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Abstract: To address the problems of poor recognition effect, low detection accuracy, many model
parameters and computation, complex network structure, and unfavorable portability to embed-
ded devices in traditional tennis ball detection algorithms, this study proposes a lightweight ten-
nis ball detection algorithm, YOLOv5s-Z, based on the YOLOv5s algorithm and Robomater EP.
The main work is as follows: firstly, the lightweight network G-Backbone and G-Neck network
layers are constructed to reduce the number of parameters and computation of the network structure.
Secondly, convolutional coordinate attention is incorporated into the G-Backbone to embed location
information into channel attention, which enables the network to obtain location information of a
larger area through multiple convolutions and enhances the expression ability of mobile network
learning features. In addition, the Concat module in the original feature fusion is modified into a
weighted bi-directional feature pyramid W-BiFPN with settable learning weights to improve the
feature fusion capability and achieve efficient weighted feature fusion and bi-directional cross-scale
connectivity. Finally, the Loss function EIOU Loss is introduced to split the influence factor of the
aspect ratio and calculate the length and width of the target frame and anchor frame, respectively,
combined with Focal-EIOU Loss to solve the problem of imbalance between complex and easy sam-
ples. Meta-ACON’s activation function is introduced to achieve an adaptive selection of whether to
activate neurons and improve the detection accuracy. The experimental results show that compared
with the YOLOv5s algorithm, the YOLOv5s-Z algorithm reduces the number of parameters and
computation by 42% and 44%, respectively, reduces the model size by 39%, and improves the mean
accuracy by 2%, verifying the effectiveness of the improved algorithm and the lightweight of the
model, adapting to Robomaster EP, and meeting the deployment requirements of embedded devices
for the detection and identification of tennis balls.

Keywords: tennis ball detection; lightweight; convolutional coordinate attention; feature fusion;
loss function; activation function

1. Introduction

Tennis is gaining popularity as a fashionable aerobic sport, and the number of tennis
enthusiasts is increasing yearly. Despite the popularity of tennis, the experience of the
sport is hampered by the large number of tennis balls picked up from the court, which
significantly affects the enthusiasts’ enthusiasm. Most of the traditional tennis ball pick-
ing devices are mainly human-driven and require manual intervention, relying on the
downward pressure action of the arm to pick up the tennis balls, which requires multiple
repetitions of the arm lifting action during the picking process, wasting a lot of time and
energy and being less efficient. To solve the problem of the low efficiency of manual ball
pickup, the mainstream tennis ball pickup devices on the market are mainly divided into
multi-degree-of-freedom-based robotic arm pickup, impeller rotation-based inhalation
pickup, and motor-driven paddle rotation-based pickup. The efficiency of using a robotic
arm to pick up the ball is low; only one ball can be picked up at a time, and multiple servos
are required to cooperate, which is difficult to achieve. Inhalation pickup using high-speed
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impeller rotation requires high motor power. It consumes much energy, but the pickup is
accurate and efficient. With the motor-driven paddle rotation pickup, the device structure
is simple, easy to control, and less challenging to operate. However, there will be a ball
jamming problem.

With the rapid development of the robotics industry, service robots are becoming
increasingly popular. The International Federation of Robotics (IFR) defines a service
robot [1] as a robot that works semi-autonomously or fully autonomously. Service robots
are divided into two categories according to their use: home service robots and professional
service robots. Service robots for the tennis field are rare in China, and most still need
models based on natural environments. However, the world’s first tennis AI pick-up
machine, Tennibot [2], has emerged abroad, using computer vision and artificial intelligence
technology to locate, detect, and catch tennis balls automatically. Intelligent-based pick-
up tennis robots are developing towards intelligence and commercialization. Therefore,
service robots for the tennis field are in high demand and have good market value and
some relevance.

The Robomaster EP is a programming-oriented educational engineering robot from
DJI with robust scalability and programmability, as shown in Figure 1. A parallel robotic
arm is used instead of the gimbal structure mounted in the center of the chassis, retaining
the image transmission system. A monocular camera is fitted on top of the arm for real-time
display and transmission of images, and a mechanical claw is fitted at the end of the arm
for more complex tasks. The infrared depth sensor is assembled on top, based on the
Time of Flight TOF [3] principle, through which the sensor emits modulated near-infrared
light. After encountering the reflection of an object, the sensor calculates the distance to
the object by calculating the time difference or phase difference between the light emission
and reflection to achieve intelligent obstacle avoidance [4] and environment perception [5],
and through the interface call algorithm, real-time detection and identification, improving
computational performance. Unlike other tennis ball picking devices, Robomaster EP has a
more comprehensive and intelligent overall performance, with the following advantages:
(1) The size is small, with a total weight of 3.3 kg, which makes it easy to carry. (2) The range
of movement of the robot arm and the opening and closing distance of the robot claw is
extensive. The robot arm and claw can be used together to move more flexibly and
efficiently. (3) The detection range is more expansive. The infrared depth sensor on
top of the arm has a detection range of 0.1–10 m. A monocular camera is mounted on
top of the arm to display images in real time. (4) The device has strong scalability and
programmability, good compatibility, and it easily calls and deploys algorithms.

Figure 1. Robomaster EP.
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For tennis ball detection algorithms, image processing methods are generally used
for detection and recognition. For example, the Hough transform [6] is used to detect
tennis balls segmented from video frames by color segmentation. The basic idea is that a
tennis ball can be considered a circle from every direction. Any circle can be mapped from
an expression under a two-dimensional coordinate system to a three-dimensional space.
However, problems include difficulty in feature extraction, susceptibility to the external
environment, low detection accuracy, and poor recognition. In addition, Robomaster EP has
high requirements for algorithm model parameters and needs to be adapted to lightweight
models for easy portability and implementation of algorithms. Traditional deep learning
models, such as SSD [7] and Faster R-CNN [8], have a large number of model parameters
and computation, complex model network structure, difficult deployment, lengthy and
costly deployment time, and low performance and detection efficiency of the algorithms,
which do not meet the deployment needs of embedded devices. This led to a transition to
general-purpose deep learning models, such as the YOLOv5 [9] algorithm in the YOLO [10]
family of single-stage target detection algorithms, which runs faster and detects quickly for
fast detection and identification of tennis balls but has lower detection accuracy compared
to two-stage target detection algorithms. Robomaster EP has a more complex model
parameter count, computation, and network structure compared to lightweight models.
This leads to a more expensive deployment to meet the actual demand. To meet the
deployment needs of embedded devices and to improve detection accuracy, Robomaster
EP needs to be adapted to the lightweight model to improve efficiency.

According to the existing research, the following three main issues should be consid-
ered in a lightweight tennis ball detection algorithm based on Robomaster EP. First, an
improved YOLOv5s algorithm is proposed, as the original YOLOv5s algorithm cannot
meet the deployment requirements of embedded devices and needs to improve detec-
tion accuracy and build lightweight models. Second, the deployment and invocation of
the algorithm are implemented through programming for the detection and identifica-
tion of tennis balls. Thirdly, the detection performance in real scenarios must be verified.
An actual tennis court has many tennis balls, as well as the phenomenon of tennis ball
occlusion. It is susceptible to weather and light effects, with different scenarios and light
intensities leading to different detection results. Using image processing methods, features
are challenging to extract, detection accuracy is low, and recognition results could be better.
A deep-learning-based tennis ball detection algorithm can improve these problems with
better detection performance and robustness in different detection scenarios.

In summary, this study proposes a lightweight tennis ball detection algorithm, YOLOv5s-Z,
based on Robomaster EP to achieve accurate detection and recognition of tennis balls. The main
work and contributions are as follows: firstly, an improved tennis ball detection algorithm is
proposed to construct a lightweight model to improve the detection accuracy while compressing
the model and reducing the number of parameters and computation. Secondly, convolutional
coordinate attention is incorporated into the Backbone to enhance the ability of the Backbone
network to sense the field and capture location information. The original Concat [11] module
in feature fusion is modified into a weighted bidirectional feature pyramid W-BiFPN with
settable learning weights to enhance the feature fusion capability and achieve efficient weighted
feature fusion and bidirectional cross-scale connectivity, introducing EIOU Loss [12] and Meta-
ACON [13] to improve the detection accuracy. Finally, the improved algorithm is deployed into
Robomaster EP, directly invoked through the interface, and used in real scenarios to detect and
identify tennis balls.

2. Related Work
2.1. Target Detection Algorithms

A traditional target detection algorithm’s main steps are: first, select the candidate
region on the image, then perform feature extraction, and finally use the classifier for
classification. There are disadvantages, such as low detection accuracy, high computational
cost, and poor robustness. Deep-learning-based target detection algorithms rely on a large
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amount of data to obtain feature information through autonomous learning and model
training of convolutional neural networks to achieve high-precision and high-efficiency
detection and recognition .Deep-learning-based target detection algorithms are divided
into two main categories. The first category is the two-stage target detection algorithm
based on region recommendation. The main steps are first generating candidate regions
and then classifying the candidate regions.Representative algorithms include R-CNN [14],
Fast R-CNN [15], Faster R-CNN, and Mask R-CNN [16]. The main idea of this type of
algorithm is to extract the image features by the convolutional neural network, use the
region extraction network to give the candidate frame of the image target to be detected,
and use the detection head with convolution to classify the target in the candidate frame
to complete the detection with high accuracy but slow speed. Another category is the
one-stage method target detection algorithm based on the regression idea, that is, end-to-
end, single-stage detection of objects for a picture using only one convolutional neural
network prediction to obtain the category probability and position coordinates of different
targets, which significantly improves the detection speed and the operation speed of
the algorithm to meet the demand of real-time detection. The representative algorithms
are RetinaNet [17], YOLO, and SSD, the algorithm mainly based on the detection of the
target. The main idea of both YOLO and SSE is to extract features directly in the network,
transforming target localization into a border regression problem and completing the
localization and classification tasks at once, which is faster but less accurate.

2.2. Tennis Ball Detection and Identification

There are mainly machine learning, image processing, and deep-learning-based meth-
ods for ball detection and recognition. Machine learning methods are too complex, as
balls generally have only two features, color and shape, requiring more training time.
The training process is relatively complex and not suitable for tennis ball detection.
Image processing methods mainly use computer vision or image sensors to process images
and apply target-ranging algorithms to identify tennis balls through digital image process-
ing techniques [18] for ranging. Standard methods include the detection of tennis balls
based on the Hough transform, developing tennis ball recognition based on OpenCV [19],
and using vision sensors to identify tennis balls. For example, in the image processing work-
flow using toolboxes such as OpenCV, the image is pre-processed, features are extracted
using a correlation algorithm, different radius thresholds are set to filter the target, and
finally the contour features are used to determine whether it is a tennis ball. Compared to
the manual ball-picking method, the detection efficiency of the image-processing-based
method is improved. However, it is affected by different detection scenes, periods, and
tennis ball occlusion. For example, different detection scenes and periods interfere with
tennis ball identification to a certain extent. The change of light causes some target features
to be challenging to extract. The phenomenon of tennis ball occlusion leads to missed and
false detection.

Compared to machine and image processing methods, deep-learning-based methods
can achieve accurate detection and recognition of tennis balls. Gu et al. [20] proposed a
model based on AlexNet [21] and SSD for tennis ball recognition, using deep learning
to divide the image recognition into two steps and the AlexNet network model to test
whether there is a tennis ball in the image.If there is a tennis ball, the method uses an SSD
network model to locate the tennis ball; otherwise, it uses AlexNet to continue checking
the following image. Gu et al. [22] proposed a deep-learning-based tennis ball collection
robot that used the YOLO model for tennis ball recognition and implemented it on an
NVIDIA [23] Gitzo TX1 board. However, the traditional model has many parameters,
extensive computation, low detection accuracy, and complex model structure, which could
be more conducive to porting to embedded devices.
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2.3. YOLOv5

The network structure of YOLOv5 is shown in Figure 2. YOLOv5 is currently a
single-stage target detection algorithm with good performance, based on the idea of regres-
sion, which reduces the target detection problem to a regression problem. The network
model consists of the input side, the Backbone, a Neck network layer, and an output
side. The primary role of the input is to pre-process the input image, mainly including
Mosaic data enhancement, adaptive anchor frame calculation, and adaptive image scaling.
The primary role of the Backbone is to extract image features, mainly including Focus,
Conv, C3, and SPPF. The primary role of the Neck network layer is to fuse the information
from different network layers in the Backbone to enhance the detection capability of the
network. The structure of FPN+PAN is mainly adopted to achieve the transfer of target feature
information of different sizes, strengthen the network feature fusion capability, and solve the
multi-scale problem. The primary role of the output is to predict targets of different sizes
on different feature maps, generate bounding boxes, and predict categories, which mainly
includes the calculation of Loss functions and non-maximum suppression operations.
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Figure 2. YOLOv5s network structure.

2.4. Lightweight Neural Networks

Since the introduction of AlexNet, neural networks have been widely used in image
classification, image segmentation, target detection, and other fields. Due to the limitation
of storage space and power consumption, storing and computing neural networks on em-
bedded devices takes much work. With the development of iterative updates of embedded
devices and diversification of model application scenarios, traditional neural network models
are gradually being replaced by lightweight neural network structures due to many param-
eters and computation and complex network structures. In recent years, many excellent
lightweight neural network structures have emerged. For example, EfficientNet [24] uses a
model composite scaling method and AutoML [25] technique to scale up a convolutional
neural network in a more structured way using a simple and efficient composite coefficient.
SqueezeNet [26] uses a different convolutional approach from the traditional one by propos-
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ing a fire module. MobileNet [27] is based on ShuffleNet [28], uses grouped convolution
to reduce the number of parameters, and uses channel shuffling to exchange information
between different groups. GhostNet [29] proposes a new Ghost module, the basic unit of
a neural network, that uses inexpensive operations to generate as many feature maps as
possible at a small cost without changing the size of the output map or the channel size,
reducing the number of parameters and computation of the model.

3. YOLOv5s-Z

In this study, the network structure is improved and optimized for version 6.1 of the
YOLOv5s algorithm, as shown in Figure 3. It consists mainly of the input, the lightweight
G-Backbone and G-Neck network layers, and the output.
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Figure 3. YOLOv5s-Z network structure.

3.1. G-Backbone

Based on the lightweight neural network GhostNet, the Conv and C3 modules are
subjected to Ghost convolution as well as lightweight processing, and the new G-Conv and
G-C3 modules are proposed to build a lightweight G-Backbone, which incorporates the
convolutional coordinate attention mechanism G-CA in the G-Backbone to enhance the
perceptual field and the ability to capture location information of the Backbone network
and better extract the features of the input image. GhostNet is a new end-side neural
network architecture proposed by Huawei Noah’s Ark Lab, which builds the lightweight
neural network GhostNet by stacking Ghost modules to obtain the Ghost BottleNeck.
The structure of the G-Backbone network is shown in Table 1.
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Table 1. G-Backbone network structure.

Layer From Params Module Arguments

0 −1 4656 Conv [3, 32, 6, 2, 2]
1 −1 12,416 G-Conv [32, 64, 3, 2]
2 −1 14,776 G-C3 [64, 64, 1]
3 −1 43,232 G-Conv [64, 128, 3, 2]
4 −1 51,472 G-C3 [128, 128, 2]
5 −1 160,160 G-Conv [128, 256, 3, 2]
6 −1 189,808 G-C3 [256, 256, 3]
7 −1 615,200 G-Conv [256, 512, 3, 2]
8 −1 621,472 G3 [512, 512, 1]
9 −1 24,608 G-CA [512, 512, 32]

10 −1 700,208 SPPF [512, 512, 5]

In the above table, Layer denotes the number of layers, From denotes the layer from
which the module comes, where−1 denotes the previous layer, Params denotes the number
of parameters, Module denotes the module’s name, Arguments denote information about
the module, mainly including the number of input channels, output channels, the size of
the convolution kernel, and step size information.

For a traditional convolutional neural network, the dimension of the input feature
map is c × h × w, where c represents the number of channels, h represents the height
of the feature map, and w represents the width of the feature map. The size of the
convolutional kernel is c × k2 × n, where k represents the size of the convolutional kernel,
and n represents the number of channels of the output feature map. Let the size of the
output feature map be h′ × w′ × n. The total computation is h′ × w′ × n × c × k2,
and the number of parameters is c × k2 × n. This results in the ordinary output data
of convolution Y = X ∗ f + b, where X represents the input data, f represents the c × n
convolution operations with a convolution kernel size of k2, and b represents the bias
term. The process of ordinary convolution is shown in Figure 4.

Input Output

Conv

Figure 4. The normal convolution.

In contrast to ordinary convolution, the process of Ghost convolution is shown in Figure 5.

Input

ConV

Output
Linear operation

Constant mapping

Figure 5. The Ghost convolution.

The process of Ghost convolution is as follows: first, a small number of feature
maps Y′ are generated by ordinary convolution, and the feature maps of each channel
in the feature maps Y′ are used to generate Ghost feature maps Yij by linear operations.
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Then, the two sets of different feature maps are stitched together according to the channels.
Finally, the same output result as ordinary convolution is obtained. Then, the output data
Y′ = X ∗ f′ + b of Ghost convolution is calculated as shown in Equation (1), where φij
denotes the j linear operation performed on the i feature map Yi

′ generated in the first step
of the convolution. Yi

′ denotes the i feature map in Y′.

Yij = φij ∗Y′i , i ∈ [1, m], j ∈ [1, s] (1)

The Ghost module mainly contains a tiny number of convolutions, a constant mapping,
and m × (s− 1) linear operations, each with an average kernel size of d × d. The formula
for the theoretical speed-up ratio of the Ghost module to upgrade the ordinary convolution
is shown in Equation (2).

rs =
n · h′ · w′ · c · k2

n
s · h′ · w′ · c · k2 + (s− 1) · n

s · h′ · w′ · d2 =
c · k2

1
s · c · k2 + s−1

s · d2
≈ s · c

s + c− 1
≈ s (2)

The formula for the compression ratio of the number of parameters between ordinary
convolution and Ghost convolution is shown in Equation (3).

rc =
n · c · k2

n
s · c · k2 + s−1

s · d2
≈ s · c

s + c− 1
≈ s (3)

In the above equation, the convolution kernel’s size represents the convolution kernel’s
size when linear mapping is performed for each channel. The Backbone provides for better
feature extraction of the input images. Table 2 shows the comparison results between the
YOLOv5s model and the YOLOv5s-Ghost model.

Table 2. Comparison results between YOLOv5s and YOLOv5s-Ghost.

Model Parameters GFLOPs Weight/MB

YOLOv5s 7,022,326 15.8 14.5
YOLOv5s-Ghost 3,684,542 8.1 7.9

As seen from the results in Table 2, replacing the Ghost module reduces the number
of parameters by 48%, the amount of computation by 49%, and the model’s size by 46%.
The experimental results demonstrate that the Ghost module achieves a lighter network structure.

3.2. Convolutional Coordinate Attention

This study proposes a convolutional coordinate attention G-CA, as shown in Figure 6.
By incorporating the convolutional coordinate attention mechanism in the G-Backbone
network, the network can obtain location information of a larger area through multiple
convolutions, which further enhances the ability of the Backbone network to sense the
field and capture location information and enhances the expression ability of the learning
features of the mobile network.

Research in neural networks has shown that channel attention significantly improves
the model’s performance but ignores some vital location information that facilitates the
generation of spatially selective attention maps. Therefore, to alleviate the loss of location
information caused by two-dimensional global pooling proposed by attention mechanisms
such as SENet [30] and CBAM [31], a novel attention mechanism designed for lightweight
networks called coordinate attention [32] was proposed by the National University of
Singapore. Compared to channel attention, coordinate attention transforms the feature
tensor into individual feature vectors using two-dimensional global pooling, decomposing
channel attention into two one-dimensional feature encoding processes that aggregate
features along two directions, one of which captures remote dependencies along the spatial
direction, and the other retains precise location information along the spatial direction.
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The resulting feature maps are eventually encoded separately to produce a pair of direction-
aware and position-sensitive feature maps that are complementarily applied to the input
feature maps and used to enhance the precise localization of targets.

Residual

Input

C×H×W

Re-weight C×H×W

C×1×WX Avg Pool Y Avg Pool

Concat + Conv2d

C×H×1

C/r×1×(W+H)

BatchNorm + Non-linear C/r×1×(W+H)

Conv2d Conv2d
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spilt

Sigmoid Sigmoid

C×1×W

C×1×W

C×1×W

C×H×1

C×H×1

C×H×1

Output

Figure 6. Convolutional coordinate attention.

Coordinate attention consists of two main steps: coordinate information embed-
ding and coordinate attention generation. First, given an input feature map X with
dimension c × h × w, and using two pooling kernels with spatial ranges (H,1) or (1,W)
to encode each channel along the horizontal and vertical coordinates, respectively, the
output of the c channel with height h and the c channel with width w is calculated as
shown in Equations (4) and (5):

Zh
c (h) =

1
W ∑

0≤i≤W
Xc(h, i) (4)

Zw
c (h) =

1
H ∑

0≤j≤H
Xc(j, w) (5)

The above two transformations perform feature aggregation along two directions,
respectively, and cascade to generate two feature maps, which generate feature maps of
spatial information in horizontal and vertical directions f by a convolution operation, which
is beneficial to the network for accurate target localization, and the calculation formula is
shown in Equation (6):

f = δ(F1([Zh, Zw])) (6)

After the coordinate information is embedded, the above changes are subjected to the
cascade operation, which is a nonlinear activation function that is an intermediate feature
map of spatial information encoded along the horizontal and vertical directions, which is
decomposed into two tensor sums along the spatial dimension. The transformation opera-
tion is then performed using the convolutional transform function, which in turn yields
the attention weights of the two spatial directions as gh and gw, respectively, calculated as
shown in Equations (7) and (8):

gh = σ((Fh( f h))) (7)

gw = σ((Fw( f w))) (8)

The σ in the above equation is the sigmoid [33] activation function, and to reduce the
complexity and computational overhead of the model, the number of channels is usually
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reduced using a suitable scaling ratio, and the output is expanded as attention weights,
respectively. The final output of the coordinate attention mechanism is obtained, and the
calculation formula is shown in Equation (9):

yc(i, j) = Xc(i, j)× gh
c (i)× gw

c (9)

3.3. G-Neck Network Layer

A lightweight G-Neck network layer is constructed, and a weighted bidirectional
feature pyramid W-BiFPN with settable learning weights is proposed to be incorporated
into the G-Neck network layer. Based on the weighted bidirectional feature pyramid BiFPN,
a settable learning weight coefficient W is set to strengthen the feature fusion capability
further and improve the detection speed to achieve more efficient weighted bidirectional
feature fusion, which is more convenient for the network to extract features.

Figure 7 shows the development process of Neck networks in recent years, starting
with the top-down unidirectional fusion FPN feature pyramid structure, which establishes
a top-down pathway for feature fusion and uses feature maps for prediction, which can
improve accuracy to a certain extent but will be limited by the one-way information flow.
The network structure of PANet [34] for bidirectional fusion adds to the FPN [35], a bottom-
up path aggregation network. The main idea is that the higher-level feature maps have
more vital semantic information for object classification. In comparison, the bottom-level
feature maps have more vital positional information for object localization. PANet network
passes the positional information from the bottom-level layer to the prediction feature
layer, making the prediction feature layer have higher semantic information and positional
information, which is more conducive to target detection and thus improves detection
accuracy. The PANet network structure also has Adaptive feature pooling, and complete
connection fusion is proposed in the PANet network structure. Adaptive feature pooling is
used to aggregate features between different layers to ensure the integrity and diversity
of features, and complete connection fusion is used to obtain an accurate prediction layer.
The main idea of the weighted bidirectional feature pyramid network structure BiFPN [36]
is compelling bidirectional cross-connections and weighted feature fusion and top-down
feature fusion followed by bottom-up feature fusion. Multi-scale feature fusion is the
aggregation of features at different resolutions.

FPN
BiFPN

repeated blocks

PANet

P7

P6

P5

P4

P3

P7

P6

P5

P4

P3

P7

P6

P5

P4

P3

Figure 7. FPN PANet and BiFPN structure.

Different input features have different resolutions, so the contribution to the output
features is uneven. To solve the problem, an additional weight is added to each input so
that the network learns the importance of each input feature; biFPN uses a fast normalized
weighted fusion method, calculated as shown in Equation (10):

o = ∑i
wi

ε + ∑j wj
· Ii (10)

where wi ≥ 0 is achieved by adding the ReLU activation function after each wi, the weights
are divided by the weighted sum of all values to achieve the normalization operation,
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and the value of each normalization weight is between zero and one. BiFPN integrates
bidirectional cross-scale connectivity and fast normalized fusion, and the computational
equations of the fusion feature process are shown in Equations (11) and (12) for BiFPN at
Level 6 nodes.

ptd
6 = Conv(

w1 · pin
6 + w2 · Resize(pin

7 )

w1 + w2 + ε
) (11)

pout
6 = Conv(

w′1 · pin
6 + w′2 · ptd

6 + w′3 · Resize(pout
5 )

w′1 + w′2 + w′3 + ε
) (12)

In the above equation, ptd
6 denotes the intermediate features of the sixth layer in the

top-down path, and pout
6 denotes the output features of the sixth layer in the bottom-up

path. To improve efficiency, feature fusion is performed using depth-separable convolution,
and batch normalization and activation functions are added after each convolution, where
Resize is the upsampling or downsampling operation, and w is the learned parameter to
distinguish the importance of different features in the feature fusion process.

3.4. EIOU Loss

The default Loss function in YOLOv5s is CIOU Loss [37], and the formula for CIOU is
shown in Equation (13). The aspect ratio of the regression frame is considered in the Loss
function based on DIOU Loss [38]. The loss of the detection frame scale and the loss of
the length and width are added to make the prediction frame more realistic and further
improve the regression accuracy. The DIOU calculation formula is shown in Equation (14).
The disadvantage is that the aspect ratio needs to be more specific, and the balance of
complex and easy samples is not considered. In this study, EIOU Loss is introduced, and
the formula of EIOU Loss is shown in Equation (15). Based on the penalty term of CIOU
Loss, the aspectual influence factors of the prediction frame and the rear frame are split.
The length and width of the prediction and the rear frames are calculated separately to
solve the problems in CIOU Loss.

LCIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv (13)

LDIOU = 1− IOU +
ρ2(b, bgt)

c2 (14)

LEIOU = LIoU + Ldis + Lasp = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2(h, hgt)

c2
h

(15)

In the above equation, b and bgt denote the centroids of the prediction frame and the
actual frame, respectively, ρ denotes the Euclidean distance calculated between the two
centroids, and c denotes the diagonal distance of the minimum closed region containing
both the prediction frame and the actual frame. We can see that the EIOU Loss consists
of three main components: the overlap loss between the predicted frame and the real
frame LIoU , the center distance loss between the predicted frame and the real frame Ldis,
and the width and height loss between the predicted frame and the real frame Lasp. LIoU
and Ldis continue the method in CIOU, and the width and height loss Lasp directly makes
the difference between the width and height of the predicted frame, and the real frame
minimizes the difference between the width and height of the predicted frame and the rear
frame, which makes the convergence faster.

The comparison diagram of the iterative process of CIOU and EIOU Loss prediction
frames is shown in Figure 8. The red and green boxes represent the regression process of
CIOU and DIOU prediction frames, the blue box is the actual frame, and the yellow box
is the pre-defined anchor frame. The comparison chart shows that the width and height
of EIOU can be increased or decreased at the same time, but not CIOU. In general, EIOU
outperforms CIOU, so this study introduces EIOU Loss as the Loss function.
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CIOU

EIOU

Figure 8. Comparison of CIOU and EIOU iterative process.

3.5. Meta-ACON Activation Function

The default activation function in YOLOv5s is ReLU [39], which is the most common
activation function, mainly because of its non-saturation and sparsity properties, with
the disadvantage that it can have the severe consequence of neuronal necrosis. ReLU is
essentially a function and is calculated as shown in Equation (16):

ReLU(x) = MAX(0, x) (16)

Consider the n values of the standard maximum function MAX, whose smoothness
and differentiability are approximated by Sβ, calculated as shown in Equation (17):

Sβ(x1, x1, x2, . . . , xn) =

n

∑
i=1

Xi · eβxi

n

∑
i=1

eβxi

(17)

where β is a connection coefficient, and Sβ tends to the maximum when β tends to infinity,
and Sβ tends to the arithmetic mean when β tends to zero. In neural networks, the common
activation function is expressed in the form of max(ηa(x), ηb(x)) , where ηa(x) and ηb(x)
are linear functions.

The Swish [40] activation function, obtained by the NAS [41] search technique, is an
approximate smoothing of the ReLU activation function. The general form of Swish’s
ACON activation function is obtained by analyzing the general form of the Maxout [42]
series of activation functions of ReLU. The ACON generalization yields ACON-A, ACON-B,
ACON-C, the Meta-ACON, and other variant forms. This study introduces Meta-ACON,
which adaptively selects whether or not to activate neurons and introduces a switching
factor to learn the parameter switching between nonlinear activation and linear non-
activation to improve the detection accuracy of the algorithm.

4. Experimental Results
4.1. Experimental Environment

This experiment was based on the Pytorch 1.11.0 framework, CUDA version 11.5, and
conducted on the PyCharm platform, and the model training was accelerated by GPU.
The specific experimental environment parameters were configured as shown in Table 3.
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Table 3. Experimental environment.

Name Configuration Parameters

Operating System Windows 11 64-bit
CPU Intel Core i5-12400F
GPU NVIDIA GeForce RTX3060 12G

Memory 16GB
Python Version 3.8

Deep Learning Framework Pytorch 1.11.0 CUDA 11.5
Experimental Platform PyCharm Community Edition 2022.2.3

4.2. Datasets

In this study, 1180 homemade tennis ball datasets were used. The sources of the datasets
included tennis ball pictures taken by the monocular camera fitted with Robomaster EP,
tennis ball pictures taken by mobile phones, and tennis ball pictures obtained by crawlers,
containing different colors, different scenes, and different time tennis ball pictures to ensure
the diversity of the datasets. The specific information is shown in Table 4.

Table 4. Datasets.

Category Parameters

Color green, blue, orange, purple, pink, black
Scene tennis court, laboratory, open space
Period morning, noon, evening

The dataset was normatively annotated with explicit annotation using Make Sense.
At the same time, the training set, validation set, and test set were divided according to 8:1:1.
Before training the model, some of the datasets were pre-processed, including randomly
increasing or decreasing the brightness and contrast of the images, and combined with the
Mosaic data enhancement method that comes with YOLOv5 to enrich the datasets and
enhance the generalization ability of the model and the robustness of the validation model.
Figure 9 shows an example graph representing the dataset.

Figure 9. Representative datasets.

4.3. Training Strategy and Evaluation Index

All models were trained from scratch using the same training strategy and parameters,
hyperparameter profiles, and pre-warm training parameters, all without pre-training
weights. The parameters were updated iteratively using the SGD optimizer with an initial
learning rate of 0.01, a momentum parameter of 0.937, and a batch size of 16. The warm-up
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method with an epoch of 3 and a momentum parameter of 0.8 was used to warm up the
learning rate, and all models were trained for 300 rounds.

In this study, the model was evaluated using evaluation metrics including mAP@0.5,
Recall, Parameters, GFLOPs, and Weight. Here, mAP@0.5 represents the average AP at
the IOU threshold of 0.5, which is used to reflect the recognition ability of the model.
Recall represents the ratio of correctly detected positive samples to all positive samples,
Parameters represent the number of parameters of the model, and GFLOPs represent the
number of floating point operations performed by the model. Parameters and GFLOPs
are important indicators of the model algorithm, which measure the complexity of the
model in the dimensions of time and space, respectively. The calculation equations are
shown in Equations (18)–(21).

mAP =
1
n

n

∑
i=1

APi (18)

AP =
∫ 1

0
P(R)dR (19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

where n represents the number of categories, p represents precision, R represents recall,
P(R) represents the precision and recall curves, TP represents the number of detection
frames with IOU ≥ set threshold, FP represents the number of detection frames with
IOU ≤ set threshold, and FN represents the number of missed targets.

4.4. Comparative Experimental Results and Analysis

To verify the effectiveness of the improved algorithm, commonly used target detection
algorithms were selected for comparative analysis, and the same training strategy and
parameters were used for each group of experiments. The experimental results are shown
in Table 5.

Table 5. Comparison of different lightweight models for tennis ball detection and localization.

Model mAP@0.5 Recall Parameters GFLOPs Weight/MB

YOLOv5s 0.957 0.911 7,022,326 15.8 14.5
SSD 0.839 0.443 26,285,486 63 91

Faster R-CNN 0.93 0.935 28,536,850 181 109
YOLOv5s+Shufflenetv2 0.939 0.915 3,792,950 7.9 8.1
YOLOv5s+Mobilenetv3 0.947 0.895 3,542,756 6.3 7.5

YOLOv3 0.964 0.944 61,523,734 154.9 123.6
YOLOv3-tiny 0.945 0.884 8,669,876 12.9 17.4

YOLOv4 0.909 0.885 64,363,101 60.5 244
YOLOv4-tiny 0.868 0.854 6,056,606 7.0 22.4

YOLOX-s 0.966 0.966 8,968,255 26.9 34.3
YOLOX-tiny 0.971 0.969 5,055,855 15.4 19.4

YOLOv7 0.962 0.97 37,194,710 104.9 71.3
YOLOv7-tiny 0.968 0.98 6,014,038 13.1 11.7

Ours 0.978 0.98 4,100,759 8.8 8.8

From the results of the comparison experiments, it can be seen that the algorithm
proposed in this study had the most comprehensive performance, taking into account
the needs of lightweight models and detection accuracy, with solid generalization ability,
the highest mean accuracy and recall, and slightly more parameters, computation, and
model size than the lightweight neural networks Mobilenet and Shufflenet, but Mobilenet
and Shufflenet had lower mean precision and recall. Compared to the original YOLOv5s
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algorithm, the number of parameters and computation were reduced by 42% and 44%,
respectively, the model size was reduced by 39%, and the average precision improved by
2%, verifying the effectiveness of the improved algorithm. Compared with the classical
target detection algorithms SSD and Faster R-CNN, the overall performance was much
better, with a significant increase in mean accuracy and recall and a significant reduction in
the number of parameters, computation, and model size. The performance of the YOLO
family of target detection algorithms, YOLOv3, YOLOv4, YOLOX, and the lightweight
model, was still much better. Even when compared to the current best-performing YOLOv7
algorithm, the proposed algorithm has better overall performance, reducing the number
of parameters and computation by 32% and 33%, respectively, and the model size by 25%
compared to YOLOv7-tiny, validating the effectiveness of the improved algorithm and the
lightness of the model.

4.5. Ablation Experimental Results and Analysis

To verify the feasibility of the improvement module, six sets of ablation experiments
were designed based on YOLOv5s. The same training strategy was used for each set of
experiments. The results of the ablation experiments are shown in Table 6. Where improve-
ment point 1 indicates the introduction of the lightweight G-Backbone, improvement point
2 indicates the addition of the G-CA attention mechanism, improvement point 3 indicates
the addition of the W-BiFPN module, improvement point 4 indicates the introduction
of EIOU Loss, and improvement point 5 indicates the introduction of the Meta-ACON
activation function.

Table 6. Ablation experiments.

Model G-Backbone G-CA W-BiFPN EIOU Loss Meta-
ACON mAP@0.5 Recall Parameters GFLOPs Weight/MB

YOLOv5s 0.957 0.911 7,022,326 15.8 14.5
Improve1

√
0.956 0.926 3,684,542 8.1 7.9

Improve2
√

0.961 0.919 7,046,934 15.9 14.5
Improve3

√
0.959 0.918 7,170,943 16.4 14.8

Improve4
√

0.963 0.97 7,022,326 15.8 14.5
Improve5

√
0.962 0.931 7,421,478 16.2 15.4

Ours
√ √ √ √ √

0.978 0.98 4,100,759 8.8 8.8

From the results of the ablation experiments, the introduction of G-Backbone signifi-
cantly reduced the number of parameters, computation, and model size of the network
structure. At the same time, the average precision means value remained stable, verifying
the effectiveness of the lightweight module. With the introduction of G-CA and W-BiFPN,
although the number of parameters and computational effort increased slightly, the
mean accuracy and recall rate increased, which verified the effectiveness of the improved
module. With the introduction of EIOU Loss, the number of parameters, computation
volume, and model size remained unchanged. However, the average precision means
value increased slightly, and the recall rate increased by nearly 7%, verifying that the
introduction of EIOU Loss outperforms CIOU Loss and improves the detection accuracy.
With the introduction of Meta-ACON, although the number of parameters, computation,
and model size increased slightly, the mean accuracy and recall rate increased, verify-
ing the effectiveness of the improvement. By incorporating all the improved modules
in this paper, the number of parameters, computation, and model size was reduced.
The mean accuracy and recall rate increased by 2% and 7%, respectively, which combines
the lightweight model and detection accuracy.

4.6. Case Study

We further empirically investigated the detection performance in different scenar-
ios. The detection results are shown in Figure 10, all based on real detection scenarios.
The top row indicates the detection results of the YOLOv5s algorithm, and the bottom row
indicates the detection results of the YOLOv5s-Z algorithm. The detection scenarios are a
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tennis racket on the ground, a tennis court in the morning, a tennis court in the evening,
and an aisle outside the laboratory. Overall, the detection accuracy of the YOLOv5s-Z
algorithm was higher than that of the YOLOv5s algorithm, regardless of the different scenes
or periods of the same scene.

Figure 10. Comparison chart of test results.

5. Conclusions

In order to adapt Robomaster EP for accurate detection and real-time recognition of ten-
nis balls, this paper proposes the YOLOv5s-Z algorithm, constructs lightweight G-Backbone
and G-Neck network layers, proposes a convolutional coordinate attention mechanism, and
incorporates it into the Backbone feature extraction network, which enables the network to
obtain location information of a larger area through multiple convolutions and further en-
hances feature extraction. The G-Neck network layer incorporates a weighted bi-directional
feature pyramid W-BiFPN with settable learning weights to further enhance the feature
fusion capability and achieve more efficient weighted feature fusion and bi-directional
cross-scale connectivity. The Loss function, EIOU Loss, is introduced to split the influence
factor of the aspect ratio based on the penalty term of CIOU Loss to calculate the length
and width of the target and anchor frames, respectively. Meta-ACON’s activation function
is introduced to adaptively select whether to activate the neurons to improve the detection
accuracy. Finally, the YOLOv5s-Z algorithm is deployed into Robomaster EP to achieve
accurate detection and real-time recognition of tennis balls, verifying the effectiveness of
the YOLOv5s-Z algorithm and the lightweight of the model, which has some practical
significance and prospects in the field of tennis ball detection. Further optimization of the
network model will be carried out in future work to optimize the network structure more
comprehensively, to achieve mobile target detection, and to improve detection efficiency
and accuracy.
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