quickly changes at 101%. This displays
that, if a machine has only small blue and green areas, the bottleneck score will increase
immediately if the machine’s throughput decreases. Combining the colorbar with the
production line layout leads to the results shown in Figure 9. The data displayed in Figure 8
also underly Figure 9.

Table 2. Color bars for percentage ranges of bottleneck likelihoods.

Percentage Color

0–20 blue
20–40 green
40–60 yellow
60–80 orange
80–00 red

If each machine of a production system has shifting bottlenecks only and these bottle-
necks are evenly distributed, the observed production system is optimally balanced. Having
solely shifting bottlenecks within a production system implies that there is no machine
which is mainly responsible for being a bottleneck, which leads to a heatmap where the sole
bottleneck score is zero at 100% mean cycle time. When trying to optimize a non-optimal
production system, the approach is to improve the throughput of the worst machine until
it has no sole bottleneck likelihood. When applying this approach to all machines one after
the other, the system is optimally balanced and the throughput optimized.

Figure 9. Scheme of a possible visualization of the process heatmap.

5. Integration of Analysis Results into a Digital Twin

The bottleneck analysis, presented in the last section, analyzes the criticality of each
machine within an overall production system and enables the optimization of the produc-
tion system layout and performance. On a wider scale, such a bottleneck analysis can now
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be used as part of a dynamic simulation of a production system in the form of a digital twin
(DT). Hereby, the bottleneck analysis can be improved by using the DT as a much more
precise system model. This way, the cycle times of machines can be considered depending
on different process parameters. Compared to the bottleneck analysis approach described
in the last section, the behavior of a concrete machine is now not simply defined based on
pre-assumptions on its performance under certain conditions, but is deduced from real
system behavior based on applying machine learning algorithms on past system execution
data. As a consequence, the analysis in Figure 9 only relies on a static model. Instead, the
DT can be used to perform a sensitivity analysis analogously to Figure 8, yet being more
precise due to the adaptivity of the underlying AI models.

In this section, we will present the concept of an AI-based digital twin, using machine
learning techniques to automatically learn and adapt to the observed behavior of the real
cyber-physical production system and using the bottleneck analysis method for overall
system optimization. Figure 10 shows the technical architecture of the proposed DT.

Figure 10. Digital twin architecture.

A central element of the DT architecture is a semantically rich knowledge base, rep-
resented as a knowledge graph, storing all information necessary for or generated by the
AI-based DT. The starting point for this knowledge base is the Design Compiler 43 [21,22],
which is the core element of the Design Cockpit 43® by IILS mbH, Trochtelfingen, Germany.
This Design Cockpit enables the coding of design knowledge in design languages and the
transformation of these design languages into a central model—the design graph. In the
given context, this software can be understood as a specialized editor to design, amongst
others, a semantic model of a product and its production system, including, e.g., the pro-
duction layout and geometry. The Design Cockpit 43 produces outputs in the form of an
ontology definition and product geometry, structure and behavior as well as production
structure, behavior and layout. The execution and performance data represent past pro-
duction runs and thus instances of the production system and product models designed
in the Design Cockpit 43. The performance and execution data include information about
the effectiveness of the process and process data that are collected during production.
Performance data comprise, for example, cycle times, downtimes, throughput and quality
metrics for the products. The execution data contain information regarding the (running)
process (inputs, outputs and status information). They include, for example, sensor signals
from production machines and tools, information about (raw) materials in use and workers
involved. After an appropriate preprocessing and data preparation, the execution and per-
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formance data are loaded into the central knowledge graph. These data, together with the
semantically rich production system and product models, serve as input to automatically
learn the behavior of the real production system by machine learning approaches. Addition-
ally to traditional machine learning techniques, explainable AI (XAI) approaches are used
to describe and explain machine learning models and increase their understandability [23].
The generated machine leaning models and results are again stored within the knowledge
graph. In order to enable a flexible and powerful simulation of the production system
behavior, the overall production process is divided into functional mockup units (FMUs)
[24]. Each FMU shows an independent dynamic behavior by simply using its input at time
t to calculate the corresponding output at time t + 1. In order to model the input–output
relation of an FMU, typically a physical mockup, for example, described by a (hybrid)
ordinary differential equations system (ODE), is used (e.g., [25]). However, our proposed
approach relies on ML-based FMUs (cf. Figure 10) as, for example, proposed by [26,27];
thus, the dynamic behavior of the FMUs is automatically deduced from the execution and
performance data by machine learning approaches. In general, the underlying machine
learning models may vary from appropriate deep learning methods to more basic models
like decision tree ensembles (Random Forest) (cf. [27]). The overall system behavior then
results from the interplay of all FMUs connected via output–input-relationships. Finally, all
relevant information, i.e., the FMU definitions and machine learning models, is passed on
to the simulation system [24].

While in the DT concept described above, machine learning is used to automatically
learn the behavior of single machines (i.e. FMUs), the bottleneck analysis approach can now
be used to analyze and optimize the overall system behavior, i.e., the interaction between
the FMUs based on its output–input-relationships. As already stated above, the bottleneck
analysis is now no longer based on static system behavior, due to pre-assumptions for
each machine, but on real system behavior, dynamically learned via machine learning
approaches, e.g., the dynamic relationship between a machine’s cycle times and output
performance based on the increase in machine failure. Consequently, besides analyzing
which machine constitutes a bottleneck within the production system, we can now simulate
the variance of a machine’s bottleneck score depending on changes in its input parameter,
based on automatically learned system behavior.

6. Summary

The main intention of the research described in this paper is the development of a
DT for a detailed analysis of manufacturing layouts and their parameters. Consequently,
the paper explained the concept of the DT and described analysis possibilities throughout
the life-cycle of a product and its production system. As one specific analysis approach,
a bottleneck detection method was presented in more detail. More concretely, the Active
Period Method was used to detect bottleneck processes in manufacturing systems. This
approach proved its ability to detect bottlenecks in a robust way, independent of physical
layouts and for different process sets and time frames. Despite having some boundaries in
the implementation, particularly the need for well maintained shop-floor data, the tests
in real world scenarios show that this method is useful and bottleneck machines become
tangible. The proposed process visualization allows one to detect how stable a certain
machine is in terms of becoming a bottleneck. This constitutes a meaningful input to the
optimization of single machines as well as complete production processes.

The bottleneck analysis presented in this paper can cope with flexible process layouts
but the behavior of each machine is described in the form of a static model. As a next research
step, the DT concept will be extended into a self-learning and adaptable DT, enabling one to
automatically learn the system behavior based on execution and performance data and to
dynamically simulate system behavior and performance under different assumptions and
conditions. It is important to note that this paper concentrated on the conceptual aspects of
the self-learning DT. Further research is planned in order to enable a holistic implementation.
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DC43DG Design Compiler 43 Design Language
DT Digital Twin
FMI Functional Mockup Interface
FMU Functional Mockup Unit
GraphDB Graph Database
GraphML Graph Description XML
IoT Internet of Things
IIoT Industrial Internet of Things
MBSE Model based systems engineering
ML Machine Learning
OWL Web Ontology Language
SPARQL SPARQL Protocol and RDF Query Language
VDI Verein Deutscher Ingenieure
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