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Abstract: Sleep stage classification is of great importance in sleep analysis, which provides infor-
mation for the diagnosis and monitoring of sleep-related conditions. To accurately analyze sleep
structure under comfortable conditions, many studies have applied deep learning to sleep staging
based on single-lead electrocardiograms (ECGs). However, there is still great room for improvement
in inter-subject classification. In this paper, we propose an end-to-end, multi-scale, subject-adaptive
network that improves the performance of the model according to the model architecture, training
method, and loss calculation. In our investigation, a multi-scale residual feature encoder extracted
various details to support the feature extraction of single-lead ECGs in different situations. After tak-
ing the domain shift caused by individual differences and acquisition conditions into consideration,
we introduced a domain-aligning layer to confuse the domain. Moreover, to enhance the performance
of the model, the multi-class focal loss was used to reduce the negative impact of class imbalance
on the learning of the model, and the loss of sequence prediction was added to the classification
task to assist the model in judging sleep stages. The model was evaluated on the public test datasets
SHHS2, SHHS1, and MESA, and we obtained mean accuracies (Kappa) of 0.849 (0.837), 0.827 (0.790),
and 0.868 (0.840) for awake/light sleep/deep sleep/REM stage classification, which confirms that
this is an improved solution compared to the baseline. The model also performed outstandingly
in cross-dataset testing. Hence, this article makes valuable contributions toward improving the
reliability of sleep staging.

Keywords: multi-scale inter-subject network; sleep staging; single-lead ECG

1. Introduction
1.1. Background

Sleep status is an important indicator for evaluating human health. During deep sleep,
the body can recover through metabolism, which is the main way in which the human body
eliminates physical fatigue. Sleep disorders are closely related to many health problems [1],
such as memory loss, a lack of energy, and low immunity. Therefore, sleep monitoring and
evaluation are of great value to solve sleep-related conditions in medical fields [2].

Human sleep is mainly divided into three stages, the awake stage, the rapid eye
movement stage (REM), and the non-rapid eye movement stage (NREM), when considered
according to the differences in electroencephalograms (EEGs) [3]. Among them, the NREM
stage can be divided into four stages, of which stage 1 and stage 2 are light sleep, while
stage 3 and stage 4 are deep sleep. A sleep stage is inferred from the analysis of 30 s
of data [4]. Traditional sleep staging mainly uses EEGs, electrooculograms (EOGs), and
electromyography (EMG) for analysis. This is termed the polysomnography method (PSG),
which is complicated and costly. During the test, multiple electrodes need to be attached to
subjects, which causes discomfort [5,6]. Furthermore, although sleep should be monitored
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in a free-living environment and in a non-obtrusive way to ensure that the sleep captured
is as representative of typical sleep as possible, in order to understand the role of sleep
in health and illness [7], generally, PSG can only be conducted in a specific laboratory
or hospital. In recent years, there has been a significant expansion in the development
and use of low-cost [8,9], wearable sleep detection systems to study sleep architectures in
free-living conditions among individuals at a population level [10–12]. Electrocardiograms
(ECGs) are one of the most commonly used diagnostic tools in medicine and healthcare,
and sleep detection systems allow individuals to be monitored by ECG signals from a
wearable device, which has little effect on sleep monitoring under comfortable conditions.
This potential to obtain sleep information from a single-lead ECG is of great significance.

1.2. Related Work

With the development of deep learning, there have been many studies on sleep staging
based on ECGs [13]. Wei et al. (2018) extracted features of ECGs, which were input into
a four-layer DNN model to distinguish the awake, REM, and NREM sleep stages. The
results showed an accuracy of 77%, and Cohen’s Kappa coefficient was around 0.56 on the
MIT-BIH Polysomnographic Database [14]. Qiao Li et al. (2018) combined convolutional
neural networks (CNNs) and a support vector machine to improve the performance of sleep
staging in terms of awake, light sleep, deep sleep, and REM based on cardiopulmonary
coupling (CRC) spectrograms. The work was ten-fold cross-validated on the MIT-BIH
Polysomnographic Database and achieved an accuracy of 75.4%, while Cohen’s Kappa
coefficient was 0.54 [15]. Sun H. et al. (2019) developed a CNN in combination with a
long short-term memory (LSTM) recurrent neural network to stage sleep from an ECG and
respiratory signals. Their networks were trained and evaluated on a large clinical dataset
and achieved the best performance compared to other models for staging in terms of five
sleep stages (Cohen’s Kappa 0.585, 95% CI ± 0.017) and discriminating awake vs. REM vs.
NREM (Cohen’s Kappa 0.760, 95% CI ± 0.019) [16]. Radha M et al. (2019) used LSTM to
classify the sleep stages into four classes (wake, REM, N1/N2, and N3) based on heart rate
variability (HRV) derived from an ECG. The Cohen’s Kappa for the model was 0.61 ± 0.15,
and the accuracy was 77.00 ± 8.90% across the Siesta database [17]. Sridhar N et al. (2020)
achieved an accuracy of 0.77 and an overall Kappa of 0.66 for four-sleep-stage classification
using a deep neural network based on the instantaneous heart rate (IHR) time series, as
extracted from a single-lead ECG [18].

Generally, deep learning can automatically classify sleep based on manual features
and ECG-derived signals into between two and four stages. Although the current methods
have achieved good performance, there is still great room for improvement in inter-subject
classification. An algorithm’s generalization is restricted in inter-subject sleep staging [19]
since ECG results are subject to individual differences, as charted in the field of identity
recognition [20,21]. Additionally, both imbalances between the awake, REM, light sleep,
and deep sleep classes during training and the limited amount of information that can be
obtained from single-lead ECGs negatively impact classification.

1.3. Contributions

Extending on our previous work [22], in this article, to extract more detailed informa-
tion from a single-lead ECG signal and thereby improve its sleep-staging performance, we
developed a domain-based adaptive classification model based on a multi-scale residual
network. A branch structure was added to the residual module of the model to construct
an extraction module and thus achieve the multi-scale extraction and fusion of spatial
features through detailed information gained from a single-lead ECG. To solve the class
imbalance, we applied multi-class focal loss to learn hard samples by the factor, and we
applied different weights for each of the classes. Meanwhile, the loss of sequence prediction
was used as additional supervised information according to the relevance of the state
transition in the sleep structure. The main contributions of this work are as follows:
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(1) An end-to-end multi-scale adaptive network is presented to classify sleep stages into
four classes in an inter-subject mode based on a single-lead ECG.

(2) The multi-class focal loss was combined with the loss of sequence prediction to
improve the performance of sleep staging.

(3) The proposed method was evaluated on public datasets and achieves state-of-the-art
performance in terms of accuracy and Cohen’s Kappa for inter-subject sleep staging.

The rest of this article is organized as follows: Section 2 introduces the method of
the multi-scale residual adaptive network proposed in this paper. Section 3 describes the
public dataset used in this paper and the results of the experiments. Section 4 discusses the
performance of the proposed method in the cross-dataset mode and the comparison results
of different losses. Section 5 provides the conclusions of this paper.

2. Materials and Methods

In essence, with the given training set S = {x(i)s , y(i)s }i = 1,...,ns
and test set

T = {x(j)
t , y(j)

t }j = 1,...,nt
, which are sampled from joint distributions Ds = (Xs, Ys)

and Dt = (Xt, Yt), respectively, the goal is to predict the labels Yt of the test set when
Ds 6= Dt, which leads to the poor generalization of the model. ns and nt are the numbers of
sequences in the training set and test set. To improve the performance of classification, our
proposed method, a multi-scale, inter-subject network, tries to extract multi-scale, detailed
information for feature representation and to transform the feature space into a new one
where Ds ≈ Dt through mapping function ϕ(·) to reduce domain shift. In addition,
both S and T have the problem of class imbalance. The process of domain adaptation
with multi-class focal loss is to learn ‘hard’ samples. To improve the predictive ability
of the model, we also introduce historical information Sti − 1 = {x(i)s,ti − 1, y(i)s, ti}i = 1,...,ns

,
which uses the previous 30 s sequence to predict the current state as a type of additional
supervision information, where ti denotes the current stage. An overview of the proposed
method to optimize the above objectives is shown in Figure 1, which contains three steps.
The process can be summarized as follows:
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Figure 1. An overview of our proposed domain-based, adaptive, multi-scale network for sleep stage 

classification. First, the model is pre-trained on the training set. Classifier 1 makes predictions based 

on the current sequence, while Classifier 2 makes predictions based on the previous 30 s sequence. 

Next, the domain-aligning layer is utilized to adjust the high-level part of the feature encoder such 

Figure 1. An overview of our proposed domain-based, adaptive, multi-scale network for sleep stage
classification. First, the model is pre-trained on the training set. Classifier 1 makes predictions based
on the current sequence, while Classifier 2 makes predictions based on the previous 30 s sequence.
Next, the domain-aligning layer is utilized to adjust the high-level part of the feature encoder such
that the domain gap between the training set and test set can be reduced during the process of
classification. Finally, the test dataset is mapped with the adjusted feature encoder to the shared
feature space and classified by Classifier 1. Dashed lines indicate fixed network parameters. The blue
area indicates the part that needs to be adjusted.

Pre-training: The multi-scale residual feature encoder is pre-trained by the training set
to be fine-tuned in the next step for domain adaptation. There are two classifiers combined
to predict the sleep stage. One is updated by the multi-class focal loss to solve the class
imbalance, and the other is updated by the supervised information from the previous 30 s
ECG to predict the current sleep stage.

Domain adaptation (DA): Maximum mean discrepancy (MMD) is introduced to the
domain aligning layer to make the feature distributions of the training set and the test set
confused during cross-iterative training.
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Testing: The adjusted feature encoder and Classifier 1 are frozen to predict the sleep
stages of the test set. The model is evaluated by the accuracy and Cohen’s Kappa metric (CK).

2.1. Pre-Training

For pre-training, the proposed model is mainly built on a feature encoder and two clas-
sifiers. The feature encoder contains three multi-scale residual blocks and one bidirectional
gated recurrent unit (GRU) layer whose cell size is set to 64 [23,24].

The multi-scale residual block proposed in the paper contains four branches of con-
volutional processing, which includes convolution layers followed by a LeakyRelu [25]
activation layer to transform weighted values non-linearly, as shown in Figure 2. The block
uses different sizes of convolutional kernels to extract the spatial features of single-lead
ECG whose kernel sizes are 1, 5, 11, and 21, respectively. Among them, the convolutional
kernel with a size of 1 aims to increase or decrease the dimensions of the input signal to
maintain the same number of channels as other convolutional branches. The multi-scale
residual module can be expressed as

Hm = h(Hm − 1) + ∑ks F′ks@dim(Hm − 1, Wm − 1), (1)

h(Hm − 1) = W ′m − 1Hm − 1. (2)

In the formula, Hm − 1 and Hm are the input and output of the m-th multi-scale
residual block, respectively; h is the dimension transformation function of the input signal;
and W ′m − 1 is the weight of the kernel with a size of 1. F′ks@dim is the residual mapping
where ks represents the different scales of residual branches, and dim is the number of
kernel channels.
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Figure 2. The architecture of the pre-training model. Xti and Xti − 1 represent the current ECG
sequence and the previous 30 s ECG sequence, respectively. Yti is the prediction of the current 30
s sleep stage. “X3” means 3 multi-scale residual blocks. The block is described in the dashed box,
where “5@dim” in the convolution layer indicates kernel size 5 and “dim” kernels where “dim” is
different for different blocks.

For a deeper multi-scale residual block, l can be expressed as

Hl = W ′l − 1Hl − 1 + ∑ks F′ks@dim(Hl − 1, Wl − 1), (3)

Hl = ∏L − 1
i = m W ′i Hm + ∑L − 2

j = m(W
′
j + 1 ∑ks F′ks@dim

(
Hj, Wj

)
) + ∑ks F′ks@dim(Hl − 1, Wl − 1). (4)

For the deeper layer l in the multi-scale residual network, the shallow information
and the multi-scale residual information can be directly transferred to the deeper layers to
provide more detailed features.
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For the residual networks [26] that have different convolutional scales, taking MESA
as an example, the feature map of the first convolutional layer whose channel is set to 12
in the first residual block is shown in Figure 3. The details extracted by the convolutional
kernels with scales of 5, 11, and 21 are obviously different [27]. The kernel with a scale of
5 pays more attention to high-frequency information, while the kernel with a scale of 21
pays more attention to low-frequency information. The multi-scale residual block integrates
the information at these different scales through the residual structure, which not only
provides more spatial information for classification but also increases the robustness of the
changes in ECG.
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Figure 3. The MESA’s visual feature map of the first convolutional layer for the different residual
modules whose kernel size is 5 samples, 11 samples, and 21 samples, respectively. (a) A random
ECG sequence for MESA, (b) feature maps extracted by residual modules whose kernel size is 5,
(c) feature maps extracted by residual modules whose kernel size is 11, and (d) feature maps extracted
by residual modules whose kernel size is 21.

After this, the features that are extracted by the feature encoder are flattened and sent
to the first classifier, which contains a dense layer to output the probability of classes via the
softmax function. An additional branch of the model seeks to use the previous 30 s ECG to
predict the current sleep stage. The information from the previous stage is classified by the
second classifier, which includes a reshape layer, an LSTM layer, and a dense layer. The
units of the LSTM are set to 128.

However, there is the problem of class imbalance, as the different sleep stages occupy
different proportions in the structure of sleep throughout the night [28]. A random sample
of 100 sleep records from a related dataset was used to count the number of segments in
each sleep stage, as shown in Table 1. The sample sizes for the deep sleep stage and REM
are larger compared to the wake and light sleep stages.

Table 1. The sequence number of each class of 100 random sleep records in each public dataset.

SHHS2 SHHS1 MESA

Number of
Segments

Percentage of
Categories

Number of
Segments

Percentage of
Categories

Number of
Segments

Percentage of
Categories

Wake 54,137 42.4% 41,490 42.3% 38,966 44.0%
Light Sleep 45,551 35.7% 32,099 32.7% 34,448 38.9%
Deep Sleep 15,472 12.1% 12,810 13.0% 9460 10.7%

REM 12,531 9.8% 11,753 12.0% 5706 6.4%

To avoid the model overfitting the head classes that have a large number of samples
and ignoring the tail classes, the multi-class focal loss is used to balance the contributions
of different classes. The loss function formula is as follows:

L1y = − 1
n ∑x ∑C

i = 1 αi(1 − p(x))γq(x) log p(x). (5)

The model is supervised by the labels q and prediction results p of samples x whose
batch size is set to n, and the number of classes is C. The weight αi of class i is set based on
the proportion of the corresponding class to the total samples. According to the work of
Lin et al. (2017) [29], the factor γ is set to 2 in this paper.
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The transition of sleep states is correlated with timing [30]. For example, the wake
stage can enter the REM stage or the NREM light sleep stage but cannot transfer to the
NREM deep sleep stage directly. Inspired by this, in the process of supervised sleep stage
classification, time-series historical information is added as additional information. We
used historical 30 s ECG data to predict the sleep stage of the current period via LSTM. The
output is then activated through the fully connected layer, the value of which is optimized
by the cross-entropy loss:

L2y = − 1
n ∑x ∑C

i = 1 q(x) log p(x). (6)

Finally, the total loss of the pre-trained model is the combination of L1y and L2y with a
weight ρ, which is optimized by the supervised information:

Lpt = L1y + ρL2y. (7)

2.2. Domain Adaptation

Due to individual differences, the distribution gap among subjects leads to the poor
generalization ability of the pre-training model on the test set. In this part, we combine
the pre-trained feature encoder, classifiers, and domain alignment layer to improve the
performance of the model during testing, as shown in Figure 4.
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For the adjustment of the feature encoder, the last two multi-scale residual blocks
are fine-tuned to adjust to a new domain, which not only solves the problem of domain
shift but also reduces the number of parameters for fine-tuning. For the domain alignment
layer, the MMD is used to measure the distribution gap between the two domains [22]. The
output of MMD is convergent as the Ld loss of the domain alignment layer [31,32]:

Ld = MMD2(F, Xs, Xt) (8)

where F is the set of mapping functions. MMD between the distribution u and the distribu-
tion v is as follows:

MMD[u, v] : = sup f∈F(E[g(Xs)] − E[g(Xt)]) (9)
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where the distribution is mapped to the reproducing kernel Hilbert space (RKHS) H by the
mapping function g. For g ∈ H,

E[g(Xs)] = 〈g, µu〉H, E[g(Xt)] = 〈g, µv〉H. (10)

µu and µv are unbiased estimates of the mean.
The details of implementation are summarized in Algorithm 1. Firstly, we freeze the

domain alignment layer and update the feature encoder and classifiers by minimizing total
loss L, which is defined as follows:

L = L1y + σL2y + βLd. (11)

σ, β are the weights among the three types of loss.
Then, the domain alignment layer is updated by minimizing Ld while the feature

encoder and classifiers are frozen. The model weights are gradually adjusted in the cross-
iterative process to learn the inter-subject sleep staging task.

Algorithm 1: The Domain Adaptation Supervised Training Process.

Input: Labeled training set Sti = {x(i)s,ti, y(i)s,ti}i = 1,...,ns
at time ti, labeled training set

Sti − 1 = {x(i)s,ti − 1, y(i)s,ti}i = 1,...,ns
at time ti − 1 to predict sleep stages at time ti,

unlabeled test set Tti = {x(j)
t,ti}j = 1,...,nt

, feature encoder G f with parameters θ f ,

classifier G1y with parameters θ1y, classifier G2y with parameters θ2y, domain
aligning layer Gd with parameters θd, learning rate µ, and batch size M.

for the number of training iterations do
Sample a mini-batch of training set

sti = {x(i)s,ti, y(i)s,ti}i = 1,...,M
, sti − 1 = {x(i)s,ti − 1, y(i)s,ti − 1}i = 1,...,M

, t = {x(j)
t }j = 1,...,M.

Concatenate sti and tti as Bst,ti = {(x(i)s,ti, y(i)s,ti), (x(i)t,ti)}i = 1,...,M,j = 1,...,M
, sample

weights ωst = {(1, 1, . . . , 1)M, (0, 0, . . . , 0)M}.
Split embedding vector Vst,ti = {v(i)s,ti, v(i)t,ti}i = 1,...,M,j = 1,...,M

to

Vs,ti = {v(i)s,ti}i = 1,...,M
and Vt,ti = {v(j)

t,ti}j = 1,...,M
, which is generated by G f when

Bst,ti is input into the feature encoder.
Freeze Gd, update G f , G1y and G2y:
L← L1y

(
ωstBst,ti, ys,ti

)
+ σL2y

(
sti − 1, ys,ti

)
+ βLd(Vs, Vt)

θ f ← θ f − µ f∇L
(

θ f

)
θ1y ← θ1y − µ1y∇L

(
θ1y

)
θ2y ← θ2y − µ2y∇L

(
θ2y

)
Freeze G f , G1y and G2y, update Gd:
Ld ← Ld(Vs, Vt)
θd ← θd − µd∇Ld(θd)

end for

3. Experiments
3.1. Dataset and Preprocessing

In this paper, we used the Sleep Heart Health Study Visit (SHHS1, SHHS2) [33,34], the
Multi-Ethnic Study of Atherosclerosis (MESA) [35,36], and the MIT-BIH Polysomnographic
Database (SLPDB) [37,38] for training and testing, which involve subjects with coronary
heart disease, sleep-disordered breathing, and other diseases. Due to the different sampling
rates among datasets, the single-lead ECG was resampled to a target sample rate, which
was set to 250 Hz. Considering that the full datasets are too large, one hundred subjects
were sampled randomly from each dataset every time according to the setting in [39], of
which seventy subjects were used for training and the rest were used for testing. The results
are the average of 10 runs for 100 subjects that were sampled randomly from the datasets
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each time. The model with an initial learning rate of 0.001 was trained on the batch of size
128 and evaluated 10 times.

3.2. Results

We tested different deep learning models in two modes, namely, inner-subject and
inter-subject, to verify the domain differences in subjects. Inner-subject mode means that
the dataset is divided into the training set and the test set according to the samples. This
means that the samples in the test set and the samples in the training set may come from
the same subject. Inter-subject mode means that the dataset is divided into the training
set and the test set according to the subjects—that is, the samples in the test set cannot be
from the same person as the samples in the training set. Table 2 shows the comparison
results of three different feature encoders under the two types of modes on three datasets,
with a CNN block with bidirectional GRU (Bi-GRU), the residual module with Bi-GRU,
and the multi-scale residual model with Bi-GRU. The result shows that the performance of
different models on the training set tends to be the same as the performance on the test set
under the inner-subject mode. Specifically, the average accuracy and the average Kappa
on the test set of the three datasets are at the same level as the training set. However, in
the inter-subject mode, the performance on the training set and the test set under different
models is significantly different. Specifically, the evaluation results are reduced on the test
set. Compared with the training set, the average rate dropped by 15%, and the average
Kappa dropped by 0.25. As shown in Figure 5, the overall features of the test set before DA
are different compared with the overall features of the training set, which is reflected in the
features’ confusion among classes before DA, so this causes the classifier to not distinguish
the classes well.

Table 2. The accuracy and Kappa of sleep staging on datasets in inner-subject and inter-subject mode.

CNN Block + Bi-GRU Residual Module + Bi-GRU Multi-Scale Residual Module
(Proposed) + Bi-GRU

Inner-Subject Inter-Subject Inner-Subject Inter-Subject Inner-Subject Inter-Subject

SHHS2
Train 71.7% (0.62) 70.8% (0.58) 72.3% (0.60) 71.8% (0.63) 73.9% (0.67) 72.4% (0.67)
Test 70.6% (0.60) 56.3% (0.30) 71.2% (0.58) 54.7% (0.35) 72.2% (0.64) 54.1% (0.39)

SHHS1
Train 71.0% (0.59) 66.9% (0.55) 67.6% (0.47) 65.5% (0.50) 68.3% (0.57) 70.9% (0.62)
Test 68.9% (0.57) 49.6% (0.28) 66.1% (0.45) 50.3% (0.26) 66.3% (0.54) 47.4% (0.26)

MESA
Train 75.6% (0.59) 75.2% (0.58) 78.9% (0.68) 71.5% (0.55) 76.9% (0.62) 76.3% (0.62)
Test 74.4% (0.58) 64.2% (0.36) 75.7% (0.63) 65.9% (0.39) 76.0% (0.60) 63.3% (0.38)

(Results include the mean of the accuracy and the mean of Cohen’s Kappa).

The comparison results of the multi-scale residual module with Bi-GRU proposed in
this paper on the test sets of the three datasets before and after introducing DA are shown in
Table 3. The result shows that there is a significant improvement in the generalization of the
model through fine-tuning and DA. Taking SHHS2 as an example, the overall distribution
of the test set after DA tends to reflect the overall distribution of the training set, and
the classes are more distinguishable, as shown in Figure 5. The domain loss combined
with the multi-class focal loss could solve the problem of data imbalance. Meanwhile, the
distribution of inter-class features is more discriminative, and the distribution of intra-class
features is more concentrated. We compare the method proposed in the paper with other
methods referring to the review of sleep staging based on ECGs [40,41]. The results are
shown in Table 4. The proposed method achieves a state-of-the-art solution for sleep
staging, which is only sensed through ECG signals. In particular, the proposed method
shows a great improvement in the precision of REM and deep sleep compared with other
methods. Moreover, the performance of the proposed multi-scale residual module also
exceeds that of other feature encoder structures, as shown in Table 5. From the performance
of the three datasets on the three different residual module models, the test set of SHHS2
obtains the best evaluation of the residual model with a kernel size of 21, and SHHS1 and
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MESA obtain the best evaluation of the residual model with a kernel size of 11. It can be
seen that ECGs collected in different environments behave differently under different scales
of convolution kernels, whose feature maps are shown in Figure 3. The multi-scale residual
network can combine detailed information at multiple scales to improve the performance
and robustness of the model.
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Table 3. Results of sleep stage classification on the test sets.

SHHS2 SHHS1 MESA

Before DA After DA Before DA After DA Before DA After DA

Accuracy 0.522 ± 0.042 0.849 ± 0.027 0.499 ± 0.037 0.827 ± 0.031 0.623 ± 0.029 0.868 ± 0.030

Kappa 0.277 ± 0.068 0.837 ± 0.039 0.267 ± 0.039 0.790 ± 0.048 0.390 ± 0.043 0.840 ± 0.047

Table 4. Comparison with other sleep stage classification approaches based on ECG.

Approaches Data Source Sleep Stages Accuracy Kappa
Precision of Each Stage

Wake REM Light Deep

Sridhar N et al. (2020) [18] SHHS Wake–REM–
Light–Deep

77.3% 0.66 80% 81% 82% 49%
MESA 80% 0.69 – – – –

Li Q. et al. (2021) [42] SHHS Wake–REM–
Light–Deep 65.9% 0.47 73.1% 38.6% 83.6% 12.6%

Convolutional Adaptive
Networks [22]

SHHS2 Wake–REM–
Light–Deep

78.7% 0.75 82.4% 58.1% 80.6% 57.8%
SHHS1 74.8% 0.67 82.1% 53.3% 81.3% 58.6%
MESA 80.6% 0.70 90.0% 64.3% 86.6% 44.0%

Multi-Scale Residual
Adaptive Network

(proposed)

SHHS2 Wake–REM–
Light–Deep

84.9% 0.84 91.1% 96.2% 79.0% 80.6%
SHHS1 82.7% 0.79 87.2% 83.9% 79.7% 81.1%
MESA 86.8% 0.84 87.5% 81.4% 85.0% 66.6%
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Table 5. Comparison of sleep staging with different feature extractors.

CNN Block
Module

Residual Module
(Kernel Size: 5)

Residual Module
(Kernel Size: 11)

Residual Module
(Kernel Size: 21)

Multi-Scale Residual
Module (Proposed)

SHHS2 77.5% (0.72) 78.6% (0.73) 79.4% (0.73) 85.4% (0.84) 84.9% (0.84)
SHHS1 72.1% (0.61) 67.4% (0.56) 77.5% (0.76) 76.5% (0.71) 82.7% (0.79)
MESA 78.7% (0.69) 81.4% (0.76) 82.9% (0.77) 80.7% (0.72) 86.8% (0.84)

(Results include the mean of the accuracy and the Cohen’s Kappa).

For the performance of the model on each class, as shown in Figure 6, the confusion
matrix on the three test sets shows that introducing the domain alignment improves the
performance of the model on each class, especially in terms of deep sleep and REM. In
addition, the sensitivity of the four classes (wake, REM, light sleep, deep sleep) on SHHS2,
SHHS1, and MESA before DA is (77.4%, 14.5%, 50.3%, 13.2%), (84.8%, 20.5%, 49.7%, 24.7%),
and (70.0%, 12.2%, 56.8%, 12.6%), respectively, while their sensitivity after DA is (98.0%,
69.7%, 86.7%, 69.3%), (97.5%, 73.0%, 79.4%, 72.0%), and (97.3%, 69.5%, 81.2%, 59.3%),
respectively. Before DA, deep sleep and REM are difficult to distinguish because the model
can easily overlearn on the other two classes, which are wake and light sleep, and ignore
the experience of these two classes. Meanwhile, the domain difference leads the class
experience learned by the model from the training set to apply to the test set with deviation.
In the process of domain alignment, to reduce the distribution difference between the
training set and the test set, the multi-class focal loss uses weights and the factor to increase
the error loss of hard samples from different classes. When the prediction probability of
difficult samples is biased toward other error classes, their loss value is much larger than
the value calculated using the cross-entropy loss function, which causes the model to pay
more attention to the samples that are difficult to learn. Therefore, the model learns the
information on deep sleep and REM better with the help of domain alignment based on
MMD with the multi-class focal loss.

There are some subjects in the test set whose results are much higher or far lower than
the average, as shown in Figure 7, depending on the matching degree between the class
distribution of these subjects and the classifier. For some subjects whose feature distribution
is too far from the feature distribution of the training set, the adjustment effect of features
after DA is limited, which leads to the situation in which the prediction performance of
these subjects is far below the average level.
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4. Discussion

In this paper, we propose a model structure, training method, and loss calculation
to improve the generalization of the model. The multi-scale residual module extracts
multi-scale detailed information to enhance the representation ability of the feature encoder.
Multi-class focal loss with the additional classification loss that computes the loss between
the prediction stages using the previous 30 s ECG and true labels solves the inadequate
learning of the model caused by class imbalance and provides the learning of sleep stage
transitions based on the previous period of ECG. Because the model’s experience learned
on the training set is biased on the test set due to subject-specific problems [43] between
the training set and the test set, we implemented domain adaptation via the iterative
optimization of MMD and classification losses to improve the generalization on the test
set [22]. In the above results, we have verified that the proposed method has outstanding
performance on subject-specific sleep staging in the three datasets. In this part, we will
discuss the test results of the proposed method across datasets and analyze the impact
of different loss calculations on the model’s performance, which aims to verify that the
contributions have a key effect on the model’s performance.

The model was trained on a dataset and then tested on another dataset to obtain the
cross-dataset evaluation results. We tested a total of four cases, namely SHHS1 to MESA,
SHHS2 to MESA, SHHS2 to SLPDB, and SHHS2 to SHHS1, as shown in Table 6. The table
shows that both the accuracy rate and Kappa achieve a significant improvement across
datasets compared to pre-DA and post-DA. We used different datasets (source domain) as
the training set and tested the same dataset (target domain), which led to different results.
For example, when SHHS1 and SHHS2 were used as the training set to train the model,
respectively, the accuracy (Kappa) of MESA is 0.851(0.803) and 0.857(0.809) after adjusting
the distribution. This may be related to the degree of distribution difference between
different datasets, resulting from the collection environment and operation. According to
the results in Table 3, the test result of MESA is 0.868 (0.840), which exceeds the result in the
cross-dataset mode, which supports the notion that different acquisition conditions may
also cause data distribution. Table 5 also shows the results of different feature encoders
in the cross-dataset test. The proposed multi-scale residual module outperforms other
feature encoders. The information at multiple scales provided by the multi-scale residual
module can promote the performance of the model, whether it is on the data or across the
data. When the training set comes from SHHS2, and the test set comes from SLPDB, the
confusion matrix under different feature encoders is as shown in Figure 8. The multi-scale
residual module achieves the highest accuracy for wake and REM. However, the accuracy
for light sleep is the highest on the CNN block module, and the accuracy for deep sleep
is the highest on the residual module with a kernel size of 11. However, the multi-scale
residual module has the best overall performance in each class.

We compared the multi-class focal loss (MF) and the additional loss of sequence predic-
tion with the cross-entropy loss (CE) to discuss the role of the proposed loss in training and
domain adaptation, as shown in Table 7. We set the classifier loss to CE, MF, and MF with the
additional loss, which computes the loss between the prediction based on the previous 30 s
ECG and ground truth, respectively. For domain alignment, the performance of the model
whose classifier uses MF far exceeds the performance of the model whose classifier uses CE.
The problem of class imbalance causes the model to overfit for the head class with a large
sample size. It is difficult to learn the true distribution of the samples, which affects the effect
of domain adaptation. While MF causes the model to pay more attention to the tail class, it
helps the model to learn the overall feature distribution better during domain adaptation.
Moreover, the additional loss of sequence prediction plays a role in the improvement in
accuracy and Kappa. From the comparison of the results in the table, predicting the current
sleep stage based on the previous 30 s ECG provides information about the state transition to
assist the model in predicting sleep stages more accurately.
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Table 6. Accuracy and Kappa of sleep staging across datasets.

SHHS1→MESA SHHS2→MESA SHHS2→SLPDB SHHS2→SHHS1

Acc CK Acc CK Acc CK Acc CK

Multi-scale residual
module (proposed)

Before DA 0.524 ± 0.042 0.325 ± 0.038 0.541 ± 0.054 0.297 ± 0.043 0.423 ± 0.098 0.105 ± 0.042 0.436 ± 0.052 0.235 ± 0.046
After DA 0.851 ± 0.032 0.803 ± 0.054 0.857 ± 0.034 0.809 ± 0.042 0.822 ± 0.025 0.747 ± 0.055 0.798 ± 0.039 0.747 ± 0.057

CNN block module
Before DA 0.531 ± 0.042 0.232 ± 0.055 0.567 ± 0.020 0.337 ± 0.056 0.477 ± 0.068 0.106 ± 0.063 0.467 ± 0.038 0.182 ± 0.019
After DA 0.751 ± 0.034 0.607 ± 0.080 0.774 ± 0.020 0.705 ± 0.032 0.668 ± 0.043 0.384 ± 0.138 0.764 ± 0.032 0.667 ± 0.062

Residual module
(kernel size: 5)

Before DA 0.597 ± 0.031 0.304 ± 0.025 0.553 ± 0.033 0.220 ± 0.065 0.527 ± 0.040 0.110 ± 0.063 0.525 ± 0.037 0.323 ± 0.043
After DA 0.801 ± 0.008 0.627 ± 0.036 0.739 ± 0.018 0.655 ± 0.041 0.665 ± 0.013 0.405 ± 0.027 0.723 ± 0.017 0.599 ± 0.029

Residual module
(kernel size: 11)

Before DA 0.498 ± 0.046 0.251 ± 0.056 0.492 ± 0.045 0.307 ± 0.071 0.423 ± 0.142 0.115 ± 0.047 0.511 ± 0.044 0.322 ± 0.050
After DA 0.842 ± 0.034 0.760 ± 0.066 0.838 ± 0.039 0.772 ± 0.069 0.774 ± 0.074 0.657 ± 0.125 0.805 ± 0.052 0.790 ± 0.066

Residual module
(kernel size: 21)

Before DA 0.529 ± 0.039 0.218 ± 0.035 0.518 ± 0.034 0.262 ± 0.030 0.324 ± 0.024 0.014 ± 0.032 0.425 ± 0.038 0.203 ± 0.045
After DA 0.761 ± 0.051 0.634 ± 0.097 0.824 ± 0.108 0.755 ± 0.181 0.700 ± 0.109 0.433 ± 0.317 0.753 ± 0.066 0.615 ± 0.147
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Table 7. The comparison results of different loss computation.

Only L1y (CE) Only L1y (MF) L1y(MF) + σL2y

Acc CK Acc CK Acc CK

SHHS2
Before DA 0.584 ± 0.038 0.358 ± 0.043 0.588 ± 0.006 0.396 ± 0.054 0.522 ± 0.042 0.277 ± 0.068
After DA 0.592 ± 0.035 0.415 ± 0.026 0.834 ± 0.014 0.788 ± 0.019 0.849 ± 0.027 0.837 ± 0.039

SHHS1
Before DA 0.556 ± 0.037 0.285 ± 0.018 0.522 ± 0.024 0.284 ± 0.025 0.499 ± 0.037 0.267 ± 0.039
After DA 0.561 ± 0.049 0.304 ± 0.061 0.787 ± 0.047 0.722 ± 0.076 0.827 ± 0.031 0.790 ± 0.048

MESA
Before DA 0.578 ± 0.041 0.348 ± 0.080 0.575 ± 0.078 0.340 ± 0.035 0.623 ± 0.029 0.390 ± 0.043
After DA 0.604 ± 0.031 0.392 ± 0.073 0.638 ± 0.014 0.350 ± 0.025 0.868 ± 0.030 0.840 ± 0.047

SHHS1→MESA
Before DA 0.602 ± 0.031 0.295 ± 0.044 0.528 ± 0.041 0.363 ± 0.036 0.524 ± 0.042 0.325 ± 0.038
After DA 0.558 ± 0.039 0.292 ± 0.055 0.702 ± 0.053 0.622 ± 0.092 0.851 ± 0.032 0.803 ± 0.054

SHHS2→MESA
Before DA 0.557 ± 0.048 0.224 ± 0.112 0.560 ± 0.038 0.316 ± 0.064 0.541 ± 0.054 0.297 ± 0.043
After DA 0.528 ± 0.066 0.299 ± 0.037 0.790 ± 0.032 0.693 ± 0.065 0.857 ± 0.034 0.809 ± 0.042

SHHS2→SLPDB
Before DA 0.376 ± 0.041 0.055 ± 0.030 0.404 ± 0.062 0.023 ± 0.067 0.423 ± 0.098 0.105 ± 0.042
After DA 0.408 ± 0.035 0.022 ± 0.042 0.771 ± 0.025 0.648 ± 0.044 0.822 ± 0.025 0.747 ± 0.055

SHHS2→SHHS1
Before DA 0.423 ± 0.023 0.314 ± 0.040 0.450 ± 0.034 0.265 ± 0.092 0.436 ± 0.052 0.235 ± 0.046
After DA 0.446 ± 0.038 0.318 ± 0.024 0.752 ± 0.040 0.701 ± 0.058 0.798 ± 0.039 0.747 ± 0.057
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5. Conclusions

In this paper, a domain-based adaptive multi-scale network was proposed to improve
subject-specific sleep staging based on a single-lead ECG. We presented a multi-scale
residual feature encoder to extract various details, which supports the model to deal with
the feature extraction of single-lead ECGs in different situations to improve the test results.
Taking the domain shift caused by individual differences and acquisition conditions into
consideration, we utilized MMD to optimize the feature encoder so that the features from
the confused domain were obtained to make the task of sleep stage classification more
generalized. In addition, to enhance the performance of the model, the multi-class focal
loss was used to reduce the negative impact of class imbalance on the learning of the model,
and the loss of sequence prediction was added to the classification task to assist the model
in the judgment of sleep staging. Finally, the methods achieved excellent performance
in terms of accuracy and Cohen’s Kappa in the three public datasets and four types of
cross-dataset modes. Hence, for sleep monitoring, this approach, which outperforms the
state-of-the-art solutions based on single-lead ECGs, makes contributions to the analysis of
the subjects’ sleep structures under comfortable conditions.

Although the overall performance of the proposed model on the test sets is excellent,
there are limitations in its robustness to different subjects. For subjects whose feature
distribution is too far from the distribution of the training set, the aligning effect of domain
adaptation is limited, resulting in significantly below-average accuracy of sleep staging for
these subjects. The question of how to improve the prediction accuracy of the model for
the sleep staging of these people so that the model can adapt to extreme distribution gaps
will become a future task, seeking to make the methods of sleep staging more robust. It is a
major challenge to apply the proposed method to sleep monitoring based on ECGs or other
single physiological signals on wearable devices that are comfortable and portable for users.
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