
Citation: Nguyen, D.H.; Seo, A.;

Nnamdi, N.P.; Son, Y. False Alarm

Reduction Method for Weakness

Static Analysis Using BERT Model.

Appl. Sci. 2023, 13, 3502. https://

doi.org/10.3390/app13063502

Academic Editors: Howon Kim and

Thi-Thu-Huong Le

Received: 29 December 2022

Revised: 4 March 2023

Accepted: 6 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

False Alarm Reduction Method for Weakness Static Analysis
Using BERT Model
Dinh Huong Nguyen, Aria Seo, Nnubia Pascal Nnamdi and Yunsik Son *

Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Republic of Korea;
hopekr@dgu.ac.kr (D.H.N.); seoaria@dgu.ac.kr (A.S.); nubee@dgu.ac.kr (N.P.N.)
* Correspondence: sonbug@dongguk.edu

Abstract: In the era of the fourth Industrial Revolution, software has recently been applied in many
fields. As the size and complexity of software increase, security attack problems continue to arise
owing to potential software defects, resulting in significant social losses. To reduce software defects, a
secure software development life cycle (SDLC) should be systematically developed and managed. In
particular, a software weakness analyzer that uses a static analysis tool to check software weaknesses
at the time of development is a very effective tool for solving software weaknesses. However, because
numerous false alarms can be reported even when they are not real weaknesses, programmers and
reviewers must review them, resulting in a decrease in the productivity of development. In this study,
we present a system that uses the BERT model to determine the reliability of the weakness analysis
results generated by the static analysis tool and to reduce false alarms by reclassifying the derived
results into a decision tree model. Thus, it is possible to maintain the advantages of static analysis
tools and increase productivity by reducing the cost of program development and the review process.

Keywords: software weakness; weakness analysis; static analysis; false alarm reduction; BERT

1. Introduction

Recently, software has been widely applied in various fields, such as cloud, enterprise
software, and the Internet of Things (IoT), and cyber infrastructure has become the basis
of modern society. However, as the size and complexity of software increase, security
attack problems continue to arise owing to potential software defects. Approximately 75%
of recent attempts at Internet attacks exploit software weaknesses [1]. Because of these
software weaknesses attacks, software infringement accidents that lead to financial damage
owing to leakage of sensitive and important information are increasing. Therefore, the
software development life cycle (SDLC) is becoming very important for analyzing and
eliminating the weaknesses of software at the time of development. Almost all related
software development fields acknowledge this issue and there are studies on detecting
weaknesses, preserving project integrity, and applying new technology to enhance security
in all aspects [2–4].

Software weaknesses (namely as weakness) usually occur when security requirements
are not defined, design with logical errors is performed, coding rules with technical vul-
nerabilities are applied, software placement is inappropriate, or proper management or
deployment of discovered weaknesses is not performed [5]. Important information pro-
cessed by the system is exposed as a result of such weaknesses and services are normally
rendered impossible. In addition, even if the software itself is secure, new weaknesses
may appear during the process of linking it to other software or exchanging data. These
software weaknesses accelerate damage to a wide range of targets and have a direct impact
on national infrastructure. Therefore, software security should be applied throughout the
entire process, including software-driven operating systems, driver software, and end-user
applications.

Appl. Sci. 2023, 13, 3502. https://doi.org/10.3390/app13063502 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063502
https://doi.org/10.3390/app13063502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2580-4393
https://doi.org/10.3390/app13063502
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063502?type=check_update&version=1

Appl. Sci. 2023, 13, 3502 2 of 13

Recently, there has been active research on static analysis techniques that can check
the weaknesses of software source code during development. Because each static analysis
tool has different types of weaknesses that can be analyzed and analysis performance, it is
common to use multiple static analysis tools together. However, when multiple tools are
used together, the false detection rate also increases, causing many false alarms.

Meanwhile, research on analyzing weaknesses using deep learning models is gaining
traction [6–12]. Through automation, deep learning-based weakness analysis techniques
can reduce the burden of manually defining weaknesses in traditional static analysis
techniques, expand the scope of weakness detection, and increase accuracy. However, it is
challenging to analyze syntax or semantics within a programming language because of the
variety of programming languages and source codes written by developers [13].

In this study, we present a false alarm reduction method utilizing BERT and decision
tree models for reliability analysis of static analysis results. This technique first analyzes
line-level weaknesses using the BERT model, which is based on Transformer architecture
and has the advantage of solving syntax or semantics problems. In addition, weaknesses
were analyzed using multiple static analysis tools to expand the scope of the analysis.
Subsequently, the line-level weakness analysis results and the weakness analysis results
generated by multiple static analysis tools were evaluated to determine the reliability of
each analysis result. Finally, false alarms can be reduced by reclassifying the derived
results using a decision tree model. This can reduce the cost of the program development
and review process because it can effectively reduce false alarms while maintaining the
advantages of static analysis tools.

2. Related Work and Background
2.1. Software Weakness

Software weaknesses in open sources reported over the past decade have topped
the lists with C/C++ accounting for 50% of the seven languages. C/C++ is a powerful
programming language used in many practical applications, and software developers often
use it to build operating systems, embedded systems, system components, and games [14].
Typical C/C++ projects include Git [15], OpenSSH [16], PuTTY [17], and FileZilla [18]. The
C/C++ language has been in use for a longer time than other languages and contains the
most code. The higher the amount of code, the more weaknesses occur, and the reasons for
the weaknesses in the C language are its more complex syntax, lack of exception processing,
and difficulty managing memory compared to some modern languages. In addition, the
use of pointers and global variables in C++ language observation has increased, resulting
in easy memory corruption and less flexibility in logic processing. Common software
weaknesses in the C and C++ programming languages include buffer overflow, string
vulnerability, pointer substitutes, dynamic memory management, and race conditions.
Projects related to CWE [19], CAPEC [20], and CVE [21] have emerged to define or evaluate
the weaknesses of this software. In addition, the CWE Top 25 [22] and OWASP Top 10 [23],
which are the results of the evaluation of the risk and occurrence of software weaknesses,
are disclosed using the self-evaluation prevention theory of each project. The CWE Top
25 is a list of 25 software weaknesses that can lead to serious weaknesses in software. The
OWASP Top 10 is the top 10 major software weaknesses that occur in the web environment.

Command Weakness Enumeration (CWE) is a system for classifying weaknesses in
software and hardware [19]. This is maintained by a community project aimed at under-
standing software flaws and creating automation tools to identify, correct, and prevent flaws.
The CWE classification is hierarchically organized based on universality and specificity.
Currently (in December 2022, version 4.9), there are 933 weaknesses in the inventory such
as Stack-based Buffer Overflow (CWE-121), Improper Limitation to a Restricted Directory
(‘Path Traversal’) (CWE-22), and Use of Hard-coded Credential (CWE-798), etc.

In this study, software weaknesses are analyzed for the C/C++ programming language,
which has a complex syntax or semantics and the largest number of weaknesses among

Appl. Sci. 2023, 13, 3502 3 of 13

programming languages. In addition, to standardize the weaknesses that each tool can
analyze, it is systematized by referring to the CWE system.

2.2. Weakness Static Analysis Technique and Tools

Static analysis can be implemented even when the program is not executed, as a
method of directly handling the source code without executing the program. Therefore,
it has the advantage of detecting weaknesses early and using them frequently in the
development process. Owing to the recent continuous research on weakness static analysis
algorithms, models and tools are becoming increasingly powerful. Current static analysis
techniques include lexical analysis, type inference, data flow analysis, symbol execution,
theorem proving, and model checking.

Lexical analysis divides a program into several small pieces based on a grammatical
structure analysis similar to that of a C compiler and then compares these pieces with a
loophole library to determine if there is a loophole. For accurate analysis, the interaction
between the syntax, semantics, and subroutines of the program should be considered.
Type inference occurs when a compiler deduces the types of variables and functions
and determines whether access to variables and functions is in accordance with formal
rules. Data flow analysis refers to the collection of semantic information from program
codes and uses algebraic methods to determine the definition and use of variables during
compilation. Symbolic execution uses symbol values rather than actual data to represent
the input of a program and generate an algebraic representation of the input symbol in
the execution process. Using the constraint resolution method, symbolic execution can
detect the possibility of an error. Theorem provision is based on the semantic analysis of
the program and can solve problems in infinite-state systems. The proof of the theorem
first transforms the program into a logical formula and then uses rules to prove that the
program is a valid theorem. The model-checking process first constructs a type of model
for a program, such as a state machine or a directional graph, and then compares it through
the model to ensure that the system meets predefined characteristics.

The goal of the weakness analysis tool using static analysis technique is to assist devel-
opers to develop software more cautiously by the early detection of suspicious structures,
use of unsafe API, or dangerous runtime errors. As software security has become more
important in the past few years, the market for weakness static analysis tools has expanded.
In particular, the most diverse and numerous tools have been developed for C/C++ and
JAVA programming languages. Typical tools for weakness static analysis of C/C++ source
code targets are Cppcheck [24], Clang Static Analyzer [25], Flawfinder [26], CodeQL [27],
Infer [28], SonarQube [29], PVS-Studio [30] and Frama-C [31].

There are advantages and disadvantages depending on the method employed because
each tool has a distinct target or range of software weaknesses to be analyzed. Therefore,
using a single tool may reduce the scope or accuracy of the analysis of weaknesses. In
this study, we used multiple static analysis tools rather than a single static analysis tool to
extend the scope of weaknesses and increase the accuracy of the analysis results.

2.3. Deep-Learning-Based Weakness Analysis

Traditional static analysis methods have limitations in that the weakness analysis
patterns must be defined manually. To overcome these limitations, deep learning models
may be used. Deep learning is a machine learning method that allows artificial neural
networks to train sample data. In general, this is realized by classifying program codes with
and without weaknesses into vectors and classifying multiple classes that identify types
of weaknesses [8]. Typical models used for preprocessing input data for code scanning
include token-based and graph-based models. For example, VulDeePecker [11] utilized
symbolic representations for program slices, and Devig [12] used graph embeddings for
code attribute graphs (i.e., AST, CFG, and DFG). Junho Jeong et al. [32] have researched a
data type inference method based on long short-term memory by improved features for
weakness analysis in binary code. SySeVR [10] focused on overcoming the defects in the

Appl. Sci. 2023, 13, 3502 4 of 13

original model and obtaining program representations that could accommodate syntax
and semantic information associated with weaknesses. They detected weaknesses with a
more granular slice-level segmentation than VulDeepcker [11]. Zaharia et al. [6] researched
a security scanner able to use automated learning techniques based on machine learning
algorithms to recognize patterns of weaknesses in source code. Ziems et al. [9] proposed the
use of Transformers to address the problem of weakness detection. They used a traditional
BERT architecture pretrained in English text to identify flaws in computer code. Moreover,
a multi-class model was constructed under the assumption that each sample belonged to a
unique label (CWE).

Although deep learning has made significant progress in automation and accuracy in
the diversity of weaknesses, complexity, characteristics of the programming language used,
and conventional programming methods, some problems still exist. In addition, various
deep learning models have been developed; however, there are performance differences
based on the architecture or algorithm used. Thus, a deep learning model that can handle
the source code’s syntax or semantics is required.

2.4. Bidirectional Encoder Representation with Transformers (BERT)

Transformer was first proposed in 2017 to solve sequence-to-sequence tasks while
easily processing long-range dependencies [33]. It outperformed alternative neural models
in natural language understanding and generation task performance, becoming a rep-
resentative architecture of natural language processing (NLP). The construction of this
architecture has an encoder-decoder architecture and similar internal structures, including
attention, feedforward, and normalization layers. The tokenizer parses the input sequence
into a token. Each token is then transformed into a vector using word embedding, and the
location information is added to the embedding. It also parallelizes many calculations by
allowing the tokens to flow independently through the stack.

BERT, which stands for Bidirectional Encoder Representation with Transformers, is a
bidirectional transformer pretrained using a combination of masked language modeling
objective and next sentence prediction on a large corpus of English text [34]. That is,
the learning information is from left to right and right to left. It used only the encoder
blocks from the original Transformer architecture. In the BERT model, the self-attention
mechanism [33] is a key component of the Transformer, and is a process that allows
better encoding of words at the current target location by looking at and taking hints at
words at different locations in the sentence while processing each word in the entered
sentence. This is accomplished by extracting the contextual relationship between the three
components, queries, keys, and values. Typical areas to which BERT is applied include single-
sentence classification, two-sentence relationship classification, or two-sentence similarity,
relationship, sentence token classification, and machine reading answer classification. A
representative study applying the BERT model in the field of programming languages is a
multi-programming language model pretrained for programming language and natural
language pairs, such as CodeBERT [35], GraphCodeBERT [36], and CodeT5 [37].

In this study, the BERT model analyzes weaknesses within C/C++ source codes, which
have complex syntax and semantics, based on the characteristics of excellent processing
of semantics of natural language text. Using this model, it is not only possible to analyze
a specific line with weaknesses but also to obtain a score on the relationship between
the weakness lines analyzed for each line based on the line by using the self-attention
mechanism where weaknesses occur.

3. False Alarm Reduction Method for Reliability Analysis of Static Analysis Results

The system presented in this study comprises three models: a BERT-based Line-level
weakness analysis model, a configuration for integrating analysis results of multiple static
analysis tools model, and an alarm classification model. Figure 1 shows the structural
diagram of the system presented in this study. The BERT-based Line-level Weakness
Analysis (BWA) model tokenizes and embeds the input C/C++ source code and then trains

Appl. Sci. 2023, 13, 3502 5 of 13

and analyzes the weakness pattern. The configuration for integrating analysis results of
multiple static analysis tools uses several static analysis tools to analyze the weaknesses
within the source code. The Alarm Classification Model (ACM) is a model for classifying
alarms (true and false alarms) based on the decision tree model, which enters the evaluation
results of the analysis of multiple static analysis tools and line-level weaknesses analysis
through the BWA model. As a result, the ACM reclassifies whether each static analysis
result is a true or a false alarm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 14

3. False Alarm Reduction Method for Reliability Analysis of Static Analysis Results
The system presented in this study comprises three models: a BERT-based Line-level

weakness analysis model, a configuration for integrating analysis results of multiple static
analysis tools model, and an alarm classification model. Figure 1 shows the structural di-
agram of the system presented in this study. The BERT-based Line-level Weakness Anal-
ysis (BWA) model tokenizes and embeds the input C/C++ source code and then trains and
analyzes the weakness pattern. The configuration for integrating analysis results of mul-
tiple static analysis tools uses several static analysis tools to analyze the weaknesses within
the source code. The Alarm Classification Model (ACM) is a model for classifying alarms
(true and false alarms) based on the decision tree model, which enters the evaluation re-
sults of the analysis of multiple static analysis tools and line-level weaknesses analysis
through the BWA model. As a result, the ACM reclassifies whether each static analysis
result is a true or a false alarm.

Figure 1. Architecture of false alarm reduction method on weakness static analysis using BERT
model: (*) represents files with c or cpp extensions.

The dataset used in this study is the Juliet test suite [38], developed by the Center for
Assured Software of the U.S. American National Security Agency (NSA), and was first
published in December 2010. It consists of relatively short codes characterized by control
flow, data flow, or usage data structure and type. The Juliet test suite used is the 1.3 ver-
sion and it contains a total of 118 weakness classes. C/C++ officially contains 64,099 test
cases, including 53,476 C source codes and 46,276 C++ source codes, including 4422 C/C++
header files, for a total of 104,174 files.

3.1. BERT-Based Line-Level Weakness Analysis Model
3.1.1. Preparing Training Data

Data cleanup, normalization, and feature extraction: Unnecessary comments should
be removed within the source code that do not affect code execution or cause weaknesses
in the system. In addition, information related to weaknesses should be normalized be-
cause the function name contains the sentences “_bad()” and “_good()”, which affect the
training of the model. In addition, empty lines or areas that were not helpful for training

Figure 1. Architecture of false alarm reduction method on weakness static analysis using BERT
model: (*) represents files with c or cpp extensions.

The dataset used in this study is the Juliet test suite [38], developed by the Center
for Assured Software of the U.S. American National Security Agency (NSA), and was
first published in December 2010. It consists of relatively short codes characterized by
control flow, data flow, or usage data structure and type. The Juliet test suite used is the 1.3
version and it contains a total of 118 weakness classes. C/C++ officially contains 64,099 test
cases, including 53,476 C source codes and 46,276 C++ source codes, including 4422 C/C++
header files, for a total of 104,174 files.

3.1. BERT-Based Line-Level Weakness Analysis Model
3.1.1. Preparing Training Data

Data cleanup, normalization, and feature extraction: Unnecessary comments should
be removed within the source code that do not affect code execution or cause weaknesses in
the system. In addition, information related to weaknesses should be normalized because
the function name contains the sentences “_bad()” and “_good()”, which affect the training
of the model. In addition, empty lines or areas that were not helpful for training for
weakness analysis were deleted to minimize the noise of the model. Through this work,
the accuracy of the model can be improved by tokenizing only the necessary information
and training.

Tokenization: To use a pretrained model, the input data must be transformed into an
appropriate format so that each sentence can be sent to a pretrained model to obtain its em-
bedding. We used neulab/codebert-cpp [39] pretrained language model to generate a vector

Appl. Sci. 2023, 13, 3502 6 of 13

representation of the source code. Here, tokenization is used to make it easier to assign
meaning to paragraphs and sentences by dividing them into smaller units, such as in NLP.
Typical sub-tokenizer methods include Byte Pair Encoding (BPE) [40], SentencePiece [41],
and Word-Piece [42]. Because C/C++ programming languages have a higher complexity
of syntax or semantics than other languages, Out-Of-Vocabulary (OOV) situations occur
during machine learning. Therefore, in this study, the BPE algorithm in which words are
cut into meaningful patterns and tokenized was selected.

Token and position embedding: Each token in the source code consists of several
tokens that depend heavily on the context (peripheral token) and location between the
tokens in the function. Therefore, it is important to capture the code context and its location
within the function when predicting the weakness at the function level. The purpose of this
step is to perform encoding and embedding that capture the meaning of the code token and
its corresponding position in the input sequence (code or line). BERT has three embedding
layers: token, sentence, and position embedding [34].

3.1.2. Model Training

In this step, the encoding vector input passes through the 12 encoder blocks. Each
encoder block consists of two components, a bidirectional multi-head self-attention layer
and a fully connected feed-forward neural network. The multi-head self-attention layer is
used to calculate the attention weight of a code token that generates a vector of attention,
and the token is input in both directions. The final output of the encoder using the neural
network preserved the input size of the encoder.

3.1.3. Feature Inference

The position information of each token and its relationship to the position were
obtained from the output of the BERT model. Subsequently, tokens of each line were
collected based on the input source code. We classified the tokens of each reconstructed
line into 119 classes (118 CWE has defined in Juliet test suite C/C++ 1.3 version and a class
that is not weak) trained through a single linear layer. The attention score may be output
to each line of the entire source code through the attention mechanism of BERT. This not
only solves the token input limitation problem of BERT but also allows for comparison and
evaluation of the attention and static analyzer results output on each line. Table 1 shows an
example file tested and printed on the BERT model.

Table 1. Example analysis result of BERT-based line-level weakness analysis model.

Line Source Code Score

1 void CWE476_NULL_Pointer_Dereference__int_01_bad() 0.1
2 { 0
3 int *data; 0.5
4 /* Set data to NULL */ 0
5 data = NULL; 0.63
6 /* POTENTIAL FLAW: Attempt to use data, which may be NULL */ 0
7 printf(“%d\n”, *data); 0.85
8 } 0
9 . . .

The score indicates the relationship with other lines, based on lines that are likely
to cause weaknesses. In other words, the higher the score, the higher the probability of
weakness in the line. In the example shown in Table 1, the line where weakness occurred
was analyzed at line 7. Lines 3 and 5 had a command to declare the variable “data”; thus,
the score was higher. For annotations or braces, the score was zero and weaknesses could
not occur.

Appl. Sci. 2023, 13, 3502 7 of 13

3.2. Select Multiple Static Analysis Tools and Experiment

In this study, we used some of the following criteria to select multiple static analysis
tools: whether open source or license is supported for research, can output or support
definition of CWE information; whether data sets such as Juliet test suite C/C++ 1v3 can
be tested; whether results and evaluations are good in previous research experiments;
and whether document for testing tools are specifically provided. Based on the criteria
we selected six tools, namely Cppcheck (CPP) [24], Clang Static Analyzer (CLG) [25],
Flawfinder (FLF) [26], Infer (IFR) [28], Frama-C (FRC) [31], and PVS-Studio (PVS) [30].
Table 2 shows the abbreviations, versions, weakness analysis techniques, CWEs-related
output information, and the number of CWEs that can be analyzed.

Table 2. Overview of selected multiple static analysis tools.

Tool Name & Version Static Analysis Method Output CWE No. CWE

Cppcheck (CPP)
2.8

Provides unique code analysis to
detect bugs and focuses on
detecting undefined behavior
and dangers.

Output 55

Clang Static Analyzer
(CLG)

9.0

Path-sensitive, inter-procedural
analysis based on symbolic
execution.

Matching 57

Flawfinder (FLF)
2.0.19

Using a built-in database of
C/C++ functions with
well-known problems

Output 17

Infer (IFR)
1.3

Using separation logic, and
bi-abduction Matching 10

Frama-C (FRC)
25.0

Runtime-error detection, value
analysis, dependency analysis,
and slicing

Matching 35

PVS-Studio (PVS)
7.16

Abstract syntax tree,
pattern-based analysis, data-flow
analysis, symbolic execution,
and taint analysis

Output 114

3.2.1. CWE Mapping and Group

For several weakness static analysis tools, the CWE report describes the relationship
between unique identifiers and other types of weakness. However, different static analyses
use different identifiers for the types of weaknesses that they support. Due to these different
identifiers, it is difficult to automatically evaluate whether the static analysis tool refers
to the correct type of weakness, which requires a more rigorous evaluation. As a result,
we developed a mapping module to match each analyzer’s weakness identifier to the
corresponding CWE-ID; the output message for the weakness analyzed for each tool was
defined based on CWE-ID. The weakness static analysis tools selected in this study can
analyze 157 CWEs with differences in each tool.

In the CWE system, the relationship of each CWE was designated as a child–parent
hierarchy. This implies that a child CWE indicates a more specific instance of software
weakness in the parent CWE. For instance, CWE-664 (Improper Control of a Resource
Through its Lifetime) can be considered as a common denominator for all child CWEs
(CWE-118, CWE-610, etc.). Group study of CWEs using child–parent relationships is
necessary since only particular CWEs can be evaluated or output results may differ. Even
if the exact CWE is not analyzed, the analysis is considered successful if the related CWE
is analyzed. In this study, we created a CWE group referring to the CWE VIEW Research
concept [43]. Figure 2 shows an example of the structure of the CWE group.

Appl. Sci. 2023, 13, 3502 8 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 14

the exact CWE is not analyzed, the analysis is considered successful if the related CWE is
analyzed. In this study, we created a CWE group referring to the CWE VIEW Research
concept [43]. Figure 2 shows an example of the structure of the CWE group.

Figure 2. Example of CWE group with CWE-664.

3.2.2. Tools Experiment
Tools configuration in Figure 1 shows the structure of configuration for integrating

analysis results of multiple static analysis tools. In this study, we experimented on Ub-
untu, the Juliet test suite C/C++ 1.3 version [38]; the dataset expected in Section 3 was used,
and all tools were tested using the command line. There are differences in the required
configuration files or options for each tool. The Infer tool was used to compile the entire
test case through the prepared “Makefile” and then analyze weaknesses. The Clang Static
Analyzer was executed by adding the option “-analyzer-checker = alpha,core”. The Cpp-
check and Frama-C tools only passed the path of the test case and the resulting output
file, whereas the PVS-Studio tool generated the object file for each test case through
“Makefile” compilation and passed the config file “PVS-Studio.cfg”. Because the output
results of each tool are different, CWE mapping and groups were conducted for each tool’s
analyzed results, and all results were written in one file based on CWE-ID. Table 3 shows
the results analyzed for each test case file in one CWE class. In one test case file, multiple
tools may analyze the same results but may have different analysis results. One tool can
be analyzed as a weakness with multiple lines in one test case. Perhaps the results of the
analysis contain a number of several false alarms.

Table 3. Example analysis result of weakness multiple static analysis tools with CWE-476.

File Name Tool Name Line CWE-ID Alarm Message
/NULL_Pointer…_01.c CPC 7 476 nullPointer…
/NULL_Pointer…_01.c CLG 7 476 [core.NullDereference]
/NULL_Pointer…_01.c IFR 7 476 pointer
/NULL_Pointer…_01.c FRC 7 476 warning
/NULL_Pointer…_01.c PVS 7 476 the num pointer
/NULL_Pointer…_01.c FLF 18 476 security-related
/NULL_Pointer…_01.c PVS 18 476 the num pointer
/NULL_Pointer…_02.c IFR 10 476 pointer
/NULL_Pointer…_02.c CLG 10 476 [core.NullDereference]
/NULL_Pointer…_03.c CPC 15 476 nullPointer…

Figure 2. Example of CWE group with CWE-664.

3.2.2. Tools Experiment

Tools configuration in Figure 1 shows the structure of configuration for integrating
analysis results of multiple static analysis tools. In this study, we experimented on Ubuntu,
the Juliet test suite C/C++ 1.3 version [38]; the dataset expected in Section 3 was used,
and all tools were tested using the command line. There are differences in the required
configuration files or options for each tool. The Infer tool was used to compile the entire
test case through the prepared “Makefile” and then analyze weaknesses. The Clang
Static Analyzer was executed by adding the option “-analyzer-checker = alpha,core”.
The Cppcheck and Frama-C tools only passed the path of the test case and the resulting
output file, whereas the PVS-Studio tool generated the object file for each test case through
“Makefile” compilation and passed the config file “PVS-Studio.cfg”. Because the output
results of each tool are different, CWE mapping and groups were conducted for each tool’s
analyzed results, and all results were written in one file based on CWE-ID. Table 3 shows
the results analyzed for each test case file in one CWE class. In one test case file, multiple
tools may analyze the same results but may have different analysis results. One tool can
be analyzed as a weakness with multiple lines in one test case. Perhaps the results of the
analysis contain a number of several false alarms.

Table 3. Example analysis result of weakness multiple static analysis tools with CWE-476.

File Name Tool Name Line CWE-ID Alarm Message

/NULL_Pointer . . . _01.c CPC 7 476 nullPointer . . .

/NULL_Pointer . . . _01.c CLG 7 476 [core.NullDereference]

/NULL_Pointer . . . _01.c IFR 7 476 pointer

/NULL_Pointer . . . _01.c FRC 7 476 warning

/NULL_Pointer . . . _01.c PVS 7 476 the num pointer

/NULL_Pointer . . . _01.c FLF 18 476 security-related

/NULL_Pointer . . . _01.c PVS 18 476 the num pointer

/NULL_Pointer . . . _02.c IFR 10 476 pointer

/NULL_Pointer . . . _02.c CLG 10 476 [core.NullDereference]

/NULL_Pointer . . . _03.c CPC 15 476 nullPointer . . .

Appl. Sci. 2023, 13, 3502 9 of 13

3.3. Weakness Static Analysis Alarm Classification

An experimental environment for multiple static analyses was established, and when
the training of the BERT-based line-level weakness analysis model was completed, a dataset
was created. As shown in Table 4, the dataset has output analyzed by multiple static analysis
tools (1: detected, 0: undetected), BWA (score) model on all test case files in each CWE
and metadata provided by Juliet test suite C/C++ 1.3 version (present as a target through
confirming the line of weakness which is defined in each test case file).

Table 4. Example data of integrating analysis results from each tool for Alarm Classification model.

File Name Line CPC CLG FLF IFR FRC PVS BWA Target

/NULL_Pointer . . . _01.c 7 1 1 0 1 1 1 0.85 1

/NULL_Pointer . . . _01.c 18 0 0 1 0 0 1 0.25 0

/NULL_Pointer . . . _02.c 10 0 1 0 1 0 0 0.35 0

/NULL_Pointer . . . _03.c 15 1 0 0 0 0 0 0.1 0

In Table 4, at line 7, 5 out of 6 tools were analyzed through the multiple static analysis
tools. The score obtained through the BWA model was 0.85 scores, and the line is likely
to have a normal weakness (true alarm or true positive). Thus, it is possible to determine
whether it is a true or a false alarm based on the results of multiple static analysis tools on a
specific line and the scores obtained through the BWA model.

In this study, this dataset was trained using the decision tree model [44]. Thus, the
reliability of the weakness analysis results generated by several static analysis tools can be
determined, and false alarms can be reduced by reclassifying the alarm of the weakness
analyzer into a decision tree model based on the derived reliability.

4. Experimental Setup and Evaluating the Proposed Model

In this study, two deep learning models are used; therefore, it is necessary to separate
the Juliet test suite C/C++ 1.3 version dataset used for the first time. A total of 60% and 40%
of datasets were split for the BWA model and ACM. Then, for each model, the resulting
data were divided into training, validation, and testing data. To train the model, we used
PyTorch 1.12.1 with CUDA 11.4 on top of Python 3.10, a machine with 1 Terabyte RAM and
8 NVIDIA Tesla V100 PCIe 32 GB.

To evaluate the performance of the proposed model, scores were calculated for Pre-
cision, Accuracy, F1-Score, and Receiver Operating Characteristic area under the curve
(AUC). Table 5 shows the evaluation of the BERT-based Line-level weakness analysis and
analysis alarm classification model. For the final model, we report several evaluation
metrics, including those used in the initial work for each dataset. The metrics are true alarm
(true positive), false alarm (false positive), and false alarm rate (false positive rate). This
way, we can perform a comparison; the comparison results are shown in Table 6.

Table 5. Evaluation of BERT-based Line-level Weakness Analysis and Alarm Classification model.

Precision Accuracy F1-Score

BERT-based Line-level Weakness
Analysis model 0.96 0.92 0.94

F1-Score Accuracy AUC

Alarm Classification model 0.89 0.96 0.89

Appl. Sci. 2023, 13, 3502 10 of 13

Table 6. Experimental results of proposed method for each CWE.

CWE
ID CWE Name

Total
Weakness

Analysis Result
with Static Analysis Tool Selected Alarm Rejected Alarm

Reduce False
Alarm Rate **Total

Alarm
True

Alarm
False

Alarm
False Alarm

Rate *
Total

Weakness
Total

Alarm
True

Alarm
False

Alarm
False Alarm

Rate
Total

Weakness
Rejected

Alarm
True

Alarm

126 Buffer Over-read 195 1224 263 961 79% 144 300 235 65 22% 135 924 28 71%

134 Uncontrolled Format
String 93 962 135 827 86% 88 211 117 94 45% 79 751 18 74%

195 Signed to Unsigned
Conversion Error 207 1984 155 1829 92% 129 215 135 80 37% 119 1769 20 87%

369 Divide by Zero 108 1285 68 1217 95% 36 115 47 68 59% 31 1170 21 88%

401 Memory Leak 275 1839 200 1639 89% 150 237 165 72 30% 141 1602 35 83%

415 Double Free 161 872 97 775 89% 87 210 94 116 55% 81 662 3 75%

416 Use After Free 63 247 82 165 67% 53 72 69 3 4% 49 175 13 60%

457 Use of Uninitialized
Variable 220 457 34 423 93% 29 65 33 32 49% 23 392 1 85%

467 Use of sizeof on Pointer
Type 9 30 18 12 40% 9 18 16 2 11% 8 12 2 27%

476 Null Pointer
Dereference 42 324 62 262 81% 24 61 56 5 8% 24 263 6 77%

563 Unused Variable 69 321 10 311 97% 10 45 9 36 80% 9 276 1 85%

590 Free Memory Not on
Heap 189 1239 197 1042 84% 146 275 187 88 32% 137 964 10 76%

676 Use of Potentially
Dangerous Function 4 17 4 13 76% 4 4 4 0 0% 4 13 0 76%

688 Function Call with
Incorrect Variable 5 31 13 18 58% 5 12 12 0 0% 4 19 1 55%

690 Null Dereference from
Return 219 703 131 572 81% 118 136 120 16 12% 111 567 11 78%

758 Undefined Behavior 102 297 36 261 88% 36 65 33 32 49% 28 232 3 76%

762 Mismatched Memory
Management Routines 256 1388 357 1031 74% 230 353 321 32 9% 221 1035 36 69%

Appl. Sci. 2023, 13, 3502 11 of 13

Table 6 shows the experimental results for each CWE using the proposed method. The
contents of Table 6 are CWE-ID, CWE name, total weakness of each CWE, the analysis
result with static analysis tools, selected alarm (number of alarms that ACM classified
true alarms), rejected alarm (number of alarms that ACM classified false alarms), and
reduce false alarm rate (rate of false positive has reduced). As shown in Table 6, the false
positive rate (*) is initially high based on tool analysis results, but the false positive rate
(**) is reduced significantly by detecting and excluding false alarms through the proposed
Alarm Classification model. For instance, based on all the test case files of Buffer Over-read
(CWE-125) weakness, there are 195 weaknesses. Through analysis by static analysis tools,
a total of 1224 alarms were generated but only 263 of these were true alarms and the
remaining 961 were false alarms. The calculated false alarm rate was 79%, and a total of
144 weaknesses were analyzed. The false alarm rate can be considered high. The proposed
model was implemented to classify 1224 alarms, of which 300 were true alarms and 924
were false alarms. However, among the classification results, there are several results that
are incorrectly classified (it is a true alarm but classified false alarm: 28, and the other way:
65), and the false alarm rate of the alarm classification model can be calculated as 7%. The
false alarm rate of 79% is significantly reduced by 71% when we look at the final results.
The overall false detection rate has significantly dropped, despite there being differences in
the false alarm rate, which is reduced in accordance with the learning outcomes of each
CWE.

5. Conclusions and Further Research

In the era of the fourth Industrial Revolution, the importance of software has recently
emerged in many industrial fields. As a result, software reliability and safety have become
more important because of the resource protection problem of software, and software
development security has become an important factor in software development.

Static analysis is a code analysis technique that has been developed to analyze weak-
nesses in source code due to the limits of manually analyzing weaknesses in software
development. However, static analysis alone might not be able to detect weaknesses, and
misuse may occur if it is approached conservatively. Especially, since each static analysis
tool has a unique set of diagnostic weaknesses and analysis capabilities, when developing
software, several static analysis tools are frequently used, and as the volume of the source
code increases it leads to more false positives.

In this study, we present a technique that can effectively analyze weaknesses and
reduce false detections using the advantages of deep learning while maintaining the
advantages of static analysis tools. The BERT model is used in this model to analyze
syntactic and semantic weaknesses in the challenging C/C++ source code. The evaluation
results of the model showed a precision of 96%, an accuracy of 92%, and an F1-Score of
94%. In addition, the possible score of weaknesses for each line can be calculated using the
self-attention mechanism of the proposed model. This model determines the reliability of
the weakness analysis results generated by several static analysis tools and reclassifies the
derived results into a decision tree model. The trained decision tree model receives scores
obtained for each line and several static analysis results for the C/C++ source code through
the BERT model to determine whether each alarm is true or false. When evaluating this
model, an accuracy of 89%, an F1-Score of 96%, and an AUC of 0.89 were derived.

As a result, many false alarms are identified and minimized using the proposed
methods, while some false alarms are identified as true alarms from the results of the
weakness static analysis. Examining for typos can save developers time and money that
might otherwise be wasted. Additionally, by eliminating security weaknesses during the
software development process, it can significantly improve the security of the software
project. In the future, we intend to improve the false alarm reduction model by adding
features to the alarm classification model.

Author Contributions: Conceptualization, D.H.N., A.S. and Y.S.; software, D.H.N. and N.P.N.;
validation, A.S. and Y.S.; formal analysis, D.H.N. and Y.S.; investigation, D.H.N. and N.P.N.; resources,

Appl. Sci. 2023, 13, 3502 12 of 13

D.H.N.; data curation, D.H.N. and N.P.N.; writing—original draft preparation, D.H.N. and A.S.;
writing—review and editing, N.P.N. and Y.S.; visualization, D.H.N. and A.S.; supervision, A.S. and
Y.S.; project administration, Y.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Korea Institute of Energy Technology Evalua-
tion and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of
Korea (No. 20224000000020). The research was supported by the National Research Foundation of
Korea (NRF) grant by the Korean government (MSIT) (No. 2018R1A5A7023490).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CS Hub Mid-Year Market Report 2022|Cyber Security Hub. Available online: https://www.cshub.com/executive-decisions/

reports/cs-hub-mid-year-market-report-2022 (accessed on 7 November 2022).
2. Jeong, J.; Son, Y.; Lee, Y. A Study on the Secure Coding Rules for Developing Secure Smart Contract on Ethereum Environments.

Int. J. Adv. Sci. Technol. 2019, 133, 47–58. [CrossRef]
3. Kim, S.; Yunsik Son, Y.L. A Study on the Security Weakness Analysis of Chaincode on Hyperledger Fawbric and Etheum

Blockchain Framework. J. Green Eng. 2020, 10, 6349–6367.
4. Jeong, J.; Joo, J.W.J.; Lee, Y.; Son, Y. Secure Cloud Storage Service Using Bloom Filters for the Internet of Things. IEEE Access 2019,

7, 60897–60907. [CrossRef]
5. Jang-Jaccard, J.; Nepal, S. A Survey of Emerging Threats in Cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
6. Zaharia, S.; Rebedea, T.; Trausan-Matu, S. Machine Learning-Based Security Pattern Recognition Techniques for Code Developers.

Appl. Sci. 2022, 12, 12463. [CrossRef]
7. Li, X.; Wang, L.; Xin, Y.; Yang, Y.; Chen, Y. Automated Vulnerability Detection in Source Code Using Minimum Intermediate

Representation Learning. Appl. Sci. 2020, 10, 1692. [CrossRef]
8. Li, Z.; Zou, D.; Tang, J.; Zhang, Z.; Sun, M.; Jin, H. A Comparative Study of Deep Learning-Based Vulnerability Detection System.

IEEE Access 2019, 7, 103184–103197. [CrossRef]
9. Ziems, N.; Wu, S. Security Vulnerability Detection Using Deep Learning Natural Language Processing. In Proceedings of the

IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC,
Canada, 10–13 May 2021. [CrossRef]

10. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 2018, 19, 2244–2258. [CrossRef]

11. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A Deep Learning-Based System for Vulnerability
Detection. arXiv 2018, arXiv:1801.01681.

12. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. Adv. Neural Inf. Process. Syst. 2019, 32, 10197–10207.

13. Most Secure Programming Languages—Mend. Available online: https://www.mend.io/most-secure-programming-languages/
(accessed on 16 October 2022).

14. Which Industries Use C++?|Snyk. Available online: https://snyk.io/learn/who-uses-cpp/ (accessed on 7 November 2022).
15. Git. Available online: https://git-scm.com/ (accessed on 7 November 2022).
16. OpenSSH. Available online: https://www.openssh.com/ (accessed on 7 November 2022).
17. Download PuTTY—A Free SSH and Telnet Client for Windows. Available online: https://www.putty.org/ (accessed on 7

November 2022).
18. FileZilla—The Free FTP Solution. Available online: https://filezilla-project.org/ (accessed on 7 November 2022).
19. CWE—Common Weakness Enumeration. Available online: https://cwe.mitre.org/ (accessed on 9 December 2022).
20. CAPEC—Common Attack Pattern Enumeration and Classification (CAPECTM). Available online: https://capec.mitre.org/

(accessed on 9 December 2022).
21. CVE—CVE. Available online: https://cve.mitre.org/ (accessed on 9 December 2022).
22. CWE—2022 CWE Top 25 Most Dangerous Software Weaknesses. Available online: https://cwe.mitre.org/top25/archive/2022/2

022_cwe_top25.html (accessed on 9 December 2022).
23. OWASP Top Ten|OWASP Foundation. Available online: https://owasp.org/www-project-top-ten/ (accessed on 9 December

2022).

https://www.cshub.com/executive-decisions/reports/cs-hub-mid-year-market-report-2022
https://www.cshub.com/executive-decisions/reports/cs-hub-mid-year-market-report-2022
http://doi.org/10.33832/ijast.2019.133.05
http://doi.org/10.1109/ACCESS.2019.2915576
http://doi.org/10.1016/j.jcss.2014.02.005
http://doi.org/10.3390/app122312463
http://doi.org/10.3390/app10051692
http://doi.org/10.1109/ACCESS.2019.2930578
http://doi.org/10.48550/arxiv.2105.02388
http://doi.org/10.1109/TDSC.2021.3051525
https://www.mend.io/most-secure-programming-languages/
https://snyk.io/learn/who-uses-cpp/
https://git-scm.com/
https://www.openssh.com/
https://www.putty.org/
https://filezilla-project.org/
https://cwe.mitre.org/
https://capec.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://owasp.org/www-project-top-ten/

Appl. Sci. 2023, 13, 3502 13 of 13

24. Cppcheck—A Tool for Static C/C++ Code Analysis. Available online: https://cppcheck.sourceforge.io/ (accessed on 7 November
2022).

25. Clang Static Analyzer. Available online: https://clang-analyzer.llvm.org/ (accessed on 7 November 2022).
26. Flawfinder Home Page. Available online: https://dwheeler.com/flawfinder/ (accessed on 7 November 2022).
27. CodeQL. Available online: https://codeql.github.com/ (accessed on 9 December 2022).
28. Infer Static Analyzer|Infer|Infer. Available online: https://fbinfer.com/ (accessed on 7 November 2022).
29. Code Quality and Code Security|SonarQube. Available online: https://www.sonarqube.org/ (accessed on 8 December 2022).
30. PVS-Studio Is a Solution to Enhance Code Quality, Security (SAST), and Safety. Available online: https://pvs-studio.com/en/

(accessed on 7 November 2022).
31. Frama-C—Framework for Modular Analysis of C Programs. Available online: https://frama-c.com/ (accessed on 7 November

2022).
32. Jeong, J.; Lim, J.Y.; Son, Y. A Data Type Inference Method Based on Long Short-Term Memory by Improved Feature for Weakness

Analysis in Binary Code. Future Gener. Comput. Syst. 2019, 100, 1044–1052. [CrossRef]
33. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

Adv. Neural Inf. Process. Syst. 2017, 2017, 5999–6009. [CrossRef]
34. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2018; Volume 1, pp. 4171–4186. [CrossRef]

35. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. arXiv 2020, arXiv:2002.08155.

36. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-Training
Code Representations with Data Flow. arXiv 2020, arXiv:2009.08366.

37. Wang, Y.; Wang, W.; Joty, S.; Hoi, S.C.H. CodeT5: Identifier-Aware Unified Pre-Trained Encoder-Decoder Models for Code
Understanding and Generation. arXiv 2021, arXiv:2109.00859.

38. Black, P.E. Juliet 1.3 Test Suite: Changes From 1.2; US Department of Commerce, National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2010. [CrossRef]

39. Neulab/Code-Bert-Score: CodeBERTScore: An Automatic Metric for Code Generation, Based on BERTScore. Available online:
https://github.com/neulab/code-bert-score (accessed on 28 December 2022).

40. Bostrom, K.; Durrett, G. Byte Pair Encoding Is Suboptimal for Language Model Pretraining. arXiv 2004, arXiv:2004.03720.
41. Kudo, T.; Richardson, J. SentencePiece: A Simple and Language Independent Subword Tokenizer and Detokenizer for Neural

Text Processing. arXiv 2018, arXiv:1808.06226.
42. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
43. CWE—CWE-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities (4.9). Available online: https://cwe.mitre.

org/data/definitions/1003.html (accessed on 7 November 2022).
44. 1.10. Decision Trees—Scikit-Learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/modules/tree.html

(accessed on 27 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cppcheck.sourceforge.io/
https://clang-analyzer.llvm.org/
https://dwheeler.com/flawfinder/
https://codeql.github.com/
https://fbinfer.com/
https://www.sonarqube.org/
https://pvs-studio.com/en/
https://frama-c.com/
http://doi.org/10.1016/j.future.2019.05.013
http://doi.org/10.48550/arxiv.1706.03762
http://doi.org/10.48550/arxiv.1810.04805
http://doi.org/10.6028/NIST.TN.1995
https://github.com/neulab/code-bert-score
https://cwe.mitre.org/data/definitions/1003.html
https://cwe.mitre.org/data/definitions/1003.html
https://scikit-learn.org/stable/modules/tree.html

	Introduction
	Related Work and Background
	Software Weakness
	Weakness Static Analysis Technique and Tools
	Deep-Learning-Based Weakness Analysis
	Bidirectional Encoder Representation with Transformers (BERT)

	False Alarm Reduction Method for Reliability Analysis of Static Analysis Results
	BERT-Based Line-Level Weakness Analysis Model
	Preparing Training Data
	Model Training
	Feature Inference

	Select Multiple Static Analysis Tools and Experiment
	CWE Mapping and Group
	Tools Experiment

	Weakness Static Analysis Alarm Classification

	Experimental Setup and Evaluating the Proposed Model
	Conclusions and Further Research
	References

