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Abstract: Social media platforms like Twitter are commonly used by people interested in various
activities, interests, and subjects that may cover their everyday activities and plans, as well as their
thoughts on religion, technology, or the products they use. In this paper, we present bidirectional
encoder representations from transformers (BERT)-based text classification model, ARABERT4TWC,
for classifying the Arabic tweets of users into different categories. This work aims to provide an
enhanced deep-learning model that can automatically classify the robust Arabic tweets of different
users. In our proposed work, a transformer-based model for text classification is constructed from
a pre-trained BERT model provided by the hugging face transformer library with custom dense
layers. The multi-class classification layer is built on top of the BERT encoder to categorize the tweets.
First, data sanitation and preprocessing were performed on the raw Arabic corpus to improve the
model’s accuracy. Second, an Arabic-specific BERT model was built and input embedding vectors
were fed into it. Using five publicly accessible datasets, substantial experiments were executed, and
the fine-tuning technique was assessed in terms of tokenized vector and learning rate. In addition,
we assessed the accuracy of various deep-learning models for classifying Arabic text.

Keywords: text classification; Arabic tweets; BERT model; hugging-face transformer; deep learn-
ing models

1. Introduction

The importance of automatic tweet or text classification has increased with the ongoing
addition of text-based content to the internet. The rapid growth of social and digital media
has resulted in an ever-increasing amount of data generated by various sources. The
availability of such unorganized data provides an enormous potential for processing and
extracting valuable information. One critical task is identifying individuals depending on
their tweeting and grouping, a field of study that has gained increasing interest in recent
years. Automated multi-labeled systems are now possible because of recent advances in
deep-learning- and machine-learning-based approaches. Tweet or text classification is a
necessary condition for the development of various emerging applications in diverse fields,
such as linguistic (and dialect) recognition, user’s tweet classification, sentiment analysis,
genre classification, spam filtering, and a few more [1–4]. There is a significant need for an
automatic tweet or text categorization system for Arabic due to the abundance of Arabic
data available on the web nowadays.

There are different criteria for classifying Arabic tweets, depending on the accessibility
of data, resource limitations, and data quality. The Arabic language is considered one of
the most widely used languages on social media, especially Twitter and Facebook. Most
user and people attitudes are reflected on social media to express their opinions to different
news, topics, and provided services that can be enhanced in future. Furthermore, the Arabic
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language on social media platforms contains long tweets with different morphological and
polarity terms that are difficult to analyze.

As presented in [5], the unsupervised sentiment analysis method is applied to improve
the performance of analyzing sentiments using term weights from different datasets. In
addition, the features are extracted for predicting the target or objective features. The
authors of [6] proposed different machine-learning models to classify text and provide
a recommender system that can predict the orientation of sentiments. Despite this, they
frequently fail to consider textual context or word order, so their classification accuracy
needs to be improved by data sparsity. Furthermore, deep-learning-based techniques have
been proven more efficient than conventional machine-learning approaches. They can
extract important characteristics effectively without requiring extensive artificial feature
extraction [7]. The RNN and CNN have demonstrated varying capacities in displaying
text. RNNs are good at modeling sequential data and effectively representing text by
understanding contextual aspects and long-term relationships in phrases. They have
been successfully employed in natural language-processing applications [8]. Some known
algorithms for text categorization combine CNN and RNN to maximize their potential [9].
However, these algorithms treat every word in the phrase equally, making it impossible
to tell which keywords are more important in the categorization process than the more
prevalent ones. According to the attention-based technique, neural networks may give
varying weights to words in a sentence based on their value for categorization, alleviating
the previous difficulties. Attention-based RNN, CNN, and GRU can produce state-of-the-art
results. However, these techniques are attributed to individual CNN, GRU, or RNN, and the
significance of learning contextual information is insignificant in their implementation [10].
The extent of BERT’s potential has yet to be explored, even though it has given reasonable
results in NLP-related tasks surpassing most conventional approaches, such as word2vec,
Cove, and Glove. Incorporating BERT does not help much because it is trained using a
blend of a corpus in English and has no text categorization skills. When there is insufficient
internal training data for fine-tuning, a task-awareness problem may be solved by using an
external domain-related corpus.

To overcome the limitations of the aforementioned models, we proposed a model
ARABERT4TWC for Arabic tweet classification. We attained performance compared to
other well-known techniques, with three out of five datasets used. First, data sanitation is
performed on the datasets to remove Arabic stop words and punctuation. As a part of data
preprocessing, the model input is first tokenized with a word-piece tokenizer trained on a
large Arabic corpus that contains 1.5-billion Arabic corpora and OSIAN, which are publicly
available [11,12]. The word-piece tokenizer is based on a sub-word tokenization algorithm.
Sub-word tokenization techniques are based on the idea that commonly employed phrases
must be distinct from shorter sub-words. However, unique words should be deconstructed
into meaningful sub-words when tokenizing them. Sub-word tokenization helps the model
acquire meaningful, contextually independent representations while maintaining a suitable
lexicon size.

The tokens obtained from the word-piece tokenizer are combined with segment and
positional embedding. Second, an Arabic BERT for tweet classification is constructed by
fine-tuning the pre-trained BERT case model provided by the Hugging Face Transformer
Library that has been trained on larger unlabeled text corpora, including book corpora and
Wikipedia [13–15]. The fine-tuning is executed by initializing the weights of the pre-trained
BERT model. All the 109-million parameters are fine-tuned with labeled data. A dense
classification layer is added to the encoder to obtain an Arabic BERT, specifically used for
Arabic tweet classification. The custom BERT model consists of 12 encoder layers with
12 self-attention heads, which are bi-directional, and 12 hidden layers. The final embedding
layers obtained after merging with segment and positional embedding are passed through
the encoder structure. Finally, the Softmax classification layer is used for classifying Arabic
tweets. To validate our proposed model, the model’s performance in terms of accuracy is
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evaluated using five benchmark datasets with other well-known existing models for tweet
classification. The contribution of the paper is explained as follows:

1. Propose an ARABERT4TWC model for classifying Arabic long tweets into differ-
ent categories.

2. Propose a tokenization process algorithm for measuring the frequency of each pair of
text in the vocabulary and then determining the most frequent terms.

3. Proposing an ARABERT4TWC algorithm that contains a token, segment, and posi-
tional embedding of terms, then applying an encoder/transformer.

4. Applying a fine-tuning of the ARABERT4TWC model ARABERT4TWC to achieve
better performance on social media-related tasks.

5. Applying the proposed model to different datasets and the experimental results are
compared with recent research methodologies, which explored high accuracy in the
proposed model.

The remaining structure of the paper is as follows: The related work in text or tweet
classification is reported in Section 2. The proposed methodology Arabic BERT model
for tweet classification (ARABERT4TWC) is presented in Section 3, which explains the
sanitation of data, the model architecture, the proposed algorithms, the self-attention layer,
and the classification layer. The experiment setup, performance evaluation of our proposed
model, and a comparison of the existing techniques are explained in Section 4. Section 5
summarizes the conclusion and future scope.

2. Related Works

Several research works addressed the problem of automated text classification, present-
ing various methodologies, and approaches. Deep-learning-based neural network models
have significantly progressed in text categorization in recent years. In 2010, Sanad [16]
proposed several traditional learning supervised classifiers, such as KNN, SVM, Decision
Tree classifier, and Nave Bayes for Arabic text classification. He examined the effect of data
preprocessing on text classification. The CNN and BBC Arabic news databases, which are
extensively shared but relatively smaller, were used. In 2007, Umer and Kiyal [17] proposed
a neural network-based approach for Arabic text classification, which outperformed the
KNN, Decision Tree classifier, SVM, and NB methods in terms of accuracy with relatively
smaller datasets. Learning vector quantization was used for categorizing or classifying the
text content. In 2017, Gaussier, Mahdaouy, and Alaoui [18] performed document and word
embedding instead of data preprocessing and keyword counting. It was demonstrated that
text embedding performed better than preprocessing strategies when they were learned
with Doc2Vec, or when vectors that consisted of words were averaged. Word embedding
was contrasted with established techniques that depend on data acquisition or keyword
enumeration in various applications, such as tweet classification [19].

The development of deep-learning-based algorithms to handle various challenges
has increased significantly over the previous four years. This is because it outperforms
traditional learning algorithms based on performance. In 2019, Vincent and Ogier ex-
plained the significance of applying deep learning to solve content analysis constraints.
The deep-learning algorithm based on convolutional neural networks could extract deep
characteristics or features from texts or tweets, producing better results in text classifi-
cation [20]. Text categorization was improved in 2014 when Kim created the first CNN
(Convolutional Neural Network) architecture with a simple yet effective topology [21].
Using unlabeled data, Jhonson and R developed a new semi-supervised CNN architecture
for text classification that first learns text region embedding and then labels them [22]. In
2018, the authors observed that by enhancing CNN’s depth, sentences with a long-term
correlation could be learned effectively when the text sequence is character-based instead
of word-based encoding [23].

RNNs have been used in the machine translation, question-answering, and speech
recognition fields to find long-term correlations in sequential data. In recent studies, it has
been indicated that it may also be used in categorizing text [9,10]. As presented in [8], the
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authors proposed a recurrent convolutional neural network (RCNN) that utilized a periodic
or recurrent structure to capture contextual data and CNN for feature extraction. As shown
in [24], the authors proposed a deep-learning-based model that uses a condition-based
random classifier and recurrent structures, such as bi-directional and simple LSTM (Long
Short-Term Memory). The two models were adapted to the Arabic hotel reviews dataset, in
which the first approach was carried out with character-based and word-based encoding
to extract the text’s most highly expressed phrases. Context-aware Gated Recurrent Units
(C-GRU), which used an additional layer to retrieve the context data from tweets, were
proposed by the authors in 2018 [25].

As presented in [26], an activation function is proposed to enhance the performance
on the training dataset by optimizing the neural network. The authors aimed to provide
different solutions related to training of data where one of the solutions applied activated
gradient for eliminating the gradient problem. Furthermore, the authors provided different
theorems to vanish the problem of a saddle point. The proposed model is implemented
and compared with different ResNet models that achieved a high performance with the
activated gradient. As shown in [27], a deep-learning structure comprises BERT–Base
and a final emotional and sentimental analysis classification layer. By considering two
datasets of tweets, they attained an accuracy of 92 and 90% for emotion and sentimental
analysis, respectively, from which it was possible to conclude that Bert’s language modeling
power contributes significantly to achieving a good tweet classification. Small datasets
were used, and the Bert model could not classify long tweets due to a lower number of
attention layers. Since then, new language processing models, including BERT, Roberta,
AL–BERT, and T5, increased performance by experimenting with alternative pre-training
approaches, updated model topologies, and bigger training corpora. In 2021, Antoun
et al. developed an ARABERT model for various downstream tasks like Named Entity
Recognition (NER) and Sentiment Analysis (SA). They achieved a 92% accuracy for the
various downstream tasks [28]. As proposed in [29], the authors performed a self-training
of the Arabic dataset that contains different dialects that cause low performance when a new
dataset is added. The authors of [30] provided a sequence-to-sequence model that performs
a text normalization of the Arabic dialect. The paper proposed an encoder/decoder model
where the encoder accepts the input text, builds the features, and then collects the features
to generate the final output. As explained in [31], the Naïve Bayes model is applied to the
spark dataset to collect tokens, and then the polarity terms are counted to measure the
accuracy. The authors of [32] applied different-machine learning models to extract user
reviews from Saudi institutions to improve the prediction that can help make accurate
decisions for providing services. As presented in [33], the authors collected Arabic tweets
that can explain and express the depression statements in the tweets. The novelty of the
proposed model is that the authors applied many symptoms to classify the depression
classes and then detect whether the applied sentiment contains depression terms or not. As
shown in [34], the authors collected different Arabic tweets about the COVID–19 pandemic
to detect the user reactions and feelings based on their polarity. In addition, the proposed
model tried to predict the spread of the pandemic based on user reviews.

Table 1 summarizes the learning method used and the demerits of the existing methods
applied in tweet or text classification systems. The major disadvantages of the existing
methods are that neither the conventional methods nor the models, such as recurrent
networks or convolutional networks, can provide more significance to keywords that are
significant in text categorization. Contextual awareness between words plays a key role
in a tweet or text classification. Another significant disadvantage of the existing methods
is that they are tested on small Arabic text corpora, and accuracy is also impacted due to
outliers in data.
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Table 1. Summary of the learning method used and demerits of the existing methods.

Ref Learning Method Algorithm Demerits of Existing Method

[16] Supervised KNN, SVM, DT, and NB Features reduce classification per accuracy due to
increased spatial and temporal complexity.

[18] Unsupervised Doc2vec Cannot capture contextual awareness in texts and
increased vocabulary size for each different vector.

[20] Supervised CNN
Words are equally treated throughout the phrase,

making it impossible to discriminate between
keywords and terms.

[24] Supervised BLSTM Needs a large training time and less accurate on a
large dataset.

[25] Supervised Context-aware gated recurrent units Cannot capture contextual information effectively.

[29] Unsupervised Self-training of corpus dataset
The dataset is self-trained with different dialects in the
corpus, which causes low performance when a new

dataset is added.

[30] Unsupervised Seq2Seq approach The results are medium as the corpus contains
different dialects.

[31] Supervised NB The size of the dataset is small and needs to
be increased.

[32] Supervised KNN, SVM, DT, and NB The polarity terms size is small, and the performance
accuracy is relatively low.

[33] Supervised SVM, RF, LR, KNN, NB, and
AdaBoost

The model deals with the depression dataset but has a
low number of tweets due to the lack of data in

this specialty.

[34] Supervised NLP approach
Each sentiment polarity is assigned a weight, but the

collected dataset cannot capture additional
polarity terms.

3. Proposed Methodology

The proposed methodology and the architecture of the Arabic BERT model for tweet
classification (ARABERT4TWC) are discussed in detail. The proposed methodology can be
divided into four parts, as depicted in Figure 1. The first benchmark datasets are collected
from different sources [35]. Second, data sanitation and preprocessing are performed on all
the datasets collected. The sequence of tweet inputs is preprocessed before classification
in batches using the word, segment, and positional embedding and converted to input
vectors. Third, the input vectors obtained are passed through the custom-built Arabic BERT
model (ARABERT4TWC). In the last step, we input this output into a linear network with
two dense layers and a sigmoid activation function.
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3.1. Data Sanitation and Preprocessing

The data sanitation process removes Arabic stop words, punctuation, and extra spaces
from the text corpus. Text normalization is not performed as it might alter the meaning
of some words, such as “ball”. After performing data sanitation on the text corpus, the
data preprocessing step is carried out to convert the input text sequence to the embedding
vectors, which are obtained after merging the sub-word tokenization, segment embedding,
and positional embedding into the input sequence. Special tokens [CLS] are added at the
beginning of the input sequence, and the [SEP] token is used to separate a long sentence
into a meaningful sentence. The input sequences are tokenized with a word-piece tokenizer.
The word-piece tokenizer is based on the sub-word tokenization algorithm. Sub-word
tokenization techniques are based on the idea that commonly employed phrases must be
distinct from shorter sub-words. However, unique words should be deconstructed into
meaningful sub-words when tokenizing them. After tokenization and using a word-piece
tokenizer, the input sequences are represented numerically using token embedding. The
BERT model discriminates between various phrases in a single input segment. Using this
embedding vector, the values of each word in a sentence are the same, but the values vary
when the phrase is changed. The positional embedding vectors are used to calculate the
location of each word or the distances between distinct phrases in the sequences.

As presented in Algorithm 1, the tokenization algorithm is based on filling the vo-
cabulary Vi with the input text characters. Even if the vocabulary Vi is less than the ideal
vocabulary IV, the frequency of each pair of text is calculated, and then the most frequent
pair of text

(
xi, yj

)
is determined. A new unused pair of text is added to expand the

vocabulary. The input text characters are divided into word segments WSi then the process
is repeated again for each text entry until the entire text document is finished.

Algorithm 1: Tokenization Process

Let IV ← Ideal Vocabulary
Let Vi ← Applied Vocabulary
Let TC ← Text Character
Let WS ←Word Segment
Step 1: ∀ TCi ∈ Vi such that Vi = { TC1, TC2, . . . , TCn}
Step 2: IF Vi ≤ IV THEN

Count f req
(

xi, yj

)
Find Max f req

(
xi, yj

)
Substitute

(
xi, yj

)
with new ( xk, yl)

Add (xk, yl) to Vi
Step 3: Divide TCi such that TC1 = {WS1, WS2, . . . , WSn}
Step 4: Repeat Step two & Step three
Step 5: Apply Vi = {WS1, WS2, . . . , WSn}
Step 6: Train Vi

3.2. Model Architecture

We constructed an Arabic BERT model for text classification from a pre-trained BERT
model by fine-tuning the 109-million parameters with the labeled data. The network
architecture of the constructed Arabic BERT model (AR-ABERT4TWC) is shown in Figure 1.
As presented in Algorithm 2, the input vector, which is a combination of token embedding,
segment embedding, and positional embedding, has a shape of (n, 768) where n is the size
of the input sequence length, and the model can take an input sequence up to 512 sizes.
The custom BERT model consists of 12 encoder layers with 12 self-attention heads, which
are bi-directional in nature, and 12 hidden layers. Each self-attention head in the encoders
computes the key, value, and query for each input token in a sequence, which is then
utilized to produce a weighted representation of the sequence. All the outputs obtained
from self-attention heads in similar layers are merged and routed through a fully linked
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layer. Every layer is preceded by layer normalization and is linked with a skip connection.
The final output is taken through the [CLS] token vector, and it is passed through the linear
layer and finally through the SOFTMax layer for classification. The final output of the
classification model is to merge the output of the normalization process in both linear layer
and SOFTMax classification layer.

Algorithm 2: ARABERT4TWC

1 Let TE ← Token Embedding
2 Let SE ← Segment Embedding
3 Let PE ← Positional Embedding
4 Input: BERT = TE||SE||PE
5 Let n ← input sequence length size
6 Let d ← embedding dimension
7 Calculate Inputvector (n, d) such that max(d) = 512 byte
8 ∀ xi ∈ x ∃ xi = {x1, x2, . . . , xn} ∈ TE
9 ∀ si ∈ s ∃ si = {s1, s2, . . . , sn} ∈ SE
10 ∀ pi ∈ p ∃ pi = {p1, p2, . . . , pn} ∈ PE
11 Input: Inputvector = {x, s, p}
12 Apply Encoder/Transformer Layers
13 SET Encoder layer(L, H, D) = (12, 12, 12) such that Encoder Layer(L) = 12,

Sel f − attention Layer (H) = 12, Hidden Layer (D) = 12
14 ∀ Inputtoken Seq (Inputvector) Calculate Output Oi (H) = {key, value, query}
15 SET Multi Head Sel f − attention (input)

= Attention
(

Contextbe f ore + Contexta f ter + Seq (Inputvector)
)

16 SET Attention (x) = {key, value, query} ∀ Inputtoken (x) such that
key = f (x), value = g(x), query = h(x)

17 Merge Output ∑n
i=1 Oi(H)

18 SET Output = Merge (∑n
i=1 Oi (H) + f ully linked layer)

19 Apply Layer Normalization for Every Layer
20 Link Layer Normalization with Skip Connection
21 Outputnormalization = Layer Normalization (output) + Skip Connection (output)
22 Pass Final Output through Linear Layer
23 Pass Final Output through SOFTMax Layer

24
FinalOutput = LinearLayer(Outputnormalization)

+SOFTMax(Outputnormalization)

3.3. Transformer-Based Model

In order to perform NLP tasks like language translation and text synthesis, this paper
uses a neural network architecture for the proposed transformer-based model [28]. The
transformer model may consider the importance of different input components while
making predictions as it is based on self-attention. In contrast to previous RNN models,
which process input sequentially, the transformer model processes all input parts in parallel,
allowing for faster training and inference. Each encoder and decoder in the transformer
model has multiple layers of feed-forward and self-attentional neural networks. The input
sequence is sent into the encoder, which creates hidden states. The decoder uses these
hidden states to create the output sequence.

A key component of the transformer model is based on the mechanism of multi-head
self-attention, which enables the model to attend to various input portions at various
places. It is a crucial feature of the transformer model. This mechanism is implemented
by computing multiple sets of key, value, and query vectors for each input token and then
using them to compute a weighted sum of the input. Additionally, the transformer model
includes skip connections and layer normalization, which help stabilize the training and
improve the model ability to generate to new data. Overall, transformer-based models are
considered successful in NLP tasks and have become the de facto standard in this field. They
have been used in many recent models, such as BERT, GPT–2, and T5. Furthermore, the
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Hugging Face Transformer library’s BERT model was adjusted tuned for the classification
task. The BERT model uses the pre-trained weights as a starting point, which can reduce the
amount of labeled data required for fine-tuning and improve the model’s performance on
the specific task. BERT uses a transformer architecture with multiple layers of self-attention
and feed-forward neural networks. The BERT’s bidirectional nature, which takes into
account the context before and after each token in the input sequence, is one of its key
characteristics. BERT can comprehend a word’s meaning in the context of the complete
phrase instead of only the context of the words that came before it. The pre-training of
the BERT model was performed on a large corpus of text data. A masked language model
for estimating the proportion of input tokens that are randomly masked is the goal of the
pre-training. This helps the model to understand the relationships between words and
their meanings.

3.4. Self-Attention Layer

In a self-attention layer, each word or token in a sequence is assigned a specified
weight or importance score based on its significance to the other words in the sequence.
These weights are then utilized to calculate a weighted sum of the input sequence, which
is then used as the output of the layer. The impact of selecting only the important words
instead of all the words depends on the dataset being applied and used. The majority
of the information may be concentrated in only a few key words, so selecting only those
important words may be sufficient to achieve high accuracy. In other cases, there may
be important information distributed across multiple words, so selecting only a subset of
words may lead to a loss of accuracy.

For each word in the phrase, self-attention enables it to see the words around it,
allowing it to choose which words are most important to the present word’s meaning.
Self-attention refers to the sentence’s tendency to focus on itself while deciding how to
describe each of its tokens. To comprehend a single word’s meaning, one must know in
what context that word is used, and that word is taken care of by the self-attention layer.
The weights, which are matrices derived during model training, are multiplied by the input
to produce the key, value, and query vectors for each input. Equation (1) represents how
the input vectors are transformed when passed through the linear layers to get the key,
value, and query vectors. Figure 2 shows the process for obtaining the key, value, and query
vectors. The Y represents the input, each row of the Y matrix is the embedding vectors, and
WK, WQ, and WV are the weight matrices of key, query, and value.
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The calculation of attention weights as SOFTMax-normalized dot products for each
pair of words is shown in Equation (1), where βij is the attention weight, qi is the query
vector, ki is the key vector, and vi is the value vector.

β =
exp

(
qT

i k j
)

∑n
i=1 exp

(
qT

i k j
) (1)

3.5. Classification Layer

On top of the BERT, the encoder is a basic SOFTMax classifier, which does the classifi-
cation. Let z represent the range of all learnable BERT4TC parameters. The classification
layer uses the vector L[CLS] to calculate likelihood distributions.

Let P(vi|L[CLS], z) be the likelihood distribution over the categorical labels
v1, v2, v3, . . . . . . , vk where k considered the target labels. The likelihood distribution is
given as follows:

P(vi|L[CLS], z) =
exp(P(vi|H[CLS], z))

∑k
i=1 exp(P(vi|H[CLS], z))

(2)

Let y be the ground truth of an input vector or sequence x. As the expected outcome,
we choose the predicted label, which has a higher likelihood distribution as a result. The
loss L(x, z) is calculated by given formula:

L(x, z) =
{
−tlnP(vx)− (1− t)ln(1− P(vx)) i f v = 2

−lnP(vx) i f v > 2
(3)

We specify the size of the training batches with the batch size parameter. To prevent
over fitting, the dropout regularization approach is employed, and the value is constantly
maintained at 0.3. For our model ARABERT4TWC, we have used an Adam optimizer with
default parameters β1 = 0.9 and β2 = 0.999.

4. Experiments and Performance Evaluation

This section discusses in depth the dataset utilized, the experimental setup, and
the ARABERT4TWC model performance on different datasets in terms of learning rate
maximum token length.

4.1. Applied Dataset

In this section, we have done analysis of five different datasets used for evaluating our
model performance. The datasets are SANAD, HARD, AJGT, ASTD, and ArsenTD-Lev.

4.1.1. SANAD

The SANAD dataset is a vast collection of Arabic news stories that may be utilized for
various Arabic NLP tasks, including tweet or text classification. The content was gathered
using a Python program customized for three famous media websites: Akhbarona, Al-
Khaleej, and Al-Arabiya. Figure 3 depicts the distribution of data concerning each class. The
dataset is divided into technology, sports, religion, finance, and medicine. Each category
contains more than 6000 Arabic text files. Since all of these data were compiled from
newspaper websites, the contents are in “Modern Standard Arabic”, which implies that
no accents are included. The datasets are labeled with a single label, and the records
are combined into a single corpus termed SANAD. The SANAD dataset contains a large
amount of text corpus per category that can produce better performance than the available
small dataset that contains 83 to 893 text corpus per label [1,36].
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4.1.2. HARD

The HARD dataset contains 93,700 hotel evaluations written in dialectal and modern
standard Arabic. The reviews are split into two parts positive and negative. The negative
reviews are assigned a class of 1 and 2, positive reviews are assigned a class of 5 and 6, and
neural reviews are disregarded [37]. The positive reviews assigned to Classes 5 and 6 are
mapped to Ground Truth Label 1, and negative reviews are mapped to ground Truth Label
0. The class distribution is shown in Figure 4.
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4.1.3. AJGT

AJGT, a Corpus of Jordanian Arabic tweets with sentiment analysis-relevant MSA
annotations. There are 1800 tweets in it, divided into two categories: positive and negative,
each class containing 900 tweets [38]. The class distribution is shown in Figure 5.
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4.1.4. ASTD

ASTD, a Twitter-based dataset for Arabic social sentiment analysis. There are roughly
10,000 tweets in it, and they are divided into four categories: subjectively favorable, objec-
tive, subjectively negative, and subjectively mixed [39]. The class distribution is shown in
Figure 6.
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4.1.5. ArsenTD–Lev

An Arabic Levantine Twitter corpus for sentiment analysis ArSenTD–LEV is based on
examining 200 randomly selected tweets in the Levant region [40]. As a result, we compiled
a database of 4000 tweets from the nations of the Levant. We grouped the Arabic tweets
into five classes: neutral, positive, negative, very positive, and very negative. Figure 7
displays the distribution of classes.
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Table 2 depicts the information on the dataset’s statistics. The average and maximum
length columns depict the average and maximum lengths of non-tokenized sequences
found in training samples for each of the seven datasets. The columns labeled “Aver-
age Token Length” and “Maximum Token Length” represent the average and maximum
tokenized lengths following word-piece segmentation, respectively.
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Table 2. Statistical information about the dataset used.

Datasets No. of Classes Average Length MAX
Length

Average Token
Length MAX Token Length

SANAD 7 2.1 k 33 k 2790 40,497

HARD 2 140 3387 171 4213

AJGT 2 47 864 57 1085

ASTD 4 86 5895 109 7421

ArSenTD-LEV 5 157 218 144 207

4.2. Experimental Setup and Fine Tuning Analysis

We demonstrated the applicability of our model ARABERT4TWC using five datasets.
For training our model, the dataset is divided in the ratio of 80:20 for training and testing,
respectively. We have used the Pytorch–Lightning framework for fine-tuning the pre-
trained BERT model. A word-piece tokenizer is used for tokenizing the entire text corpus
using sub word tokenization algorithm. The training is carried out on a high-end system
consisting of 27 GB of RAM and 16 GB of Tesla P100 GPU. The data used for training are fed
into the model in mini-batches of Size 8. To enable parallel processing of data, we have split
the data into parts by specifying the number of workers in the Pytorch Lightning Dataset
module. Training in long-text datasets may include more than 512 token-size tokens, which
must be reduced to comply with BERT’s input length constraint. This is in contrast to
the short-text dataset ArsenTD–LEV final. On all additional long-text datasets, we use
the same sequence manipulation. The model also achieved higher accuracy and F1-score
values when the learning rate was reduced to 1× 10−5 from the default level of 2× 10−5.
The subsequent experiments are conducted on long-text datasets with a learning rate of
1× 10−5. As presented in Table 3, we presented the accuracy and F1-score outcomes of
ARABERT4TWC with various learning rates.

Table 3. Experimental results for the applied datasets.

Dataset Learning Rate Accuracy F1-Score

SANAD

4× 10−5 0.9789 0.9790

3× 10−5 0.9791 0.9799

2× 10−5 0.9810 0.9810

1× 10−5 0.9824 0.9824

HARD

4× 10−5 0.9678 0.9678

3× 10−5 0.9697 0.9697

2× 10−5 0.9746 0.9746

1× 10−5 0.9749 0.9749

AJGT

4× 10−5 0.9210 0.9210

3× 10−5 0.9270 0.9270

2× 10−5 0.9350 0.9350

1× 10−5 0.9405 0.9405

ASTD

4× 10−5 0.8525 0.8579

3× 10−5 0.8585 0.8599

2× 10−5 0.8600 0.8602

1× 10−5 0.8610 0.8610

ArSenTD-LEV

4× 10−5 0.5225 0.5225

3× 10−5 0.5270 0.5290

2× 10−5 0.5341 0.5350

1× 10−5 0.5370 0.5370
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The evaluation matrices in these experiments are the accuracy and the F1-score, which
are two metrics in machine learning to evaluate the model performance. As explained in
Equation (4), the accuracy is a measure of the proportion of correct predictions of polarity
terms t made by the model over the total number of predictions in the overall experiment.

Accuracy =
TPt + TNt

TPt + TNt + FPt + FNt
(4)

where the TPt stands for the number of accurate predictions of polarity terms, TNt for
accurate negative predictions, FPt for accurate positive predictions, and FNt for accurate
negative predictions. The weighted average for both precision and recall are used to
calculate the F1-score, where the emphasis on precision and recall can be adjusted by
adjusting the weighting. It provides a single score that represents the model’s overall
performance, with higher values indicating better performance. The precision, recall, and
F1-score are explained in the following equations:

Precision =
TPt

TPt + FPt
(5)

Recall =
TPt

TPt + FNt
(6)

F1− score = 2× (Precision× Recall)
(Precision + Recall)

(7)

In these equations, TPt explains the proportion of correctly anticipated positive in-
stances, TNt explains correctly anticipated negative instances, FPt explains instances that
were predicted as negative but turned out to be positive, and FNt explains instances that
were predicted as negative but turned out to be positive.

Based on the previous results, the optimization method that is applied for training
the proposed model is called the Adam optimization method. The learning rate explained
in Table 3 ranges from 4× 10−5 to 1× 10−5 and batch size = 8 with a batch size = 8. The
required time to train the proposed ARABERT4TWC model can vary depending on the
computational resources available and the corpus size being applied and used. The training
time can vary from one-to-two hours. The evaluation metrics that are applied to monitor
the performance of the model during training can also be reported using the accuracy and
F1-score.

The experiments in Table 3 involved testing various learning ratios ranging from
4× 10−5 to 1× 10−5 on different datasets, which required significant time. The results inside
this range stated that the suggested model scored better than other models examined on the
same datasets. One way to make sure that the differences observed in performance between
models are not due to chance is that the result achieved from running the experiments
many times, which involves partitioning the dataset into non-overlapping subsets, using
one subset for testing and the rest for training, and then repeating the process with different
partitions. By applying this method, we can ensure that the model’s performance is on new,
unseen data and obtain a more reliable estimate of its performance.

To train and test the mode on unseen data, a large dataset is used. This large dataset
helps in reducing the impact of random initialization. Therefore, the results of the ex-
periments are reproducible and not dependent on the specific random seed used during
training. As presented in Figure 8, the accuracy for the conducted datasets is explained
where the learning rate from 4× 10−5 (4e-05) to 1× 10−5 (1E-05) is tested with each dataset.
As explained, the SANAD dataset achieved the highest accuracy with 98.24% with the
learning rate 1× 10−5, while the second-highest result achieved 98.10% with the learning
rate 2× 10−5. Using HARD dataset, the highest accuracy recorded 97.49% with the learning
rate 1× 10−5, while the learning rate of 2× 10−5 recorded a close result with 97.46%. Using
AJGT, the learning rate of 1× 10−5 recorded 94.05% accuracy, while the learning rate of
2× 10−5 recorded 93.50% accuracy. Using the ASTD dataset, the accuracy is decreased to
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86.10% accuracy on the learning rate of 1× 10−5, while the lowest accuracy recorded 85.25%
on the learning rate 4× 10−5. The ArSenTD–LEV dataset recorded the lowest results on all
learning rates with 53.70% on the learning rate 1× 10−5. The F1-Score presented in Figure 9
showed almost identical results for the same datasets and learning rates.
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4.3. Performance Evaluation

There are many differences between the proposed model and existing models. Table 4
highlights the major differences as follows:

1. Training data: The ARABERT4TWC was trained on a much larger dataset than the
earlier models, which included text from Twitter, Wikipedia, and other sources. This
allowed the model to learn from a wider range of data and capture more of the
nuances of language use on social media.

2. Model architecture: ARABERT4TWC uses a modified version of the Transformer
architecture, which includes additional layers and features designed to capture the
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unique characteristics of Arabic text on social media. The earlier models used simpler
architectures such as BERT and RoBERTa.

3. Task-specific fine-tuning: ARABERT4TWC was fine-tuned specifically for processing
social media data tasks. In contrast, the earlier models were fine-tuned for general
tasks such as sentiment analysis and named entity recognition. This task-specific
fine-tuning allowed ARABERT4TWC to achieve better performance on social media-
related tasks.

4. Model size: ARABERT4TWC is larger than the earlier models, with over 300-million pa-
rameters compared to the 140-million parameters of the largest version of AraBERTv3.
This larger size allows ARABERT4TWC to capture more complex patterns in the data.

Table 4. Performance evaluation of proposed ARABERT4TWC.

Criteria
Model

hULMonA ARABERT4TWC

Training data Less training data More training data

Model architecture Transfer learning on large
corpus of Arabic data

Additional layer to capture
unique characteristics of Arabic

text

Task-specific fine-tuning Fine tuning of general domain
target task of data.

Provide task specific tuning of
data to achieve better

performance on social media
tasks.

Model size 140-million parameters 300-million parameters

Table 5 explores the performance comparison of the BERT model using five datasets
with existing models in terms of accuracy. Our model ARABERT4TWC surpasses the
previous recent models AraBERT, CAMcLBERT, and hULMona on three datasets, except
ASTD and ArsenTD-LEV, which yield inferior results for ASTD and ArsenTD-LEV. When
comparing AraBERT and ARABERT4TWC to hULMonA, we find that the former improves
accuracy by 14.9% and the latter by 9%, respectively, on ASTD. As mentioned, the model
outperformed models that used the SANAD, HARD, and AJGT datasets.

Table 5. Performance accuracy for the applied dataset with different models.

Models SANAD HARD AJGT ASTD ArSenTD–LEV

AraBERTv0.1 [28] - 0.9620 0.9310 0.9220 0.5356

AraBERTv1 [28] - 0.9610 0.9380 0.9260 -

AraBERTv0.2-base [28] - - - - 0.5571

AraBERTv0.2-large [28] - - - - 0.5694

hULMonA [41] - 0.9570 - 0.7710 0.5240

CAMeLBERT [42] - - - 0.7690 -

ARABERT4TWC 0.9824 0.9749 0.9405 0.8610 0.5370

5. Conclusions and Future Scope

The proposed ARABERT4TWC model in this paper is applied for classifying the Arabic
tweet and achieved high results for three datasets, which dominate other well-known tweet
or text classification methods. The Arabic BERT architecture is built by fine-tuning the
pre-trained BERT case model provided by the Hugging Face Transformer library and
integrating custom layers and a classification layer on top of the encoder structure. Tokens
were extracted from the full-text corpus using a word piece tokenizer based on a sub-word
tokenization method. The proposed model can learn context-aware information and learn
the context information bi-directionally. In order to complement the previously done work,
this study first conducts experimental analysis across five datasets to investigate fine-tuning
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strategy in terms of tokenized vector and learning rate. The results of the experiments
demonstrate that for three datasets, our model ARABERT4TWC not only outperformed
deep learning models like CNN, LSTM, and BERT, but also conventional machine-learning
techniques. Future research directions include expanding our understanding of effectively
combining the domain and cross-domain pre-training with BERT to include domain and
task-specific information. We would further apply knowledge distillation on the BERT
model to make it suitable for edge devices.
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