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Abstract: With the rapid development of intelligent vehicle safety verification, scenario-based testing
methods have received increasing attention. As the space of driving scenarios is vast, the challenge
in scenario-based testing is the generation and selection of high-value testing scenarios to reduce
the development and validation time. This paper proposes a method for generating challenging test
scenarios. Our method quantifies the challenges in these scenarios by estimating the risks based on
ISO 26262. We formulate the problem as a Markov decision process and quantify the challenges in the
current state using the three risk factors provided in ISO 26262: exposure, severity, and controllability.
We then employ reinforcement learning algorithms to identify the challenges and use the state–action
value matrix to select motions for a background vehicle to generate critical scenarios. The effectiveness
of the approach is validated by testing the generated challenge scenarios using a simulation model.
The results show that our method can ensure both accuracy and coverage, and the larger the state
space is, the more accident-prone the generated scenarios are. Our proposed method is general and
easily adaptable to other cases.

Keywords: testing scenario generation; functional safety; reinforcement learning

1. Introduction

With the advancements in artificial intelligence technology, many intelligent prod-
ucts, such as voice assistants on mobile phones, smart access control systems, convenient
intelligent vehicles, and other devices, are appearing in our daily lives, improving the
quality of human life. The need to validate their intelligence draws attention to these new
artificial intelligence products. Li et al. [1] define artificial intelligence as follows: “Artificial
intelligence is the intelligence exhibited by machines”. This reveals the close link between
artificial intelligence and intelligence testing. A practical assessment of intelligent vehicles’
intelligence is required. An intelligent vehicle can only enter the market if it is accepted
by society and legislators. On-road vehicle testing is well-known to be very expensive,
time-consuming, and typically unrepeatable due to the testing scenarios and conditions.
Hundreds of billions of miles may be needed to demonstrate the dependability of intelligent
vehicles in terms of fatalities and injuries [2,3]. To effectively develop intelligent vehicles,
many studies [4–6] develop and test them using modeling and simulation methods.

There are many discussions on the theory of safety assessment of intelligent
vehicles [1,7,8]. Scenario-based testing is state of the art for intelligent vehicle safety
verification. The greatest challenge in scenario-based testing is that road traffic is an open
parameter space, in which an infinite number of possible traffic scenarios can occur [9]. As
the traffic scenarios are dynamic and the space of these scenarios is vast, it is worth investi-
gating how to generate and select high-value test scenarios to reduce the development and
validation time.
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First, we need to clarify the term “scenario”. Some studies [10–12] introduce related
terminology and define the scene as a temporal sequence of scenario elements, includ-
ing the actions and events related to the participating elements that occur within this
sequence. Some recent studies propose testing scenario generation methods based on
different algorithms.

Combinatorial testing: Huang et al. [13] permutated and combined vehicles into
possible test scenario groups, and generated test scenarios using scenario importance
analysis based on the applicable scenarios of the main functions. Xie et al. [14] used a
similar approach, comparing the relative position and movement relations between vehicles
to generate a total possible test scenario group using the permutation and combination
method. Hu et al. [15] proposed a method for autonomous vehicles based on combinatorial
testing and Bayesian networks by selecting some parameters to describe the test scenarios,
which were classified according to road types and driving tasks.

Importance sampling: Zhao et al. [16–18] proposed an accelerated evaluation to
test automated vehicles and verified the method through car-following and lane-change
scenarios. The importance sampling theory was used to ensure that the safety benefits
of vehicles are accurately assessed under the accelerated tests, and the results show that
the proposed techniques have great potential. Guo et al. [19] identified testing scenarios
using the significance function established by the occurrence frequency of the scenario
and the performance challenge between the driver and the vehicle. Wang et al. [20] built
a hierarchical, structural model of the complex and diverse off-road scenarios and used
importance sampling theory to determine test scenarios.

Control problem: Li et al. [21] formulated the process to search for critical scenarios as
an optimal control problem, and proposed a method that can facilitate the design of test
trajectories, which pursues the falsification of multiple requirements by a single trajectory
through an appropriate formulation of this optimal control problem. Chou et al. [22]
employed control synthesis to generate corner cases from controlled invariant sets and
dual-game solutions.

Machine learning: Tian et al. [23] proposed a multi-objective search-based testing
framework that constructs test scenarios using atomic maneuvers and motif patterns.
They used a multi-objective genetic algorithm to search for adversarial and diverse test
scenarios. Zhang et al. [24] used the analytic hierarchy process (AHP) method and the
effect transmission model to construct a scenario space. Then, they used a support vector
machine (SVM) to solve the scenario space’s safety boundaries. Bayesian optimization
was used to automate the process of generating adversarial self-driving scenarios that
expose poorly engineered or poorly trained self-driving policies and increase the risk
of collision with simulated pedestrians and vehicles [25]. Bayesian networks were used
as the probabilistic models of the scenarios [15]. The chosen function was intended to
determine the values of scenario parameters by taking into account both probability and
frequency. The K-medoids algorithm was used to cluster and analyze trajectory data and
obtained six typical crash scenarios between passenger cars and two-wheelers to construct
high-risk test scenarios [26]. Xu et al. [27] proposed a scenario construction method for
an automated driving functions field test. Seven clusters of basic road characteristics for
the test scenarios were summarized and taken as the basic items to flexibly complete the
scenario configuration. Tuncali et al. [28] presented an automated test generation approach
that employs rapidly exploring random trees to explore boundary case scenarios in which
an autonomous vehicle can no longer avoid a collision. Koschi et al. [29] proposed two
novel falsification methods for detecting safety flaws in automated vehicle adaptive cruise
control (ACC) systems. These methods employ rapidly exploring random trees to generate
motions for a leading vehicle for the ACC under test to cause a rear-end collision.

Reinforcement learning: Lee et al. [30] proposed adaptive stress testing (AST),
a scalable method that can search for the most likely state trajectory leading to an event.
The approach uses a reinforcement learning formulation and solves it using Monte Carlo
tree search (MCTS). Koren et al. [31] formulated the problem as a Markov decision process
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and used reinforcement learning algorithms to find the most likely failure scenarios instead
of using direct Monte Carlo sampling to find collision scenarios. Corso et al. [32] enhanced
the AST by encoding domain-relevant information into the search procedure to discover a
more significant and expressive subset of the failure space. Koren et al. [33] proposed a
method for improving AST by employing a recurrent neural network that receives a set of
initial conditions from a continuous space as input. Feng et al. [34,35] proposed a measure
combining maneuver challenge and exposure frequency to search for critical scenarios.
Qin et al. [36] used signal temporal logic (STL) to specify the target against which it is tested
and the constraints that limit the reasonableness of the testing regime. They leveraged deep
Q-learning algorithm to determine how to execute these behaviors.

As summarized above, this area is attracting much discussion and exploration at
present. The above studies first preprocess natural or imprecise data, such as fuzzy
logic [37–39], filtering key features, and precision processing. Then they use algorith-
mic models to analyze and learn scene features. Although the previous methods can
generate and select challenging scenarios, they have some common shortcomings. These
methods do not provide a quantitative assessment of scenarios and lack systematic indus-
try guidance. As works [8,40] note, the central challenge for current intelligent testing
is that most studies in the field have only focused on qualitative evaluation and lacked
quantitative assessments. Furthermore, as these methods were not invented according to
any popular standard in the automotive industry, it is not easy to generalize them to the
markets or more cases, and also not easy to apply them in practice. Obtaining a quantitative
assessment and reference standards for testing scenarios is indispensable to solving these
problems. According to this knowledge, this paper presents a new method that quantifies
the challenge in various scenarios by estimating the risk based on ISO 26262. The main
contribution of our study is that we focus on quantification and use functional safety, a
general standard in the automotive industry, as the quantification basis. We then use
reinforcement learning (RL) [41] to formulate the problem to generate challenging scenarios
and verify our method through simulation using two public datasets.

The rest of the paper is organized as follows. The elementary principle and design
of the new approach is introduced in Section 2, and then we conduct experiments under
car-following and cut-in cases in Section 3 and discuss the results in Section 4. Finally, we
conclude the paper in Section 5.

2. The Elementary Principle and Design of the Method

There are no common standards for generating testing scenarios in the testing domain
at present. Since testing involves safety, and there is an existing and highly operable
safety standard called ISO 26262 [42] “Road vehicles—Functional Safety”, a functional
safety standard for automobiles developed by ISO that was compiled by car manufacturers,
system suppliers, and automotive engineers [43], we introduced this standard to this
problem on a theoretical basis. The specific quantification method was achieved through
RL. The architecture of the proposed method is shown in Figure 1.

Figure 1. The system architecture of the proposed method.

2.1. Functional Safety: Theoretical Basis

ISO 26262 is an adaptation of the more general IEC 61508 standard for the automotive
industry. According to ISO 26262, a hazard is a potential source of harm. Functional Safety
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is defined as the “absence of unreasonable risk due to hazards caused by malfunctioning
behavior of Electrical/Electronic systems”. Part 3 of ISO 26262 is dedicated to hazard and
risk analysis guidance, which determines the risk of harm/injury to people and property
damage. Part 3 primarily introduces the requirements for risk analysis and risk assess-
ment to determine the Automotive Safety Integrity Level (ASIL), a critical component of
ISO 26262, and the level of risk reduction needed to achieve a tolerable risk is used to
represent the stringency of the safety requirements [44].

ASILs, as previously stated, are essentially classification levels for hazardous events.
In the event of a malfunction at the vehicle function level, a hazard and risk analysis
is used to determine the ASIL. According to ISO 26262, an ASIL shall be determined
for each hazardous event based on the classification of the probability of exposure, the
severity, and the controllability, as shown in Table 1. Exposure is defined as the “state of
being in an operational situation that can be hazardous if coincident with the failure mode
under analysis”. Severity is defined as the “estimate of the extent of harm to one or more
individuals that can occur in a potentially hazardous event”. Controllability is defined
as “an ability to avoid a specified harm or damage through the timely reactions of the
persons involved possibly with support from external measures”. Each has corresponding
levels. ASILs have five levels: QM, A, B, C, and D, where level D implies the highest safety
requirement, level A means the least strict safety requirements, and level QM implies no
special safety requirements [45].

Table 1. ASIL determination.

Severity Class Exposure Class
Controllability Class

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

As risk can be described as a function of the probability of exposure, the severity, and
the controllability, based on ISO 26262, we introduced functional safety as our theoretical
basis for testing scenarios. We aimed to quantify how risky scenarios are based on the
three factors. The quantified value is defined as ESC. Scenarios in which ESC exceeds the
threshold are called challenging scenarios.

2.2. Quantification Method

In this section, we detail the specific method based on RL. The steps include the
modeling scenarios part and ESC quantification algorithm part.

2.2.1. Scenario Modeling

RL is widely used in various areas, such as robotics, neuroscience, computer sci-
ence, and automatic control. It introduces a way of programming agents by reward and
punishment, without needing to specify how the task is to be achieved. Markov deci-
sion processes (MDPs) [41] are modeling basics of RL problems that usually include the
following elements: S, A,R, T , and π.
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• S is a set of states s of every agent.
• A is a discrete set of available agent actions that can be selected at a certain state.
• R is the reward function that represents the reward gained from taking a certain action

at a specific state.
• T is the state transition probability matrix , which specifies the probability of taking

action for a state. This is consistent with Markov Property, where the state trans-
fer effect of taking action is only related to the current state, irrespective of the
historical state.

• π is the policy: S−→A, where the goal of RL is to learn the optimal policy π∗ to obtain
the optimal expected reward.

In the following, we designate the vehicles we want to test as the host vehicles (HVs),
and the other vehicles as the background vehicles (BVs). Based on [10–12], scenario S can
be represented as a sequence of states, where subscripts indicate moments:

S = (s0, s1, s2, · · · , sk), ∀s ∈ S. (1)

Due to the Markov Property:(st, at) −→ st+1 [46], where st is a current state and st+1 is
the next state, a scenario S can also be represented as a sequence of initial state and actions
in the following moments:

S = (s0, a0, a1, · · · , ak−1), ∀s ∈ S, ∀a ∈ A. (2)

This is an adequate simplification. It not only takes into account vehicle-driving
characteristics but also reduces the dimension of the scenarios, which helps to solve the
bottleneck problem, known as the “dimension explosion”, in testing scenario generation.

2.2.2. Challenging Scenarios

The level of risk in a testing scenario reflects the level of challenge in the scenario S.
We use ESC as a quantified value to represent the risk in a scenario according to ISO26262.
As the states and actions that make up the scenarios have Markov Properties, ESC of a
scenario S can also be represented as a sequence of units that reflect the ESC of states
and actions:

ESC(S) = ESC[(s0, s1, · · · , sk)]

= ESC(s0) ∗ ESC(s1) ∗ · · · ∗ ESC(sk)

= ESC(s0) ∗ ESC[(s0, a0)] ∗ · · · ∗ ESC[(sk−1, ak−1)]

= ESC(s0) ∗
k−1

∏
i=0
ESC[(si, ai)].

(3)

The difficult scenarios were chosen based on esc. The esc of a scenario was compared
to the threshold, with esc above the threshold being selected as challenging scenes and esc
below the threshold being ignored:

S =

{
challenging scenarios if ESC(S) > threshold

unchallenging scenarios if ESC(S) ≤ threshold
(4)

As the ESC operation of a scenario can be seen as MDPs, the scenario generation
process can be described as a decision tree, as shown in Figure 2, in which the red circles
are valuable actions. A challenging scenario will select a red action as the next action.
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Figure 2. Scenario generating process can be described as a decision tree based on MDPs.

2.2.3. Quantification Analysis

Based on the previous analysis, the ESC of a state is determined by three factors: the
probability of exposure E(s, a), severity S(s, a) and controllability C(s, a). Therefore, the
three factors should be quantified to describe ESC[(si, ai)] and ESC(s0) in Equation (3).

• The value of E(s, a) is determined by naturalistic driving data (NDD) to reflect the
probability of exposure. NDD describes the natural driving environment and can
provide exposure information. By analyzing the samples in NDD, we can obtain the
frequency of state as Samples(s) and the frequency of completing an action in the
current state as Samples[(s, a)]. Therefore, E(s, a) can be defined as:

E(s, a) = P(a|s) = Samples[(s, a)]
Samples(s)

. (5)

• The value of S(s, a) should reflect the level of severity of completing an action a in a
current state s. As the direct consequence of completing an action in the current state
leads to the next state, S(s, a) can be quantified by analyzing the next state caused
by the action. As the definition is similar to reward function R, the S(s, a) can be
seen as the reward R(s, a) in exploration. Time to collision (TTC) is regarded as a
useful metric to obtain the driver perception of collision risk [47] and was selected to
evaluate the forward collision warning (FCW) warning threshold time. TTC is defined
as Equation (6) [48] where Dr is the related distance and Vr is the related velocity. We
quantified the severity according to TTC, as shown in Equation (7).

TCC =
Dr

Vr
, (6)

S(s, a) = T T C[(s, a)]. (7)

• The definition of C(s, a) differs from that of ISO26262, because controllability aimed
at hazardous events focuses on external measures after traffic accidents, whereas
testing aimed at scenarios does not. However, the primary goal considers the potential
consequences and long-term challenge effects of the current state. Based on this, we
defined mathcalC(s, a) as the expected esc from actions in the next state to reflect the
long-term value of actions in the current state, as shown in Equation (8).

C(s, a) = E[ESC[(s, a), â]] =
1
m

m

∑
i=1
ESC[(s, a), ai]. (8)

After the three factors are quantified, the ESC[(si, ai)] and ESC(s0) can be described
by them:

ESC[(st, at)] = E(st, at) · S(st, at) + C(st, at)

= P(at|st) · T T C(st, at) +
1
m

m

∑
i=1
ESC[(st+1, ai)],

(9)
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ESC(s0) = ESC[(s0, a1)] + ESC[(s0, a2)] + · · ·+ ESC[(s0, am)] =
m

∑
i=1
ESC[(s0, ai)]. (10)

2.2.4. ESC Algorithm

Based on RL, we propose using the esc algorithm to quantify scenarios through
modeling and analysis. The algorithm’s goal is the same as that of some popular RL
algorithms, such as Q-learning and Sarsa, which work directly on the state-action value
matrix Q(S, A) to solve variants of the reinforcement learning problem [49,50]. The value
of every unit Q(s, a) of the matrix represents the discounted cumulative reward starting at
state s, taking action a. The ESC algorithm, like Sarsa, is called on-policy learning, which
selects actions at subsequent moments as the being same as the current moment. The
updated law of the ESC values can be expressed as follows:

ESC(st, at)← ESC(st, at) + β[(E(st, at)S(st, at) + γC(st, at))− ESC(st, at)], (11)

where the meaning of ESC value is the same as the meaning of Q value. β is learning rate,
and γ is discount factor. The equation can be further interpreted as:

ESC(st, at)← ESC(st, at) + β[

(
P(at|st)T T C(st, at) + γ

1
m

m

∑
i=1
ESC[(st, at), ai]

)
− ESC(st, at)]. (12)

The ESC algorithm is summarized in Algorithm 1. We reduce the complexity by
matrix operations. Based on [51], Algorithm 1 requires O(|A||S|) memory and O(|A|2|S|)
computation per iteration. Furthermore, according to the ESC algorithm, the flow chart of
our method is shown in Figure 3.

Algorithm 1 ESC Algorithm.

Initialize P(A|S), T T C(S, A), ESC(S, A);
∀s ∈ S, a ∈ A, ESC(s, a) = P(a|s);
error = Threshold + 1;

while error > Threshold do
Initialize ˆESC(s, a)← 1

m ∑m
i=1 ESC[(s, a), am];

D ← P(A|S) · [T T C(S, A) + γ ˆESC(S, A)]-ESC(S, A);
ESC(S, A)← ESC(S, A) + βD;
error ← |D| ;

end while
return ESC(S, A)

Figure 3. The flowchart of the proposed method.
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3. Experiments

In this section, we first introduce the dataset and simulation verification model used
in our experiments. We then conduct an experiment with two cases, the car-following case
and the cut-in case, using two open-source datasets, HighD [52] and NGSIM [53], to test
our algorithm.

3.1. Dataset

HighD [52], a large-scale, naturalistic, vehicle trajectory dataset, was collected from
German highways. Based on a novel method to measure data from an aerial perspective,
the dataset consists of 16.5 h of measurements from six locations with 110,000 vehicles,
a total driven distance of 45,000 km, and 5600 recorded complete lane changes. As the
positioning error is typically less than 10 cm and the frame rate used to record the video is
25 Hz, the dataset can provide precise and extensive experiment data.

NGSIM [53], the next-generation simulation, provides detailed, high-quality traffic
datasets that aid in the modeling and simulation of intelligent algorithms to predict drivers’
behavior and evade vehicular crashes [54]. Part of the US Highway 101 Dataset, consisting
of 45 min of video, was collected from southbound US 101, also known as the Hollywood
Freeway, and the study area was approximately 640 m. Eight synchronized digital video
cameras, mounted from the top of a 36-story building adjacent to the freeway, recorded
vehicles passing through the study area, providing data at a rate of 10 Hz.

3.2. Simulation Model

We introduced a simulation model, the intelligent driver model (IDM) [55] to validate
the proposed novel method. IDM is a car-following model that works in mixed traffic.
Based on [56], the model describes acceleration as a function of the gap ∆vα − L, the speed
vα, the desired velocity v0 and the speed difference ∆vα between vehicle “α” and the vehicle
in front using the following expressions:

d
dt

vα(t) = a ·
(

1−
(

vα

v0

)δ

−
(

S∗(vα, ∆vα)

∆vα − L

)2
)

, (13)

where “δ” is the acceleration component and the desired gap “S∗”, which can be given as:

S∗(vα, ∆vα) = S0 + S1 ·
√

vα

v0
+ T · vα +

vα · ∆vα

2
√

a · b
. (14)

where S0 is the gap at jam conditions, S1 is the gap factor, T is the reaction of the driver, a is
maximum acceleration, and b is minimum acceleration.

3.3. Car-Following Case

Figure 4 provides a basic illustration of a typical car-following case. Our previous
introduction shows that we first modeled scenarios for specific applications. The states
and actions of a testing scenario can be described based on the interaction between HV
and BV. In the car-following case, we mainly focused on horizontal interactions. As the
decision of BV is influenced by velocity v, relative velocity vr, and relative distance dr, a
state is modeled as:

s = state = (v, vr, dr). (15)

The action of the testing scenarios is the acceleration acc of the BV. Therefore, the
testing scenario is modeled as:

S = (s0, acc0, acc1, · · · , acck−1), (16)

where s0 is the initial state and acc0, acc1, · · · , acck−1 is the acceleration sequence of the BV.
We obtained the distribution and density of these parameters after analyzing the HighD
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and NGSIM, as shown in Figure 5. Then, in Table 2, the value range is determined. The
discrete precision of velocity, distance, and acceleration was 1 m/s, 1 m, and 0.1 m/s2:

Figure 4. An illustration of car-following case. HV denotes a host vehicle. BV denotes a back-
ground vehicle.

Figure 5. An illustration to show the distribution and density of parameters in the car-following case
based on the HighD and NGSIM.

Table 2. Value range of parameters in car-following case.

Parameter (HighD) v (m/s) vr (m/s) dr (m) a (m/s2)

maximum 50 17 391 2.2
minimum 20 −18 4 −3.0

Parameter (NGSIM) v (m/s) vr (m/s) dr (m) a (m/s2)

maximum 29 20 210 3.4
minimum 0 −19 2 −3.4

The most extended scenario duration was designed to be 25 s, and the control fre-
quency of the action was 1 Hz, which means that the BV selects an acceleration every
second. As mentioned in the scenario modeling section, the MDPs-based modeling ap-
proach shrinks the parameter space. It is time-consuming to traverse the whole scenario
to compute their ESC and find challenging scenarios with violent search algorithms. This
study used the Markov property, (st, at) −→ st+1, to choose the next action according to the
current state. According to Table 2, the size of the space of states and action is:

size_H(state) = 31× 36× 388 = 4.33× 105,

size_H(action) = 53.
(17)

size_N(state) = 30× 40× 209 = 2.51× 105,

size_N(action) = 69,
(18)

where size_H means the data are from HighD, and size_N means the data are from NGSIM.
Therefore, the size of the space of ESC matrix is size(state) times size(action):

size_H(ESC matirx) = 2.29× 107, (19)

size_N(ESC matirx) = 1.73× 107. (20)
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Through ESC matrix and the threshold, pruning selection greatly reduces the search
space for challenging scenarios. Based on our preprocessed data and modeling method,
E(s, a) of the car-following case was designed as follows:

E(s, a) = P(acc|s). (21)

The result of T T C[(s, a)] can be used to calculate mathcalS(s, a). The esc matrix was
obtained after many iterations. Figure 6 depicts the esc of a state (30,3,10) using HighD.
The green curve represents the esc value and the red curve represents P(acc|s). When the
threshold is set to zero, the figure shows that, when selecting the next BV action to generate
challenging scenarios, more attention is paid to the BV’s deceleration. This implies that
both the frequency of occurrence and the level of risk are taken into account.

Figure 6. The ESC of state = (30,3,10) using HighD.

According to ESC matrix, we selected the initial state and action based on the threshold
0 and generated the testing scenario library. Then, we verified these generated scenarios by
simulation experiments using the IDM model as the HV. If HV has a collision accident in a
testing scenario, this scenario is genuinely challenging. The model weights are provided in
Table 3, and the action space of BV is within the range provided in Table 2. The simulation
result is shown in Figure 7.

Table 3. The weights of parameters in IDM in car-following case.

Parameter Weight_HighD Weight_NGSIM Interpretation

a 2.2 3.4 maximum acceleration
b −3 −3.4 minimum acceleration
v0 33 33 desired velocity
δ 4 4 acceleration velocity
L 4 2 vehicle length
S0 2 2 gap at jam conditions
S1 0 0 gap factor
T 1 1 the reaction time of driver
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Figure 7. The simulation results of the car-following case and cut-in case using (a,c) HighD and
(b,d) NGSIM datasets.

3.4. Cut-In Case

Figure 8 shows the primary illustration of a typical cut-in case. As in the previous
experiment, we first modeled scenarios in specific applications based on the interaction
between HV and BV. In the cut-in case, we focused on horizontal interactions and vertical
interactions. There are six state variables in total which are velocity, relative velocity, and
relative distance in both directions. However, since the longitudinal distance is short and the
two datasets have different levels of detail in the longitudinal direction. HighD provides
detailed motion statuses, such as distance, speed, and acceleration in the longitudinal
direction, while NGSIM only provides a single distance in the longitudinal direction. So,
the modeling and implementation of cut-in case experiments need to be adjusted and
improved. We set the horizontal axis as the x-axis and the vertical as the y-axis. A state was
modeled as follows:

s = state = (vx, vx
r , dx

r , dy
r ) (22)

The modeled state consists of relative velocity in x-axis vx, relative velocity in x-
axis vx

r , relative distance in x-axis dx
r , and relative distance in y-axis dy

r . In many studies,
longitudinal motion is simplified. For example, Feng et al. [57] simplified the longitudinal
movement of the background vehicle by assuming that the longitudinal acceleration is 0.
Our experiment used a relatively minor simplification. Because the longitudinal distance is
short and only the longitudinal creative distance is in the state, the longitudinal velocity
was used as the longitudinal action rather than the longitudinal acceleration. We need to
further process the difference in longitudinal distance between two frames extracted from
the NGSIM dataset to calculate the longitudinal speed. The action of testing scenarios was
both the horizontal acceleration accx and vertical velocity vy of the BV:

a = action = (accx, vy) (23)
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Therefore, a testing scenario is modeled as:

S =
(

s0, (accx
0 , vy

0), · · · , (accx
k−1, vy

k−1)
)

, (24)

where s0 is the initial state and (accx
0 , vy

0), (accx
1 , vy

1), · · · , (accx
k−1, vy

k−1) is the action sequence
of the BV. After analyzing HighD and NGSIM, we obtained the distribution and density of
these parameters, as shown in Figure 9.Then, their value range was determined and shown
in Table 4, where the discrete precision of velocity, distance, and acceleration in the x-axis
was also 1 m/s, 1 m, and 0.1 m/s2. In contrast, the relative distance and velocity in the
y-axis was 0.1 m and 0.1 m/s.

Figure 8. An illustration of cut-in case.

Figure 9. An illustration to show the distribution and density of parameters in the cut-in case based
on the HighD and NGSIM.

Table 4. Value range of parameters in cut-in case.

Parameter (HighD) vx vx
r dx

r dy
r accx vy

unit (m/s) (m/s) (m) (m) (m/s2) (m/s)

maximum 42 16 345 5 1.9 1.8
minimum 23 −19 0 0 −1.1 0.1

Parameter (NGSIM) vx vx
r dx

r dy
r accx vy

unit (m/s) (m/s) (m) (m) (m/s2) (m/s)

maximum 29 17 224 13 3.4 2.0
minimum 0 −15 2 0 −3.4 0.0
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As in the previous experiment, based on our preprocessed data and modeling method,
the E(s, a) of cut-in case was designed as:

E(s, a) = P(a|s)

= P
(
(accx, vy)|(vx, vx

r , dx
r , dy

r )
)

.
(25)

S(s, a) was also measured according to the result of T T C[(s, a)]. Then, through multiple
iterations, the ESC matrix was obtained. According to the ESC matrix, we selected the
initial state and action based on the threshold 0. We verified these generated scenarios with
simulation experiments using the IDM model.

4. Analysis and Discussion

Figure 7 shows that the accident rate of the scenarios generated by the value of ESC
was much higher than that selected by the possibility. (a) and (b) depict the accident rate of
simulation experiments in the selected scenarios library obtained for the car-following case
using the two datasets. The green curve shows the accident rate in the chosen scenarios
using the ESC algorithm, and the blue curve shows the accident rate in the chosen scenarios
just by the possibility of occurrence. The accident rate of (a) showed the most significant
increase, with a 22.6% increase over 0.07%, which is more than 300. (b) shows that the
accident rate of the test scenarios generated by this method is about 35%. (c) and (d) show
the accident rate in the cut-in case. The accident rates selected by ESC were about 40% and
34%, much higher than those selected by the blue. Therefore, this method can generate
challenging scenarios in both the car-following and cut-in cases.

When comparing these four pictures horizontally, it is clear that the larger the space,
the lower the accident rate in the same case using different datasets, which aligns with
cognition. However, by comparing the two pictures using the same dataset, the cut-in case
with a larger modeling space is shown to have a similar or higher accuracy. This problem
is related to our simulation model IDM. For example, in HighD, IDM only focuses on
horizontal interactions, although the space of the cut-in case is:

size(state) = 20× 36× 346× 18× 6

= 2.69× 107,

size(action) = 31 ∗ 23 = 713,

size(ESC matirx) = 1.92× 1010,

(26)

This is much larger than the space of the car-following case. The horizontal space of
the cut-in case is:

size(horizon) = 20× 36× 346× 31 = 7.72× 106, (27)

This is smaller than the space of the car-following case.
In addition to accuracy, the method’s coverage should be considered. Coverage, like

recall in classification problems, ensures that high-risk scenarios are selected, whereas
accuracy, like precision, focuses on selecting high-risk scenarios. First, we computed the
esc of the accident scenarios chosen from the control experiments, and their esc values were
all greater than the threshold of 0. This means that these scenarios are part of the scenario
library chosen by esc. Second, theoretical analysis shows that each state and action was
assigned the esc valve and occurred in a specific space. The BV decision was based on
the current state. The esc value of the final accident state must exceed the threshold, and
the influence can be passed to the previous state. As a result, this is reasonable to ensure
coverage. The quantification method based on functional safety is practical and feasible in
the testing scenario generation problem due to its high accuracy and coverage.
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5. Conclusions

In this paper, we propose a practical quantitative evaluation approach to generate
challenging scenarios for intelligent vehicle testing. The approach focused on existing
problems, including that the existing methods to generate testing scenarios lack uni-
form and popular standards. They do not solve quantification problems, making it dif-
ficult to use them in industry. Our approach provides a highly operable standardized
testing process.

Our method uses the three factors of risk, provided in ISO 26262—exposure, severity,
and controllability–to quantify the challenge of a testing scenario. Experiments were
conducted to apply this method to a car-following case and cut-in case to investigate the
effectiveness of the proposed approach. The results show that it is possible to assess the
risk of scenarios and select challenging scenarios to test intelligent vehicles by quantifying
the risk of state and action using reinforcement learning based on functional safety. The
method can ensure both accuracy and coverage. Therefore, quantitative risk evaluation
enables efficient testing, reducing the intelligence’s validation consumption.

Other cases, such as overtaking and crossing, can be considered in future work. The
number of background vehicles can also be increased. As the number of traffic participants
increases, the interaction factors will rapidly increase, and the scenario space will quickly
become more extensive. Although the currently applied reinforcement learning methods
are insufficient to take on this vast space, the quantification approach using ISO 26262 can
be implemented by other algorithms that can support multiple parameters, such as deep
reinforcement learning (DRL).
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