
Citation: Wang, Z.; Liu, R.; Gao, Y.;

Tang, Y. Metro Track Geometry

Defect Identification Model Based on

Car-Body Vibration Data and

Differentiable Architecture Search.

Appl. Sci. 2023, 13, 3457. https://

doi.org/10.3390/app13063457

Academic Editor: Isidro S.

Durazo-Cardenas

Received: 13 February 2023

Revised: 4 March 2023

Accepted: 6 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Metro Track Geometry Defect Identification Model Based on
Car-Body Vibration Data and Differentiable Architecture Search
Zhipeng Wang 1, Rengkui Liu 1, Yi Gao 1 and Yuanjie Tang 2,*

1 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China;
wangzhipeng2017@bjtu.edu.cn (Z.W.)

2 Key Laboratory of Transport Industry, Big Data Application Technologies for Comprehensive Transport,
Beijing Jiaotong University, Beijing 100044, China

* Correspondence: tangyj@bjtu.edu.cn

Abstract: Efficient and low-cost modes for detecting metro track geometry defects (TGDs) are essen-
tial for condition-prediction-based preventive maintenance, which can help improve the safety of
metro operations and reduce the maintenance cost of metro tracks. Compared with the traditional
TGD detection method that utilizes the track geometry car, the method that uses a portable detector
to acquire the car-body vibration data (CVD) can be used on an ordinary in-service train without oc-
cupying the metro schedule line, thereby improving efficiency and reducing the cost. A convolutional
neural network-based identification model for TGD, built on a differentiable architecture search,
is proposed in this study to employ only the CVD acquired by a portable detector for integrated
identification of the type and severity level of TGDs. Second, the random oversampling method is
introduced, and a strategy for applying this method is proposed to improve the poor training effect
of the model caused by the natural class-imbalance problem arising from the TGD dataset. Subse-
quently, a comprehensive performance-evaluation metric (track geometry defect F-score) is designed
by considering the actual management needs of the metro infrastructure. Finally, a case study is
conducted using actual field data collected from Beijing Subway to validate the proposed model.

Keywords: metro; track geometry defect; car-body vibration data; convolution neural network;
network architecture search; differentiable architecture search

1. Introduction

Metro systems are an essential segment of modern large-scale urban transportation sys-
tems. In particular, the track is an essential part of the metro infrastructure, and maintaining
optimal track quality guarantees safe train operation and comfortable passenger rides. Track
geometry is the most widely used indicator of track quality and serves as the foundation
for planning track maintenance activities [1]. This quality indicator is mainly represented
by the following track geometry parameters: the longitudinal level (LL), alignment (AL),
cross-level (CL), gauge (GA), and twist (TW) [2], as shown in Figure 1. Several countries
have specified the management value of the deviation of track geometric parameters [3–5]
and classified the deviation level according to management specifications [3,5]. In particu-
lar, a track geometry defect (TGD) reflects the state in which the track geometric parameter
exceeds the management value. For example, in the field of urban rail transit in China,
the deviation values of dynamic LLs are divided into four levels according to the national
standard GB/T 39559.4-2020, and the management values are 12, 16, 22, and 26 mm [5].
According to the detection values of LL, severity levels of the defects can be determined
based on these thresholds.

For a metro track, TGDs reduce the comfort of passengers and, in serious cases,
affect the safety of train operation and may even lead to a train derailment. Thus, metro-
operating companies employ various countermeasures for different defect severity levels
according to actual management requirements [5,6]. As passenger demand for metro service

Appl. Sci. 2023, 13, 3457. https://doi.org/10.3390/app13063457 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063457
https://doi.org/10.3390/app13063457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13063457
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063457?type=check_update&version=1

Appl. Sci. 2023, 13, 3457 2 of 23

quality is increasing, the metro-infrastructure management industry is gradually moving
toward delicacy management, and condition-prediction-based preventive maintenance
(CPM) for track geometry is gradually emerging as the mainstream technology. Thus,
the foundation of CPM for track geometry is aimed at obtaining accurate and timely
information concerning TGDs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 23

Figure 1. Definition of track geometry parameters.

For a metro track, TGDs reduce the comfort of passengers and, in serious cases, affect
the safety of train operation and may even lead to a train derailment. Thus, metro-
operating companies employ various countermeasures for different defect severity levels
according to actual management requirements [5,6]. As passenger demand for metro
service quality is increasing, the metro-infrastructure management industry is gradually
moving toward delicacy management, and condition-prediction-based preventive
maintenance (CPM) for track geometry is gradually emerging as the mainstream
technology. Thus, the foundation of CPM for track geometry is aimed at obtaining
accurate and timely information concerning TGDs.

The most common method to detect dynamic TGDs involves the use of a track
geometry car (TGC), which is a specialized full-scale track vehicle. The no-contact optical
inertial-based track geometry measurement system is the principal tool used by a TGC to
detect TGDs [7–11]. The system uses accelerometers, gyroscopes, and optical instruments
installed on the TGC to measure the track geometry parameters. However, TGC-based
detection involves high operating costs while offering a low detection frequency. For
example, metro companies in China perform TGC detection every two months [5].
Therefore, the existing TGC-detection method cannot meet the delicacy management
requirements of the metro-infrastructure management industry. In recent years, the metro
industry has employed ordinary in-service trains for detecting TGDs. In particular, the
technology of installing sensors [12,13] onto in-service trains or using portable sensing
devices [14,15] to acquire vehicle vibration data [16] is used for detecting TGDs. This
technology uses accelerometers and gyroscopes to collect data about the motions of
various parts of the vehicle, which are used to estimate the track geometry condition
[9,10,17]. Moreover, portable devices mounted in the cabin are more convenient and
flexible to use for acquiring car-body vibration data (CVD) and reduce the need for sensor
maintenance, which can further improve efficiency and reduce the cost of detection.
However, a complex nonlinear relationship exists between CVD and TGD. Thus, using
portable device-acquired CVD to identify TGDs is a difficult task in field applications, and
this strategy is currently in the preliminary stages of development. Thus, the detection
accuracy and applicable defect types should be further researched.

The main contributions of this study include the following: (1) a metro TGD
identification convolutional neural network (CNN) model based on differential
architecture search (DARTS) is proposed, which realizes the integrated identification of
the type and severity level of TGD, (2) a strategy for coping with the class-imbalance
problem of the dataset when modeling CNN models for TGD identification is proposed,
which reduces the impact of the natural feature of the class-imbalance problem of the
CVD–TGD dataset—a drawback that renders the model difficult to train, (3) a metric for
evaluating the comprehensive performance of the TGD-identification model is proposed,
which prioritizes the missed detection to meet the practical needs of metro track
infrastructure management, and (4) the proposed method is validated with the actual field
data corresponding to the Beijing Subway Line 1.

Figure 1. Definition of track geometry parameters.

The most common method to detect dynamic TGDs involves the use of a track ge-
ometry car (TGC), which is a specialized full-scale track vehicle. The no-contact optical
inertial-based track geometry measurement system is the principal tool used by a TGC to
detect TGDs [7–11]. The system uses accelerometers, gyroscopes, and optical instruments
installed on the TGC to measure the track geometry parameters. However, TGC-based
detection involves high operating costs while offering a low detection frequency. For exam-
ple, metro companies in China perform TGC detection every two months [5]. Therefore,
the existing TGC-detection method cannot meet the delicacy management requirements
of the metro-infrastructure management industry. In recent years, the metro industry has
employed ordinary in-service trains for detecting TGDs. In particular, the technology of
installing sensors [12,13] onto in-service trains or using portable sensing devices [14,15]
to acquire vehicle vibration data [16] is used for detecting TGDs. This technology uses
accelerometers and gyroscopes to collect data about the motions of various parts of the
vehicle, which are used to estimate the track geometry condition [9,10,17]. Moreover,
portable devices mounted in the cabin are more convenient and flexible to use for acquiring
car-body vibration data (CVD) and reduce the need for sensor maintenance, which can
further improve efficiency and reduce the cost of detection. However, a complex nonlinear
relationship exists between CVD and TGD. Thus, using portable device-acquired CVD to
identify TGDs is a difficult task in field applications, and this strategy is currently in the
preliminary stages of development. Thus, the detection accuracy and applicable defect
types should be further researched.

The main contributions of this study include the following: (1) a metro TGD identifica-
tion convolutional neural network (CNN) model based on differential architecture search
(DARTS) is proposed, which realizes the integrated identification of the type and severity
level of TGD, (2) a strategy for coping with the class-imbalance problem of the dataset when
modeling CNN models for TGD identification is proposed, which reduces the impact of
the natural feature of the class-imbalance problem of the CVD–TGD dataset—a drawback
that renders the model difficult to train, (3) a metric for evaluating the comprehensive
performance of the TGD-identification model is proposed, which prioritizes the missed
detection to meet the practical needs of metro track infrastructure management, and (4)
the proposed method is validated with the actual field data corresponding to the Beijing
Subway Line 1.

Appl. Sci. 2023, 13, 3457 3 of 23

2. Literature Review

The vibration data acquired on an in-service train comprises the acceleration and
angular velocity of the axle boxes, bogies, and vehicle bodies [16]. Methods for analyzing
these data can be classified as traditional and machine learning (ML)-based methods.
Traditional methods can be further classified into two categories: mechanism-based and
signal analysis-based methods.

2.1. Traditional Train Vibration Data Analysis Methods

A type of mechanism-based method has been proposed based on the theory of vehicle
system dynamics [18–20]. Particularly, compared with the bogie and car body, the track
geometry estimation using the axle-box vibration data can obtain relatively improved
results because of the presence of a suspension system between the axle boxes, bogies, and
car bodies, as shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 23

2. Literature Review
The vibration data acquired on an in-service train comprises the acceleration and

angular velocity of the axle boxes, bogies, and vehicle bodies [16]. Methods for analyzing
these data can be classified as traditional and machine learning (ML)-based methods.
Traditional methods can be further classified into two categories: mechanism-based and
signal analysis-based methods.

2.1. Traditional Train Vibration Data Analysis Methods
A type of mechanism-based method has been proposed based on the theory of

vehicle system dynamics [18–20]. Particularly, compared with the bogie and car body, the
track geometry estimation using the axle-box vibration data can obtain relatively
improved results because of the presence of a suspension system between the axle boxes,
bogies, and car bodies, as shown in Figure 2.

Figure 2. Schematic of rail vehicle suspension.

The suspension system acts as a filter for the original waveform of the track
geometry, thereby aggravating the nonlinearity between the track geometry and bogie
vibration or track geometry and car-body vibration. However, sensors installed in the axle
boxes are operated under sub-optimal working conditions, and thus, their timely
maintenance is a challenging task. Therefore, researchers prefer to utilize the vibration
data of bogies and car bodies for studying the characteristics [21]. Another type of
mechanism-based method has been proposed, based on the theory of vehicle–track
dynamics implemented via simulation models [22–25] in which the vehicle–track system
is represented as a coupled system [21]. However, owing to heterogeneous influencing
factors, such as the track structure, wheel–rail contact condition, and nonlinear
suspension, the vehicle–track relationship features complex nonlinearities. Therefore, the
mechanism-based method is unable to consider the various influencing factors with
relative ease comprehensively [16], and the accuracy depends on the authenticity and
reliability of the mode of system-parameter selection [26].

The signal analysis-based method directly analyzes the vibration signals [27–29].
However, this method is essentially linear processing of vibration data, and the running
speed is generally assumed constant during processing [26]. In addition, considering that
different TGDs have different features in the vibration signal after passing through the
vehicle, determining the most feasible and effective feature types for each type of TGD is
a challenging task [16].

2.2. ML-Based Train Vibration Data Analysis Method
In recent years, ML-based methods, represented by neural networks, have been

widely used in rail transit infrastructure industries. It is challenging to extract TGD using
CVD only [23]. However, with the development of ML models, certain valuable
achievements have been made in this field [14,15,21,30]. Methods using solely ML models
as classifiers, which is essentially an extension of the signal analysis-based method, still

Figure 2. Schematic of rail vehicle suspension.

The suspension system acts as a filter for the original waveform of the track geometry,
thereby aggravating the nonlinearity between the track geometry and bogie vibration or
track geometry and car-body vibration. However, sensors installed in the axle boxes are
operated under sub-optimal working conditions, and thus, their timely maintenance is
a challenging task. Therefore, researchers prefer to utilize the vibration data of bogies
and car bodies for studying the characteristics [21]. Another type of mechanism-based
method has been proposed, based on the theory of vehicle–track dynamics implemented
via simulation models [22–25] in which the vehicle–track system is represented as a coupled
system [21]. However, owing to heterogeneous influencing factors, such as the track struc-
ture, wheel–rail contact condition, and nonlinear suspension, the vehicle–track relationship
features complex nonlinearities. Therefore, the mechanism-based method is unable to
consider the various influencing factors with relative ease comprehensively [16], and the
accuracy depends on the authenticity and reliability of the mode of system-parameter
selection [26].

The signal analysis-based method directly analyzes the vibration signals [27–29].
However, this method is essentially linear processing of vibration data, and the running
speed is generally assumed constant during processing [26]. In addition, considering that
different TGDs have different features in the vibration signal after passing through the
vehicle, determining the most feasible and effective feature types for each type of TGD is
a challenging task [16].

2.2. ML-Based Train Vibration Data Analysis Method

In recent years, ML-based methods, represented by neural networks, have been widely
used in rail transit infrastructure industries. It is challenging to extract TGD using CVD
only [23]. However, with the development of ML models, certain valuable achievements
have been made in this field [14,15,21,30]. Methods using solely ML models as classifiers,
which is essentially an extension of the signal analysis-based method, still encounter the

Appl. Sci. 2023, 13, 3457 4 of 23

same difficulties in establishing defect features. Although black-box methods utilize models
featuring strong nonlinear representation ability, the selection of the model architecture
still requires further research. Existing models mainly employ the trial method, and thus,
this approach hinders the ability to obtain the optimal model effectively.

2.3. Network Architecture Search in the Field of ML

Designing an ML model suitable for specific application scenarios requires expertise,
extensive knowledge in the professional field, and considerable time to experiment [31].
In particular, the architecture is defined as the components constituting the model and its
hyperparameters [32,33]. To optimize the model’s architectural performance effectively,
researchers have proposed the network architecture search (NAS) theory [34]. This search
strategy determines a model architecture offering the best performance using the search
strategy π(·) based on the model’s performance-evaluation index (L) in a network architec-
ture search space (A) [35]. Assuming that D = {(X, Y)|X, Y ∈ Rn} represents the dataset
used for model training, A ∈ A represents a certain architecture of the model, and w
represents the weights in the model, the general form of NAS is expressed in Equations (1)
and (2):

min
A∼π(A)

L[A(wA), Dvali], (1)

s.t.wA = arg min
w

L[A(w), Dtrain], (2)

where Dvali and Dtrain represent the randomly separated validation and training datasets
obtained via D, respectively. Common search strategies used in NAS problems include
evolutionary algorithms (EA) [35], reinforcement learning (RL) [36,37], and gradient opti-
mization (GO) [32]. Although EA-based and RL-based NAS methods can reduce manual
intervention and obtain better-performing model architectures, these methods require
computational resources that typically run on thousands of graphical processing unit (GPU)
days [34]. To solve these problems, the GO-based NAS method, represented by DARTS [38],
has gradually emerged as a solution. DARTS utilizes a relaxation method to transform the
search space from discrete to continuous and uses a gradient-based method for optimiza-
tion, and eliminates the need for extra components such as Controller [36] or Hypernet [39],
thereby reducing the modeling difficulty and improving the optimization efficiency.

2.4. Discussion of Existing Research

In the problem encountered for TGD identification through portable-device-acquired
CVD, existing research has mainly focused on signal analysis-based methods or ML-based
methods to analyze the CVD. Although ML-based methods have demonstrated their poten-
tial for analyzing complex nonlinear relationships and the preliminary feasibility has been
verified via simulation data, improving the identification accuracy is hindered in actual
scenarios owing to certain obstacles. However, these ML models primarily perform archi-
tectural searches via the black-box trial method, which requires considerable time while
offering a relatively low model performance. The TGD dataset represents a typical class-
imbalanced dataset [40], resulting from a few instances of TGDs in a metro line. Therefore,
a coping strategy is required to construct an ML model for TGD identification. In addition,
existing TGD-identification models mainly leverage general evaluation metrics such as
accuracy, precision, recall, and the area under the receiver’s operating characteristic curve
(AUC-ROC). However, for the direct application of these metrics, the actual management
needs of metro companies are not taken into account.

3. Problem Description
3.1. Basic Problem

The basic problem highlighted in this study was the CVD-based metro-TGD identifi-
cation problem, in which the CVD was acquired using a portable detector. This problem

Appl. Sci. 2023, 13, 3457 5 of 23

was addressed by utilizing the CVD to determine the presence of a TGD on the metro track
and to ascertain its severity level.

(1) The CVD was acquired using a portable detector on an ordinary in-service metro
train in this study, and the data signal included the longitudinal, lateral, and vertical accel-
eration and angular rate of the car body, which conformed to the right-handed coordinate
system (as illustrated in Figure 3A). The data obtained simultaneously also included speed,
mileage, and location information. To minimize the additional influence of vehicle condi-
tions on the CVD, the detector should be installed above the running gear, as depicted in
Figure 3B. The portable detector [14] used in this study was developed by the State Key
Lab of Rail Traffic Control and Safety at Beijing Jiaotong University. The size of the detector
host is 270 mm × 170 mm × 91 mm, and its main components are illustrated in Figure 3C.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23

3. Problem Description
3.1. Basic Problem

The basic problem highlighted in this study was the CVD-based metro-TGD
identification problem, in which the CVD was acquired using a portable detector. This
problem was addressed by utilizing the CVD to determine the presence of a TGD on the
metro track and to ascertain its severity level.

(1) The CVD was acquired using a portable detector on an ordinary in-service metro
train in this study, and the data signal included the longitudinal, lateral, and vertical
acceleration and angular rate of the car body, which conformed to the right-handed
coordinate system (as illustrated in Figure 3A). The data obtained simultaneously also
included speed, mileage, and location information. To minimize the additional influence
of vehicle conditions on the CVD, the detector should be installed above the running gear,
as depicted in Figure 3B. The portable detector [14] used in this study was developed by
the State Key Lab of Rail Traffic Control and Safety at Beijing Jiaotong University. The size
of the detector host is 270 mm × 170 mm × 91 mm, and its main components are illustrated
in Figure 3C.

Figure 3. (A) CVD coordinate system; (B) CVD acquisition location; (C) structure of the portable
detector.

(2) A type of TGD, denoted 𝐶. The severity level of this defect, 𝐶, was classified into
several levels according to the management regulations of the metro company, and the
absence of defects was considered as a state of defect, 𝐶, in this study.

3.2. Transformed Problem
The time-series signal-processing ability of CNNs is identical to that of recurrent

neural networks (such as long short-term memory) but at a faster training speed [33], and
these networks have been used to process vibration-signal data in several studies [32]. In
this study, a metro TGD-identification CNN (MTGDI-CNN) based on DARTS is proposed
to solve the CVD-based metro-TGD identification problem. Essentially, the basic problem
is transformed into an MTGDI-CNN development problem. The research framework is
shown in Figure 4. This study builds a metro TGD identification model based on a CNN,
and uses the CVD and heterogeneity factors collected on in-service trains to construct
samples suitable for the CNN model input. At the same time, it is assumed that the
detection results obtained by the TGC are reliable, and the defect detection results are
considered to be actual defects on the track. Thus, the samples are labeled with the TGC-
defect reports collected on the same track at the same time as the CVD, to form the CVD-
TGD dataset. Based on the dataset, the DARTS method is introduced to construct a
MTGDI-CNN.

Figure 3. (A) CVD coordinate system; (B) CVD acquisition location; (C) structure of the portable detector.

(2) A type of TGD, denoted C. The severity level of this defect, C, was classified into
several levels according to the management regulations of the metro company, and the
absence of defects was considered as a state of defect, C, in this study.

3.2. Transformed Problem

The time-series signal-processing ability of CNNs is identical to that of recurrent
neural networks (such as long short-term memory) but at a faster training speed [33], and
these networks have been used to process vibration-signal data in several studies [32]. In
this study, a metro TGD-identification CNN (MTGDI-CNN) based on DARTS is proposed
to solve the CVD-based metro-TGD identification problem. Essentially, the basic problem
is transformed into an MTGDI-CNN development problem. The research framework is
shown in Figure 4. This study builds a metro TGD identification model based on a CNN,
and uses the CVD and heterogeneity factors collected on in-service trains to construct
samples suitable for the CNN model input. At the same time, it is assumed that the
detection results obtained by the TGC are reliable, and the defect detection results are
considered to be actual defects on the track. Thus, the samples are labeled with the
TGC-defect reports collected on the same track at the same time as the CVD, to form the
CVD-TGD dataset. Based on the dataset, the DARTS method is introduced to construct
a MTGDI-CNN.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23

Figure 4. Framework of this study.

The training process of a CNN model represents an optimization problem, as shown
in Equations (3) and (4). min(|𝒘) 𝐿(𝑌, 𝑌), (3)

s. t.(𝑋, 𝑌) ∈ 𝑫 , (4)

where 𝑿 ∈ 𝑹 denotes the sample, 𝑌 = 0,1,2, … indicates the label and 𝑌 is its
prediction, 𝐿 denotes the loss function, 𝑓 represents a CNN model, 𝒘 symbolizes the
weights in the model, 𝑫 ⊂ 𝑫 = {(𝑿, 𝑌)|𝑿 ∈ 𝑹 , 𝑌 = 0,1, … } indicates the training
dataset split from the original dataset 𝑫, and 𝑫 denotes a dataset comprising samples
and labels. Each pair (𝑿, 𝑌) in 𝑫 is termed an example, and 𝑫 is also named an example
dataset. Further work is required to solve the MTGDI-CNN development problem.

(1) Design rules for CVD–TGD example dataset generation investigates the method
of transforming the original data and prediction target in the CVD-based metro-TGD
identification problem into input and output suitable for MTGDI-CNN. Moreover, it
needs to consider 1) the method for transforming continuous CVD into discrete samples
suitable for CNN input and 2) the heterogeneous factors between CVD and TGD that need
to be introduced when generating the sample.

(2) MTGDI-CNN architecture design, training, and evaluation. The model
architecture is designed according to the example dataset. CVD and TGD have a complex
functional relationship that warrants an increase in the number of CNN layers to fit.
However, adding layers to a CNN model with an ordinary simple architecture will lead
to overfitting, thereby reducing the identification performance of the model [14].
Therefore, the NAS problem of MTGDI-CNN is a key problem to be addressed in the
MTGDI-CNN development. This scheme must also consider (1) the reduction in the
search space in Equations (1) and (2) the improvement of the training speed in Equations
(2) and (3) the strategy to cope with the class-imbalance problem in the TGD dataset, and
(4) the evaluation of the comprehensive performance of different model architectures in
the context of the practical needs of metro management.

4. Metro Track Geometry Defect Identification Model and its Optimization Method
4.1. Example Dataset Design

Each example in the dataset comprised a sample and label. The samples were
generated using CVD, and the label was generated based on the same period as that
reported by the TGC detection. The TGC detection report included the time, line
information, and TGD records. The TGD record comprised the location, length, type,
severity level, and other information concerning each defect.

4.1.1. Sample Generation Rules
Considering that the longitudinal acceleration is directly affected by the acceleration

and deceleration of the train, this parameter was not included in the sample generation in
this study, and only the remaining five vibration signals are considered—the lateral and

Figure 4. Framework of this study.

Appl. Sci. 2023, 13, 3457 6 of 23

The training process of a CNN model represents an optimization problem, as shown
in Equations (3) and (4).

min
Ŷ= f (X|w)

L
(
Ŷ, Y

)
, (3)

s.t.(X, Y) ∈ Dtrain, (4)

where X ∈ Rn denotes the sample, Y = 0, 1, 2, . . . indicates the label and Ŷ is its prediction,
L denotes the loss function, f represents a CNN model, w symbolizes the weights in the
model, Dtrain ⊂ D = {(X, Y)|X ∈ Rn, Y = 0, 1, . . .} indicates the training dataset split from
the original dataset D, and D denotes a dataset comprising samples and labels. Each pair
(X, Y) in D is termed an example, and D is also named an example dataset. Further work is
required to solve the MTGDI-CNN development problem.

(1) Design rules for CVD–TGD example dataset generation investigates the method
of transforming the original data and prediction target in the CVD-based metro-TGD
identification problem into input and output suitable for MTGDI-CNN. Moreover, it needs
to consider 1) the method for transforming continuous CVD into discrete samples suitable
for CNN input and 2) the heterogeneous factors between CVD and TGD that need to be
introduced when generating the sample.

(2) MTGDI-CNN architecture design, training, and evaluation. The model architec-
ture is designed according to the example dataset. CVD and TGD have a complex functional
relationship that warrants an increase in the number of CNN layers to fit. However, adding
layers to a CNN model with an ordinary simple architecture will lead to overfitting, thereby
reducing the identification performance of the model [14]. Therefore, the NAS problem of
MTGDI-CNN is a key problem to be addressed in the MTGDI-CNN development. This
scheme must also consider (1) the reduction in the search space in Equations (1) and (2)
the improvement of the training speed in Equations (2) and (3) the strategy to cope with
the class-imbalance problem in the TGD dataset, and (4) the evaluation of the comprehen-
sive performance of different model architectures in the context of the practical needs of
metro management.

4. Metro Track Geometry Defect Identification Model and Its Optimization Method
4.1. Example Dataset Design

Each example in the dataset comprised a sample and label. The samples were gener-
ated using CVD, and the label was generated based on the same period as that reported by
the TGC detection. The TGC detection report included the time, line information, and TGD
records. The TGD record comprised the location, length, type, severity level, and other
information concerning each defect.

4.1.1. Sample Generation Rules

Considering that the longitudinal acceleration is directly affected by the acceleration
and deceleration of the train, this parameter was not included in the sample generation
in this study, and only the remaining five vibration signals are considered—the lateral
and vertical acceleration and the longitudinal, lateral, and vertical angular rates of the

car body, denoted as I = [
..
y,

..
z,

.
α,

.
β,

.
γ]

T
, and the sampling frequency is denoted as fs. The

CVD is highly correlated with the state of the track geometry variation [27], is significantly
influenced by running speed [12], and is affected by the different vibration features under
different vehicular conditions [41]. Therefore, the CVD (I), running speed, and vehicle
condition information were used to generate sample X to account for the influence of these
heterogeneous factors.

To fit the input of the CNN model, a continuous I must be segmented. The actual
metro-line mileage length of a data segment is denoted as s, and the data segment is
denoted as Is. Because I is equal-time-interval (ETI) data with frequency, fs, the data
count of Is varies, and the direct application of Is for sample generation results in different
sample sizes, as indicated in Figure 5A. The reshaping technique, which depends on

Appl. Sci. 2023, 13, 3457 7 of 23

interpolation or downsampling, is a widely used strategy to address this situation in ML,
such as difference-size image-processing tasks. Considering that equal-distance-interval
(EDI) data (refer to Figure 5B) are usually leveraged in the field of track geometry detection,
and the root mean square (RMS) value of the vibration signal is closely related to the track
condition [15,42], an RMS-based [11] method is utilized to replace the reshaping technique
in this study, which converts I to EDI data such that Is features the same data count. The
minimum data interval in the EDI data is d, which is affected by the operating speed and
the general length of TGDs, and this interval is usually 0.25 m [1].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 23

vertical acceleration and the longitudinal, lateral, and vertical angular rates of the car
body, denoted as 𝑰 = 𝑦, 𝑧, 𝛼, 𝛽, 𝛾 , and the sampling frequency is denoted as 𝑓 . The
CVD is highly correlated with the state of the track geometry variation [27], is significantly
influenced by running speed [12], and is affected by the different vibration features under
different vehicular conditions [41]. Therefore, the CVD (𝑰), running speed, and vehicle
condition information were used to generate sample 𝑿 to account for the influence of
these heterogeneous factors.

To fit the input of the CNN model, a continuous 𝑰 must be segmented. The actual
metro-line mileage length of a data segment is denoted as 𝑠, and the data segment is
denoted as 𝑰 . Because 𝑰 is equal-time-interval (ETI) data with frequency, 𝑓 , the data
count of 𝑰 varies, and the direct application of 𝑰 for sample generation results in
different sample sizes, as indicated in Figure 5A. The reshaping technique, which depends
on interpolation or downsampling, is a widely used strategy to address this situation in
ML, such as difference-size image-processing tasks. Considering that equal-distance-
interval (EDI) data (refer to Figure 5B) are usually leveraged in the field of track geometry
detection, and the root mean square (RMS) value of the vibration signal is closely related
to the track condition [15,42], an RMS-based [11] method is utilized to replace the
reshaping technique in this study, which converts 𝑰 to EDI data such that 𝑰 features the
same data count. The minimum data interval in the EDI data is 𝑑, which is affected by the
operating speed and the general length of TGDs, and this interval is usually 0.25 m [1].

Figure 5. (A) ETI data; (B) transformed EDI data; (C) zoom-in ETI data; (D) zoom-in transformed
EDI data. (the RMS means root mean square)

As demonstrated in Figure 5C, let 𝑰 contain 𝑛 points in the minimum mileage data
interval, 𝑑 , and the RMS value of 𝑖th type of vibration signal of these points can be
calculated using Equation (5).

ℎ = 1𝑛 ℎ() , (5)

where 𝑖 = 1,2, … ,5 denotes the different types of vibration signals, 𝑗 = 1,2, … 𝑛
represents the 𝑗th point in mileage interval 𝑑, ℎ() symbolizes the value of the 𝑗th point
of 𝑖th type of vibration signal, and ℎ indicates the RMS value of the 𝑖th type of
vibration signal. The converted EDI 𝑰 is denoted as 𝑰∗, as indicated in Figure 5D. The
data segment of 𝑰 within the mileage range, 𝑠, is denoted as 𝑰∗, where the point count is 𝑛∗ = 𝑆/𝑑. 𝑰∗ is combined as an 𝑛∗ × 5 matrix by mileage arranged form the smallest to
largest, which is denoted as 𝑰𝒔. Finally, generating the sample 𝑿 of the data segment
with 𝑰 , average speed �̅� in the data segment and data-acquisition-train code, 𝑒 (𝑒 =0,1, …), as expressed in Equation (6).

Figure 5. (A) ETI data; (B) transformed EDI data; (C) zoom-in ETI data; (D) zoom-in transformed
EDI data. (the RMS means root mean square).

As demonstrated in Figure 5C, let I contain n points in the minimum mileage data
interval, d, and the RMS value of ith type of vibration signal of these points can be calculated
using Equation (5).

hRMS
i =

√√√√ 1
n

n

∑
j=1

(
h(j)

i

)2
, (5)

where i = 1, 2, . . . , 5 denotes the different types of vibration signals, j = 1, 2, . . . n represents
the jth point in mileage interval d, h(j)

i symbolizes the value of the jth point of ith type of
vibration signal, and hRMS

i indicates the RMS value of the ith type of vibration signal. The
converted EDI I is denoted as I∗, as indicated in Figure 5D. The data segment of I within
the mileage range, s, is denoted as I∗s , where the point count is n∗ = S/d. I∗s is combined as
an n∗×5 matrix by mileage arranged form the smallest to largest, which is denoted as Is.
Finally, generating the sample Xs of the data segment with Is, average speed vs in the data
segment and data-acquisition-train code, e (e = 0, 1, . . .), as expressed in Equation (6).

Xs =
[
Is η·vs η·e

]
, (6)

where η =
[
1 1 · · · 1

]T
1×n∗ .

4.1.2. Sample Labeling Rules

In this study, the no-defect situation was considered as the state of defect, C. When the
metro TGD is divided into nC severity levels according to the metro company’s management
regulations, nC + 1 states of the defect C are present, corresponding to integers 0 to nC. In
addition, the track segment within a mileage range of length s was assumed to contain
only one possible severity level corresponding to the defect. The assignment of label

Appl. Sci. 2023, 13, 3457 8 of 23

Ys corresponding to sample data Xs within a mileage range of length, s, is represented
in Equation (7).

Ys =

0, no defect C in range s
1, level− I defect C in range s

· · ·
nC, level−nc defect C in range s

(7)

4.2. MTGDI-CNN Based on DARTS
4.2.1. Model Architecture

The CVD is natural multi-channel one-dimensional (1D) data, and the signal amplitude
of each channel fluctuates with the track mileage as a dimension. However, the specific
type of TGD generally responds to the CVD of multiple channels [13,15,18,19]. Moreover,
the vibration caused by the vehicle condition will be reflected in all CVD channels, and
the intensity of these vibrations also varies with the operating speed [13,24]. Therefore, the
metro TGD-identification model requires not only the ability to analyze various vibration
data channels but also the ability to analyze the relationship between different channels.
The most commonly used convolution operations in CNN are 1D convolution or two-
dimensional (2D) convolution operations. One-dimensional convolution operation offers
a more direct approach for processing the original vibration data for TGD identification
without introducing other feature-extraction methods [43,44]. Several related studies have
been conducted in the field of defect identification [32,45]. However, 1D convolution
assumes that different channels of vibration data are relatively independent, and the
ability to handle the relationship between different channels of vibration data is relatively
weak. Considering the characteristics of CVD, the use of 1D convolution will reduce
the TGD-identification performance. In this study, a 2D convolution was employed, and
an MTGDI-CNN based on DARTS was proposed by collocating the vibration signals into
2D data, which realized the identification of metro TGD using a portable detector. The
overall architecture of the model is illustrated in Figure 6.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 23

Figure 6. Structure of MTGDI-CNN based on DARTS optimization method.

4.2.2. Cell Architecture
Because directly searching for a space composed of connections between all

operation layers is a challenging task, considering the presence of several identical
architectures in neural networks, in the study of NAS, the entire network can be regarded
as a stack of several cells with the same architecture, and only the cell architecture is
targeted during the architecture search to mitigate the difficulty of the NAS problem [38].
The EA-based or RL-based methods, even in the face of the reduced search space of the
cell architecture, still require a significant period of time. Accordingly, DARTS was
employed in this study to search the cell architecture for solving the NAS problem in the
MTGDI-CNN development.

The TGD is reflected as the amplitude variations of the CVD In an input sample. After
processing via a feature extraction operation such as convolution, these variations are
transformed into multiple sets of numerical vectors or matrices, which are called feature
maps [46] and represent the vibration features of the TGD. As illustrated in Figure 7, a cell
is a directed acyclic graph comprising several feature maps as nodes and feature
extraction operations as edges [38]. Three fixed nodes and several intermediate nodes in
each cell can be observed. Two of the fixed nodes serve as the input nodes, receiving the
input of the previous cell, and a single node serves as the output. Each intermediate node
is connected to the other two intermediate or input nodes, and all intermediate nodes are
connected to the output node through concatenation. Additionally, the cells are classified
into normal and reduced cells [47]. Moreover, the output feature map of the normal cell
possesses the same size and channel number as those of the input. The output feature map
of the reduction cell is half the size and twice the number of channels of the input. Such a
cell architecture can not only extract the features of different lengths of TGDs but also deal
with the relationship between different features.

Figure 6. Structure of MTGDI-CNN based on DARTS optimization method.

The main body of the MTGDI-CNN is composed of stacked cells, the input is sample
Xs generated from the CVD and heterogeneous factors, which are the speed and vehicle
conditions, whereas the output is the predicted label Ŷs of the severity level of defect C

Appl. Sci. 2023, 13, 3457 9 of 23

within the mileage range, s. The input Xs is processed by the initial convolution (Init Conv)
and subsequently processed by the stacking structure comprising the normal and reduction
cells to output the predicted label, Ŷs. Each cell in the stacked structure is connected to the
previous two cells. The model contains two reduction cells located at 1/3 and 2/3 of the
total number of cells. Each reduction cell is preceded by several normal cells.

4.2.2. Cell Architecture

Because directly searching for a space composed of connections between all operation
layers is a challenging task, considering the presence of several identical architectures in
neural networks, in the study of NAS, the entire network can be regarded as a stack of
several cells with the same architecture, and only the cell architecture is targeted during
the architecture search to mitigate the difficulty of the NAS problem [38]. The EA-based or
RL-based methods, even in the face of the reduced search space of the cell architecture, still
require a significant period of time. Accordingly, DARTS was employed in this study to
search the cell architecture for solving the NAS problem in the MTGDI-CNN development.

The TGD is reflected as the amplitude variations of the CVD In an input sample. After
processing via a feature extraction operation such as convolution, these variations are
transformed into multiple sets of numerical vectors or matrices, which are called feature
maps [46] and represent the vibration features of the TGD. As illustrated in Figure 7, a cell
is a directed acyclic graph comprising several feature maps as nodes and feature extraction
operations as edges [38]. Three fixed nodes and several intermediate nodes in each cell can
be observed. Two of the fixed nodes serve as the input nodes, receiving the input of the
previous cell, and a single node serves as the output. Each intermediate node is connected
to the other two intermediate or input nodes, and all intermediate nodes are connected to
the output node through concatenation. Additionally, the cells are classified into normal
and reduced cells [47]. Moreover, the output feature map of the normal cell possesses
the same size and channel number as those of the input. The output feature map of the
reduction cell is half the size and twice the number of channels of the input. Such a cell
architecture can not only extract the features of different lengths of TGDs but also deal with
the relationship between different features.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 23

Figure 6. Structure of MTGDI-CNN based on DARTS optimization method.

4.2.2. Cell Architecture
Because directly searching for a space composed of connections between all

operation layers is a challenging task, considering the presence of several identical
architectures in neural networks, in the study of NAS, the entire network can be regarded
as a stack of several cells with the same architecture, and only the cell architecture is
targeted during the architecture search to mitigate the difficulty of the NAS problem [38].
The EA-based or RL-based methods, even in the face of the reduced search space of the
cell architecture, still require a significant period of time. Accordingly, DARTS was
employed in this study to search the cell architecture for solving the NAS problem in the
MTGDI-CNN development.

The TGD is reflected as the amplitude variations of the CVD In an input sample. After
processing via a feature extraction operation such as convolution, these variations are
transformed into multiple sets of numerical vectors or matrices, which are called feature
maps [46] and represent the vibration features of the TGD. As illustrated in Figure 7, a cell
is a directed acyclic graph comprising several feature maps as nodes and feature
extraction operations as edges [38]. Three fixed nodes and several intermediate nodes in
each cell can be observed. Two of the fixed nodes serve as the input nodes, receiving the
input of the previous cell, and a single node serves as the output. Each intermediate node
is connected to the other two intermediate or input nodes, and all intermediate nodes are
connected to the output node through concatenation. Additionally, the cells are classified
into normal and reduced cells [47]. Moreover, the output feature map of the normal cell
possesses the same size and channel number as those of the input. The output feature map
of the reduction cell is half the size and twice the number of channels of the input. Such a
cell architecture can not only extract the features of different lengths of TGDs but also deal
with the relationship between different features.

Figure 7. Cell architecture (the number 0-3 means the order of the intermediate nodes).

4.2.3. Computing Operation Architecture

The 2D computing operations were employed as the cell edge to process the sam-
ple data Xs for solving the CVD-based metro-TGD identification problem. The cell edge
included a 2D depth separable convolution block (2D DSCB), 2D dilated separable convo-
lution block (2D DiSCB), 2D max pooling (2D MaxPool), 2D average pooling (2D AvgPool),
and void operation (only connecting without computing). Specific architectures of the 2D
DSCB and 2D DiSCB are described in the following paragraphs.

The convolution-extracted feature is determined using the channel number of the
convolution kernel. Therefore, the channel number of the kernel increases layerwise in
a CNN model to fully extract the features. The kernel operates with all channels of the
input feature map in an ordinary convolution. If ordinary convolution is used to process
the CVD, the number of neural network computations will increase rapidly owing to the

Appl. Sci. 2023, 13, 3457 10 of 23

increase in the number of channels and cells, which leads to complexity in model training
and a sub-par identification performance.

To mitigate this problem, several efficient neural networks have recently introduced op-
erations such as deep separable convolution (DSC) [48] and dilation convolution (DiC) [49].
The DSC consists of two core elements: depthwise convolution and pointwise convolution.
Depthwise convolution maintains a certain kernel width, but each kernel only processes
one channel of the input feature map. The width of the pointwise convolution kernel is
1, and all channels of the input feature map are processed simultaneously. Using such
a two-step convolution, a reduction in the computation number can be achieved while
maintaining the feature extraction capability. The kernel of the DiC does not operate with
the continuous adjacent elements of the input feature map but operates at a certain interval.
For example, when the kernel width is three and the dilation parameter is one, the elements
of the input data X for the ith operation with the DiC kernel change from [xi−1, xi, xi+1] to
[xi−2, xi, xi+2]. The number of computations does not change, and the receptive field of the
kernel expands. Such a DiC allows the kernel to cover a larger range of data by using the
same number of computations, thereby improving the efficiency of feature extraction.

Therefore, to ensure accuracy and considerably reduce the computation number, 2D
DSCB and 2D DiSCB were used to replace ordinary convolution when constructing the
cells of MTGDI-CNN in this study. In addition to depthwise, pointwise, and dilation
convolution, 2D DSCB and 2D DiSCB also include 2D batch normalization (2D BN) [50]
and nonlinear rectified unit (ReLU) [51] to maintain the capability of independent feature
extraction and replacement of arbitrary edges in a cell. The operations in a 2D DSCB or 2D
DiSCB are arranged in the order of ReLU-Conv-BN [47,52], as illustrated in Figure 8. The
kernel sizes in the 2D DSCB and 2D DiSCB can be set to different values to extract different
sizes of TGD vibration features.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 23

Figure 7. Cell architecture (the number 0-3 means the order of the intermediate nodes).

4.2.3. Computing Operation Architecture
The 2D computing operations were employed as the cell edge to process the sample

data 𝑿 for solving the CVD-based metro-TGD identification problem. The cell edge
included a 2D depth separable convolution block (2D DSCB), 2D dilated separable
convolution block (2D DiSCB), 2D max pooling (2D MaxPool), 2D average pooling (2D
AvgPool), and void operation (only connecting without computing). Specific architectures
of the 2D DSCB and 2D DiSCB are described in the following paragraphs.

The convolution-extracted feature is determined using the channel number of the
convolution kernel. Therefore, the channel number of the kernel increases layerwise in a
CNN model to fully extract the features. The kernel operates with all channels of the input
feature map in an ordinary convolution. If ordinary convolution is used to process the
CVD, the number of neural network computations will increase rapidly owing to the
increase in the number of channels and cells, which leads to complexity in model training
and a sub-par identification performance.

To mitigate this problem, several efficient neural networks have recently introduced
operations such as deep separable convolution (DSC) [48] and dilation convolution (DiC)
[49]. The DSC consists of two core elements: depthwise convolution and pointwise
convolution. Depthwise convolution maintains a certain kernel width, but each kernel
only processes one channel of the input feature map. The width of the pointwise
convolution kernel is 1, and all channels of the input feature map are processed
simultaneously. Using such a two-step convolution, a reduction in the computation
number can be achieved while maintaining the feature extraction capability. The kernel
of the DiC does not operate with the continuous adjacent elements of the input feature
map but operates at a certain interval. For example, when the kernel width is three and
the dilation parameter is one, the elements of the input data 𝑿 for the 𝑖th operation with
the DiC kernel change from 𝒙 , 𝒙 , 𝒙 to 𝒙 , 𝒙 , 𝒙 . The number of computations
does not change, and the receptive field of the kernel expands. Such a DiC allows the
kernel to cover a larger range of data by using the same number of computations, thereby
improving the efficiency of feature extraction.

Therefore, to ensure accuracy and considerably reduce the computation number, 2D
DSCB and 2D DiSCB were used to replace ordinary convolution when constructing the
cells of MTGDI-CNN in this study. In addition to depthwise, pointwise, and dilation
convolution, 2D DSCB and 2D DiSCB also include 2D batch normalization (2D BN) [50]
and nonlinear rectified unit (ReLU) [51] to maintain the capability of independent feature
extraction and replacement of arbitrary edges in a cell. The operations in a 2D DSCB or
2D DiSCB are arranged in the order of ReLU-Conv-BN [47,52], as illustrated in Figure 8.
The kernel sizes in the 2D DSCB and 2D DiSCB can be set to different values to extract
different sizes of TGD vibration features.

Figure 8. Architecture of (A) 2D DSCB; (B) 2D DiSCB. Figure 8. Architecture of (A) 2D DSCB; (B) 2D DiSCB.

4.2.4. Cell Architecture Search Based on DARTS

Because of the aforementioned design, the cell has the ability to extract vibration
features efficiently, but the connection mode of the feature maps (cell architecture) needs to
be optimized according to the characteristics of the CVD-based metro-TGD identification
problem. Cell architecture search (CAS) is a two-level optimization problem, as indicated
in (1) and (2). In the problem, the cell needs several intermediate nodes and various
computing operation kernel sizes to extract the vibration features of different-length TGD
and analyze the relationship between the features. Therefore, the search space in (1) is still
considerably large. However, the train-to-convergence process formulated in (2) requires
considerable time. Therefore, the CAS persists as a difficult problem.

DARTS [38] was introduced to address this problem. To effectively search in the CAS
search space, DARTS changed the space from discrete to continuous and used the gradient-
descent method to improve the search speed. To reduce the time assumption of inner
optimization, DARTS replaces the training-to-convergence process with a second-order

Appl. Sci. 2023, 13, 3457 11 of 23

approximation of the optimal weights based only on the first-generation training results.
In a cell, the feature map p(j) of the intermediate node j is calculated using Equation (8).

p(j) = ∑
i<j

o(i,j)
(

p(i)
)

, (8)

where o(i,j) denotes the computing operation that connects nodes i and node j. The tradi-
tional NAS search method involves searching for different combinations of o(i,j) discretely.
In contrast, DARTS converts the fixed operation o(i,j) between nodes into a mixed opera-
tion o(i,j), which is defined by a softmax value of all kinds of operations combined with
weights α

(i,j)
o , thereby changing the connection between nodes from discrete type selection

to continuous weight change and realizing the transformation of discrete search space to
the continuous variant, as demonstrated in Equation (9).

o(i,j)(p) = ∑
o∈O

exp
(

α
(i,j)
o

)
∑o′∈O exp

(
α
(i,j)
o′

) o(p), (9)

where o(i,j) denotes the mixed operations between node pairs (i, j), O denotes the set of all
alternative operations, and α(i,j) denotes the weight vector of the elements in O. When the
search is completed, the operation with the largest weight is utilized to replace the mixed
operation, that is, the discrete cell architecture is restored, as expressed in Equation (10).

o(i,j) = argmax
o∈O

α
(i,j)
o′ (10)

Let α denote all architecture parameters in model architecture A. The two-layer optimiza-
tion model of Equations (1) and (2) can be expressed as Equations (11) and (12), respectively.

min
α

Lvali(wα, α), (11)

s.t.wα = arg min
w

Ltrain(w, α), (12)

where Lvali denotes L(·, Dvali), and Ltrain represents L(·, Dtrain). Because (10) transforms
the search space of the cell architecture into a continuous space, the gradient method can
be employed for α-optimization in Equation (12), that is, along the gradient ∇αLvali(wα, α)
to determine the minimum value iteratively. However, considerable time is required to
train wα to converge; thus, DARTS only conducts one-generation training, utilizes its result
to estimate the gradient to update w, and assumes the updated w as the approximate value
of wα, as represented in Equation (13).

wα ≈ w′ = w− ξ∇wLtrain(w, α), (13)

where ξ denotes a small real number, termed the learning rate, and w′ represents the
approximate value of wα. The chain rule [53] is applied to further expand the gradient
∇αLvali(wα, α), as illustrated in Equation (14).

∇αLvali(wα, α) ≈ ∇αLvali
(
w′, α

)
− ξ∇2

α,wLtrain(w, α) ∇w′Lvali
(
w′, α

)
, (14)

Because the second term of Equation (14) is a difficult parameter to calculate, DARTS
employs the finite-difference approximation method to approximate it, as in Equation (15).

∇2
α,wLtrain(w, α)∇w′Lvali

(
w′, α

)
≈ ∇αLtrain(w+, α)−∇αLtrain(w−, α)

2ε
, (15)

where ε denotes a sufficiently small real number, generally assumed to be ε = 0.01/
∇w′Lvali(w′, α), and w± = w± ε∇w′Lvali(w′, α).

Appl. Sci. 2023, 13, 3457 12 of 23

4.2.5. Coping with Dataset Class-Imbalance Problem

Considering that the metro TGD represents an aberration and the limited number
of physical instances of TGD in normal-operation metro tracks, the generated CVD–TGD
example dataset, as detailed in Section 4.1, is a class-imbalance dataset. In general, the num-
ber of no-defect examples is considerably greater than that of level-II-defect examples [14].
The direct application of such a dataset for MTGDI-CNN training will lead to a detrimental
effect [54], wherein the model will experience difficulties in learning features of a minority
class of severity level, thereby reducing the effectiveness of the identification performance
of this severity level. This problem is usually solved by weighting the model classification
threshold or resampling the example dataset in the ML-based method. However, the
threshold-weighting method must estimate the proportion of each class in advance; there-
fore, this approach is not applicable to CVD-based metro-TGD identification problem. The
resampling method is classified into oversampling (OS) and undersampling (DS) methods.
In particular, OS methods can be further classified as random OS (ROS) and synthetic
minority oversampling techniques (SMOTE) [55]. SMOTE is a cluster-based synthesis
method for minority class examples. Using the DS method results in several unlearned
no-defect examples, and employing SMOTE yields several learned non-existing examples.
Considering the high imbalance ratio and nonlinearity in CVD-based metro-TGD iden-
tification problem, the DS and SMOTE methods reduce the identification performance.
Therefore, this study proposes the ROS method to address the class-imbalance problem in
the MTGDI-CNN development, that is, to copy examples of a minority class of severity
levels randomly.

Notably, the MTGDI-CNN was constructed in two stages: CAS and final model vali-
dation (FMV). To ensure that the model had sufficient generalization capability, a strategy
using ROS only in the FMV training process was proposed. Considering that in CAS,
the model architecture changes according to the features of the input example, the ROS
method is not used in this stage to prevent excessive adaptation of the model architecture
to the features of a minority class. In the FMV, the ROS method is employed to process the
training dataset such that the model achieves improved training results.

4.3. Model-Performance Evaluation Metric
4.3.1. Selection Principles of Model-Performance Evaluation Metrics

Specific application scenarios must be considered when selecting the metrics for
evaluating the model performance. When conducting TGD detection, metro companies are
maximally concerned with the situation in which the actual TGD is not detected (missed
detection) and the situation in which the detected TGD does not match the actual severity
level (false alarm). Owing to the high requirement for the safety of metro operation, the
situation of missed detections warrants more attention than that of false alarms. In addition,
for the locations of false alarms, after high-frequency detection, they are relatively easy to
confirm and eliminate.

4.3.2. TGD-Identification Performance-Evaluation Metric

The common evaluation metrics used in ML classification tasks are the precision and
recall metrics. The higher the precision, the fewer will be the frequency of false alarms;
the higher the recall, the fewer will be the frequency of missed detections. To account for
the precision and recall, using their harmonic mean Fβ-score is a prerequisite [56], where β
represents the weighting factor of the recall, indicating the importance of the recall relative
to the precision.

Considering the existence of different classes of severity levels, this study constructs
a TGD F-score (FTGD

2) (based on the Fβ-score of β = 2 under each severity level of TGD),
which is used to evaluate the comprehensive diagnosis performance of the model in the
MTGDI-CNN development problem, as shown in Equations (16)–(19). FTGD

2 is the harmonic
average of the comprehensive prediction performance of the model for each severity level.

Appl. Sci. 2023, 13, 3457 13 of 23

The higher the value, the better the comprehensive identification performance of the model
for each severity level of a defect.

FTGD
2 =

(nc + 1)·∏nc
i=0 F(i)

2

∑nc
i=0

(
1

F(i)
2

∏nc
i=0 F(i)

2

) , (16)

F(i)
2 =

5·P·R
4P + R

, (17)

P(i) =
TP(i)

TP(i) + FP(i)
, (18)

R(i) =
TP(i)

TP(i) + FN(i)
, (19)

where i represents the class of severity levels of TGD, TP(i) depicts the number of true
positive cases (prediction class is i, and true class is i) with class i, FP(i) symbolizes the
number of false positive cases (prediction class is i, and true class is not i) with class i, FN(i)

represents the number of false negative cases (prediction class is not i, and true class is i)
with class i, P(i) denotes the precision value of class i, R(i) represents the recall value of
class i, and F(i)

2 implies the F2-score value of class i.
In addition, the occurrence of false positives (FP) and false negatives (FN) is often

measured by the metrics false discovery rate (FDR) and false negative rate (FNR), as shown
in Equations (20) and (21), respectively. Furthermore, there is a relationship between these
metrics and precision and recall, as shown in Equations (22) and (23). Therefore, when F(i)

2
is high, the proportion of FP and FN in the model will be low.

FDR(i) =
FP(i)

TP(i) + FP(i)
, (20)

FNR(i) =
FN(i)

TP(i) + FN(i)
, (21)

FDR(i) = 1− P(i), (22)

FNR(i) = 1− R(i), (23)

where FDR(i) denotes the false discovery rate value of class i, and FNR(i) represents the
false negative rate value of class i.

5. Case Study
5.1. Case Data Description

The actual field dataset was acquired by the authors from 14 December 2020 to
16 December 2020, in Beijing Subway Line 1 captured via the portable detector, as described
in Section 3.1. CVD acquisition was conducted for twelve iterations (eleven of them were
complete runs, and one run lacked a metro section), six iterations for the down-direction
track, and six iterations for the up-direction. Seven in-service trains were considered in the
following order: 0, 0, 0, 1, 2, 2, 3, 4, 5, 6, and 2. The sampling frequency of the data was
250 Hz, and the data included the CVD, the train’s running speed, and mileage corre-
sponding to the data. The TGD data were obtained from the TGC detection report dated
15 December 2020. In this study, LL defects (i.e., C is LL) were selected to validate the pro-
posed model, featuring 127 level-I LLs and 34 level-II LLs, and no level-III or level-IV LLs.

This study assumed the values of s = 20 m and d = 0.25 m to generate the example
dataset. The sample size was 1× 80× 7 (1-channel 2D data). A total of 16,659 examples were
generated, including 15740 no-LL examples, 726 level-I-LL, and 193 level-II-LL examples.

Appl. Sci. 2023, 13, 3457 14 of 23

The example dataset only contained level-I and level-II cases, that is, the value range of the
data label was Ys = [0–2].

5.2. Analysis of Identification Effect

To validate the generalization performance of the proposed model effectively, the
original example dataset was segmented into the following four parts in this study: DCAS

train,
DCAS

valid, DFMV
train , and DFMV

valid. The division method and proportions are indicated in Figure 9.
DFMV

valid was the same as the validating dataset reported by Wang et al. [14] and did not
participate in the training and validation of CAS or in the training of FMV. Therefore, an
objective evaluation of the generalization ability of the model was guaranteed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 23

5. Case Study
5.1. Case Data Description

The actual field dataset was acquired by the authors from 14 December 2020 to 16
December 2020, in Beijing Subway Line 1 captured via the portable detector, as described
in Section 3.1. CVD acquisition was conducted for twelve iterations (eleven of them were
complete runs, and one run lacked a metro section), six iterations for the down-direction
track, and six iterations for the up-direction. Seven in-service trains were considered in
the following order: 0, 0, 0, 1, 2, 2, 3, 4, 5, 6, and 2. The sampling frequency of the data was
250 Hz, and the data included the CVD, the train’s running speed, and mileage
corresponding to the data. The TGD data were obtained from the TGC detection report
dated 15 December 2020. In this study, LL defects (i.e., 𝐶 is LL) were selected to validate
the proposed model, featuring 127 level-I LLs and 34 level-II LLs, and no level-III or level-
IV LLs.

This study assumed the values of 𝑠 = 20 m and 𝑑 = 0.25 m to generate the example
dataset. The sample size was 1 × 80 × 7 (1-channel 2D data). A total of 16,659 examples
were generated, including 15740 no-LL examples, 726 level-I-LL, and 193 level-II-LL
examples. The example dataset only contained level-I and level-II cases, that is, the value
range of the data label was 𝑌 = 0– 2 .

5.2. Analysis of Identification Effect
To validate the generalization performance of the proposed model effectively, the

original example dataset was segmented into the following four parts in this study: 𝑫 , 𝑫 , 𝑫 , and 𝑫 . The division method and proportions are indicated in Figure 9. 𝑫 was the same as the validating dataset reported by Wang et al. [14] and did not
participate in the training and validation of CAS or in the training of FMV. Therefore, an
objective evaluation of the generalization ability of the model was guaranteed.

Simultaneously, to ensure the reproducibility of the case study, all random seeds
were pre-assigned during the processes involving random number generation. The same
divided datasets/sub-datasets were used for training and validating each model’s
validation process.

Figure 9. Schematic of dataset division.

5.2.1. Setting of Model Parameters
(1) Computing operations. According to the sample size, the kernel sizes were 3 × 3, 5 × 5 , 7 × 7 in 2D DSCB, 3 × 3 , 5 × 5 in 2D DiSCB, 3 × 3 in 2D MaxPool, and 2D

AvgPool. Featuring the void operation, eight elements were present in the alternative
computing operation set of the cell edges.

Figure 9. Schematic of dataset division.

Simultaneously, to ensure the reproducibility of the case study, all random seeds were
pre-assigned during the processes involving random number generation. The same divided
datasets/sub-datasets were used for training and validating each model’s validation process.

5.2.1. Setting of Model Parameters

(1) Computing operations. According to the sample size, the kernel sizes were 3× 3,
5× 5, 7× 7 in 2D DSCB, 3× 3, 5× 5 in 2D DiSCB, 3× 3 in 2D MaxPool, and 2D AvgPool.
Featuring the void operation, eight elements were present in the alternative computing
operation set of the cell edges.

(2) CAS. The number of stacked cells was eight, the channel number for the Init Conv
was six, the batch size of each iteration was 128, and the number of training epochs was 50.
The other parameters were in accordance with the DARTS basic setting [38]. Moreover, the
number of intermediate nodes in the cells was four. The loss function was the cross-entropy
loss function [53]. The inner optimization algorithm used was the stochastic gradient
descent (SGD) [57], and the learning rate was updated via the non-restart cosine annealing
method [58], with an initial value of 0.025, momentum of 0.9, and weight decay of 0.004.
The outer optimization algorithm was Adam [59] with a learning rate of 0.004, momentum
of [0.5, 0.999], and a weight decay of 0.001.

(3) FMV. Different numbers of stacked cells and training epochs were set in this
study to analyze the impact of these hyperparameters on the model performance, which
is described in detail in later sub-sections. The number of channels for the Init Conv was
six, and the batch size of each iteration was 512. The other parameters were in accordance
with the DARTS basic settings [38]. The loss function employed was the cross-entropy loss
function, and SGD was utilized as the optimization algorithm. To improve the training
efficiency, cutout [60] and path dropout [61] with a probability of 0.2 were employed.

Appl. Sci. 2023, 13, 3457 15 of 23

(4) Implementation and computing. The models in this case study were all imple-
mented via the PyTorch [62] ML framework and were trained on a single NVIDIA GeForce
GTX 1080 8 gigabyte GPU.

5.2.2. Model Identification Results

Based on the model settings detailed in Section 5.2.1, the CAS is carried out first in
this section. According to the analysis in Section 4.2.5, the ROS method was not used
to process the dataset in this stage, and the original datasets DCAS

train and DCAS
valid were used

directly; this was to limit the adaptation of the model architecture to features of minority
class examples, which can reduce the ability to identify the general examples accurately.
CAS was conducted using the computing resources and datasets mentioned above, and
50 generations of training required 0.3444 GPU days. The final cell architecture is shown
in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 23

(2) CAS. The number of stacked cells was eight, the channel number for the Init Conv
was six, the batch size of each iteration was 128, and the number of training epochs was
50. The other parameters were in accordance with the DARTS basic setting [38]. Moreover,
the number of intermediate nodes in the cells was four. The loss function was the cross-
entropy loss function [53]. The inner optimization algorithm used was the stochastic
gradient descent (SGD) [57], and the learning rate was updated via the non-restart cosine
annealing method [58], with an initial value of 0.025, momentum of 0.9, and weight decay
of 0.004. The outer optimization algorithm was Adam [59] with a learning rate of 0.004,
momentum of 0.5,0.999 , and a weight decay of 0.001.

(3) FMV. Different numbers of stacked cells and training epochs were set in this study
to analyze the impact of these hyperparameters on the model performance, which is
described in detail in later sub-sections. The number of channels for the Init Conv was six,
and the batch size of each iteration was 512. The other parameters were in accordance with
the DARTS basic settings [38]. The loss function employed was the cross-entropy loss
function, and SGD was utilized as the optimization algorithm. To improve the training
efficiency, cutout [60] and path dropout [61] with a probability of 0.2 were employed.

(4) Implementation and computing. The models in this case study were all
implemented via the PyTorch [62] ML framework and were trained on a single NVIDIA
GeForce GTX 1080 8 gigabyte GPU.

5.2.2. Model Identification Results
Based on the model settings detailed in Section 5.2.1, the CAS is carried out first in

this section. According to the analysis in Section 4.2.5, the ROS method was not used to
process the dataset in this stage, and the original datasets 𝑫 and 𝑫 were used
directly; this was to limit the adaptation of the model architecture to features of minority
class examples, which can reduce the ability to identify the general examples accurately.
CAS was conducted using the computing resources and datasets mentioned above, and
50 generations of training required 0.3444 GPU days. The final cell architecture is shown
in Figure 10.

Figure 10. (A) Normal cell architecture obtained from CAS; (B) reduction cell architecture obtained
from CAS. (the transparent circles represent the input/output nodes, the normal circles represent
the intermedia nodes, the arrows means the links between nodes and number 0-3 means the order
of the intermedia nodes).

Figure 10. (A) Normal cell architecture obtained from CAS; (B) reduction cell architecture obtained
from CAS. (the transparent circles represent the input/output nodes, the normal circles represent the
intermedia nodes, the arrows means the links between nodes and number 0-3 means the order of the
intermedia nodes).

When cells are stacked to form the MTGDI-CNN, the model’s performance will be
affected by different numbers of stacked cells and training epochs. Therefore, when perform-
ing FMV on the model constructed by the cell shown in Figure 10, this study set different
numbers of stacked cells (n = [8, 16, 24]) and training epochs (epoch = [300, 600, . . . , 1500])
with a fixed random seed (0) for training and testing. A comparison of the FTGD

2 and
training time for different hyperparameter combinations is illustrated in Figure 11. For
a convenient illustration, the model is denoted by M(n,epoch), and all models with n layers
are denoted by M(n,∗).

Appl. Sci. 2023, 13, 3457 16 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 23

When cells are stacked to form the MTGDI-CNN, the model’s performance will be
affected by different numbers of stacked cells and training epochs. Therefore, when
performing FMV on the model constructed by the cell shown in Figure 10, this study set
different numbers of stacked cells (𝑛 = 8,16,24) and training epochs (epoch =300,600, … ,1500) with a fixed random seed (0) for training and testing. A comparison of
the 𝐹 and training time for different hyperparameter combinations is illustrated in
Figure 11. For a convenient illustration, the model is denoted by 𝑀(,), and all models
with 𝑛 layers are denoted by 𝑀(,∗).

Figure 11. (A) Comparison of 𝐹 for models with different hyperparameter combinations; (B)
comparison of training time for models with different hyperparameter combinations.

As demonstrated by the results in Figure 11A, the performance growth of the 𝑀(,∗)
models did not correlate optimally with the number of training epochs, indicating that the
training of these models for 300 epochs was sufficient. The performance of the 𝑀(,∗) and 𝑀(,∗) models increased relatively with an increase in the training epoch, indicating that
deeper models require more training epochs. When the model training converges, its
comprehensive performance has a positive correlation with the number of stacked cells,
and 𝑀(,∗) demonstrates a limited comprehensive performance improvement relative to 𝑀(,∗); however, the improvement effect of 𝑀(,∗) is not apparent compared with 𝑀(,∗).
As indicated in Figure 11B, the training time was proportional to the number of stacked
cells and training epochs. The model with the superior performance was 𝑀(,) ,
featuring a 𝐹 value of 0.8838. The precision and recall of LLs at each level of 𝑫
are listed in Table 1. Evidently, after effective training, the model proposed in this study
could use actual field data to identify LLs on the metro track and distinguish their severity
levels.

Table 1. Precision and recall of 𝑀(,) model.

Metric No LLs Level-I LL Level-II LL 𝑃() 0.9971 0.9392 0.6444 𝑅() 0.9984 0.8528 0.8529

5.3. Validation of the Effectiveness of Coping Strategies for Class-Imbalance Problem
5.3.1. Setting of Validation

Different dataset-processing modes were set in the two stages of CAS and FMV to
form different coping strategies for the class-imbalance problem, and the model
performance was compared based on the same test dataset to illustrate the effectiveness
of the class-imbalance coping strategies proposed in this study.

The different coping strategies for the class-imbalance problem set in this section are
shown in Table 2, where M-3 represents the strategy proposed in this study. “ROS” in the
table indicates applying ROS to the dataset, and “ORI” indicates using the original

Figure 11. (A) Comparison of FTGD
2 for models with different hyperparameter combinations;

(B) comparison of training time for models with different hyperparameter combinations.

As demonstrated by the results in Figure 11A, the performance growth of the M(8,∗)
models did not correlate optimally with the number of training epochs, indicating that
the training of these models for 300 epochs was sufficient. The performance of the M(16,∗)
and M(24,∗) models increased relatively with an increase in the training epoch, indicating
that deeper models require more training epochs. When the model training converges, its
comprehensive performance has a positive correlation with the number of stacked cells,
and M(16,∗) demonstrates a limited comprehensive performance improvement relative to
M(8,∗); however, the improvement effect of M(24,∗) is not apparent compared with M(16,∗).
As indicated in Figure 11B, the training time was proportional to the number of stacked cells
and training epochs. The model with the superior performance was M(16,600), featuring
a FTGD

2 value of 0.8838. The precision and recall of LLs at each level of DFMV
valid are listed

in Table 1. Evidently, after effective training, the model proposed in this study could use
actual field data to identify LLs on the metro track and distinguish their severity levels.

Table 1. Precision and recall of M(16,600) model.

Metric No LLs Level-I LL Level-II LL

P(i) 0.9971 0.9392 0.6444
R(i) 0.9984 0.8528 0.8529

5.3. Validation of the Effectiveness of Coping Strategies for Class-Imbalance Problem
5.3.1. Setting of Validation

Different dataset-processing modes were set in the two stages of CAS and FMV to form
different coping strategies for the class-imbalance problem, and the model performance was
compared based on the same test dataset to illustrate the effectiveness of the class-imbalance
coping strategies proposed in this study.

The different coping strategies for the class-imbalance problem set in this section are
shown in Table 2, where M-3 represents the strategy proposed in this study. “ROS” in the
table indicates applying ROS to the dataset, and “ORI” indicates using the original dataset.
Because the settings of BASE and M-3 in CAS are identical, these two modes of settings
only conducted CAS once through the same cell architecture.

In addition, the metric FTGD
2 sets a higher weight of recall, and different strategies

have different results under different performance metrics. To avoid the bias caused by
these different results in the analysis of effectiveness, two additional derived indicators,
FTGD

1 and FTGD
0.5 , were calculated, in addition to calculating FTGD

2 for various strategies in

this study. FTGD
1 is to replace F(i)

2 in Equation (16) with F(i)
1 ; thus, precision and recall are

considered to have consistent weight when evaluating comprehensive performance. FTGD
0.5

Appl. Sci. 2023, 13, 3457 17 of 23

is to replace F(i)
2 with F(i)

0.5 ; thus, the weight of precision is considered to be one time higher
than the weight of recall when evaluating comprehensive performance.

Table 2. Dataset-processing mode settings for different strategies.

Mode CAS Train CAS Test FMV Train FMV Test

M-1 ROS ROS ROS ORI
M-2 ROS ORI ROS ORI
M-3 ORI ORI ROS ORI

BASE ORI ORI ORI ORI

5.3.2. Results of Validation

To reduce the impact of different random seeds, three random seeds (0, 2, and 4)
were utilized in CAS, and a fixed random seed was employed in FMV. First, three CAS
modes were performed using three random seeds for each mode, and nine-cell architec-
tures were obtained. The average training times for M-1/2/3(BASE) were 0.9289, 0.9363,
and 0.3474 GPU days, respectively. The average training time varied for different modes
because of the number of examples in the datasets, and the number of examples in DCAS

train
was the main influence on the training time during the CAS, while the number of examples
in DCAS

valid exerted minimal influence.
Subsequently, a fixed random seed (0) was employed to retrain the model stacked

by each cell architecture. Twelve combinations of the four modes and three random CAS
seeds were trained and tested in the FMV stage, respectively. To conduct FMV with a lower
time cost, the number of stack cells during FMV was set to eight, and the training epoch
was 300. The average values of the performance metrics for different random seeds after
training are listed in Table 3.

Table 3. Model performance evaluation results.

Mode Avg. FTGD
2 Avg. FTGD

1 Avg. FTGD
0.5 Avg. Training Time (GPU Days)

M-1 0.8561 0.8346 0.8141 0.0669
M-2 0.8538 0.8367 0.8202 0.0755
M-3 0.8684 0.8428 0.8187 0.0655

BASE 0.8043 0.8035 0.8029 0.0250

Evidently, employing the ROS method on the FMV training dataset only significantly
improved various performance metrics (comparing M-3 with BASE). In addition, the
average training time was positively correlated with the number of examples used for
training, and consequently, the average training time of M-1/2/3 remained unchanged,
while the average training time of BASE was shorter. Among the performance metrics,
the Avg. FTGD

2 , Avg. FTGD
1 , and Avg. FTGD

0.5 increased by 8.0, 4.9, and 2.0%, respectively.
This result implies that applying ROS to DFMV

train is a more effective strategy for improving
comprehensive recall. Comparison of M-1, M-2, and M-3 revealed that the Avg. FTGD

0.5 of
M-3 was slightly lower than that of M-2, whereas the Avg. FTGD

2 and Avg. FTGD
1 metrics

of M-3 were higher than those of M-1 and M-2, thereby demonstrating that M-3 could
improve the comprehensive performance of the model, and it mainly improved the recall.
Concurrently, the results indicate that the use of ROS in CAS will lead to insufficient
generalization performance of the model architecture considering that the performance on
the final validation dataset is average.

5.4. Comparison with Other Models
5.4.1. Comparison with the Model Constructed by 1D Convolution

To validate the 2D convolution scheme’s superior feasibility for the CVD-based metro-
TGD identification problem, a 1D MTGDI-CNN (MTGDI-CNN-1D) was reconstructed and

Appl. Sci. 2023, 13, 3457 18 of 23

validated with the same division as that stated in the previous section. FTGD
1 and FTGD

0.5
were calculated simultaneously to avoid the bias of FTGD

2 .

(1) Setting of 1D model parameters

The 2D computing operations in MTGDI-CNN were replaced with 1D operations to
form the MTGDI-CNN-1D. The sample size was reshaped from 1× 80× 7 (one-channel 2D
data) to 7× 80 (seven-channel 1D data) to fit the model input. The kernel sizes were 3, 5, 7,
11, and 15 in 1D DSCB, 3, 5, 7, and 11 in 1D DiSCB, and 3 in 1D MaxPool and 1D AvgPool.
With the void operation, 13 elements were present in the alternative computing operation
set of the cell edges. The other settings were identical to those described in the previous
section. The experimental modes of the ROS are listed in Table 4.

Table 4. Dataset processing mode settings for different strategies of 1D model.

Mode CAS Train CAS Test FMV Train FMV Test

M-3-1D ORI ORI ROS ORI
BASE-1D ORI ORI ORI ORI

(2) Model validation results of 1D model

First, one experimental mode of CAS was performed (identical CAS settings were used
for M-3-1D and BASE-1D), via three random seeds (similar to the methodology stated in the
previous section), and three cell architectures were obtained. The average training time was
0.9584 GPU days. Subsequently, the fixed random seed, as stated in the previous section,
was leveraged to retrain the model stacked by each cell architecture. Six combinations of
the two modes and three random CAS seeds were trained. A comparison between the
formulated performance metrics, based on the validating dataset and the values of M-3
stated in the previous section, is summarized in Table 5.

Table 5. Model performance evaluation results of 1D model.

Mode Avg. FTGD
2 Avg. FTGD

1 Avg. FTGD
0.5 Avg. Training Time (GPU Days)

M-3 0.8684 0.8428 0.8187 0.0655
M-3-1D 0.6516 0.6482 0.6456 0.0648

BASE-1D 0.5286 0.5613 0.5997 0.0238

Evidently, the training time with the same example number in the FMV remained un-
changed (upon comparing M-3 with M-3-1D), indicating that 1D convolution and 2D con-
volution offered considerable computational efficiency. M-3 of the 2D convolution exhibited
the highest performance metrics; compared with M-3-1D, the three performance metrics for
M-3 were 33.3, 30.0, and 26.8% higher, indicating that 2D convolution is more suitable for
CVD-based metro-TGD identification problems. The comparison of M-3-1D and BASE-1D
verified the conclusion stated in the previous section, that is, the coping strategy that only uses
ROS for the training dataset in FMV could obtain a superior-performing model.

5.4.2. Comparison with the Model Obtained by a Black Box Trial Method

To verify the advantages of the MTGDI-CNN model based on the DARTS method pro-
posed in this study compared with the model obtained by the ordinary black box method,
this study compared the proposed model with the model obtained via the black-box enu-
meration method proposed by Wang et al. [14] (hereafter referred to as the Wang model).

The Wang model is built by constructing a functional layer (FL) with one ordinary
2D convolution operation, one ReLU, and one 2D MaxPool, and then simply combining
multiple FLs and specifying the 2D convolution kernel size of different layers. The architec-
ture of the Wang model can be determined by assigning four hyperparameters: FL layer
number, the initial size of convolution kernel, minimum width, and the minimum height

Appl. Sci. 2023, 13, 3457 19 of 23

of the feature maps. Owing to certain limitations, only 360 models were available with dif-
ferent hyperparameter combinations, and Wang et al. [14] used the black-box enumeration
method to search the architecture with superior performance. For comparison, the search
space size was 8 ˆ 14 in the proposed method.

Enumerated training and validation of the Wang models with 360 architectures were
performed under three different random seeds, utilizing the same computational resources
and dataset as mentioned in the previous section. The batch size of each iteration was
512, and the number of training epochs was 100. Under three random seeds, the process
required an average of 2.1325 GPU days. In comparison, the proposed model (M-3) required
an average time of 0.3474 GPU days, which was 83.6% lower. Subsequently, the average
values of FTGD

2 /FTGD
1 /FTGD

0.5 of the 360 models under three random seeds were calculated.
The maximum value of each average metric value was selected and compared with the
results of the MTGDI-CNN (values of M-3 in Table 3), as summarized in Table 6. The
performance of MTGDI-CNN was remarkably superior to that of the Wang models, and
the three performance metrics were improved by 6.7, 2.7, and 0.1%. Thus, the proposed
method can significantly improve the efficiency of the model architecture search compared
with the common black-box enumeration method, and the MTGDI-CNN offers superior
comprehensive performance.

Table 6. Comparison of model performance evaluation results with those of black-box acquired model.

Metrics FTGD
2 FTGD

1 FTGD
0.5

MTGDI-CNN Avg. metrics 0.8684 0.8428 0.8187
Wang−model Max. Avg. FTGD

2 0.8142 0.7821 0.7681
Wang−model Max. Avg. FTGD

1 0.7924 0.8205 0.8144
Wang−model Max. Avg. FTGD

0.5 0.7900 0.8038 0.8180

6. Conclusions

The proposed MTGDI-CNN enabled the effective integrated identification of the
type and severity level of metro TGD via portable-device-acquired CVD on an ordinary
in-service metro train.

The main contributions of this study were as follows: (1) The MTGDI-CNN based on
DARTS was proposed, which realized the integrated identification of the type and severity
level of metro TGD. The input of the model was the CVD acquired through a portable
detector, and the output was the type of a TGD and its severity level. Compared to the
traditional black-box trial method, by introducing DARTS into the problem scenario of
this study, the efficiency and effectiveness of the model architecture optimization were
considerably improved. (2) A strategy was proposed for coping with the class-imbalance
problem of the dataset when modeling the MTGDI-CNN. This strategy reduced the impact
of the low identification performance of the model through the use of the class-imbalanced
dataset in the model architecture optimization and final training. (3) A metric was proposed
for evaluating the comprehensive performance of the TGDs identification model. In the
metric design process, the actual needs of metro track infrastructure management were
considered, and this strategy was more conducive to improving the practicality of the
model when used to evaluate its performance.

The following conclusions were drawn based on the results of the case study featuring
actual data: (1) the introduction of the dataset ROS method in model development could
improve the problem of poor model-identification performance caused by the natural
class-imbalance characteristic of the CVD–TGD dataset. As for the two-stage optimization
process of the MTGDI-CNN, the strategy of using the ROS method only in the training
process in the second stage resulted in the overall improved performance of the model
compared with other strategies that employ the ROS in other stages. Presumably, the
model architecture had a stronger feature representation capability than the model weights,
and therefore, overfitting was avoided in the architecture search stage, leading to a lower

Appl. Sci. 2023, 13, 3457 20 of 23

generalization capability, thereby yielding the aforementioned result. (2) The MTGDI-CNN
could obtain higher comprehensive performance by increasing the number of stacked cells
within a certain range; however, models with more cells required a longer period to train
the same number of epochs, whereas models with more cells needed to train more epochs
to converge. In this study, the case study revealed that after sufficient training, compared
to 8-cell stacking, performing 16-cell stacking could result in a noticeable improvement in
the model performance; however, performing 24-cell stacking did not yield a significant
improvement compared to 16-cell stacking. The highest comprehensive performance repre-
sented by the FTGD

2 value of 0.8838 was obtained for 16-cell stacking trained for 600 epochs
in different combinations of the number of stacked cells and training epochs, with preci-
sions of 0.9392 and 0.8528 for severity level-I LLs, and 0.6444 and 0.8529 for severity level-II
LLs. (3) The DARTS-based modeling process could significantly reduce the optimization
time of the cell architecture of the MTGDI-CNN and improve the final comprehensive
performance of the model. The results of the case study showed that the optimization
process using DARTS required 83.6% less time and improved the highest comprehensive
performance (FTGD

2) by 6.7% compared to a black-box acquired model under the conditions
of using the same dataset and computing resources. (4) Two-dimensional convolution was
more suitable than one-dimensional convolution for processing CVD to identify TGDs.
The comprehensive performance (FTGD

2) of the model built with 2D convolution was 33.3%
higher than that of the model built with 1D convolution for identifying LLs. (5) FTGD

2
could effectively evaluate the comprehensive performance of the model based on the field
requirements of metro track infrastructure management. As indicated by the results of the
case study, when evaluating different performance models, the model that satisfied the
lower missed-detection case had a higher FTGD

2 .
With the proposed method, metro track infrastructure managers can efficiently eval-

uate the metro track condition via portable detectors. At the same time, considering the
similarity between metro tracks and railway tracks, the proposed method can be further
extended to the detection of TGDs in conventional and high-speed railway tracks to im-
prove the efficiency of infrastructure maintenance, but more data still need to be collected
to verify the feasibility. However, this study had certain limitations. First, the proposed
model was only used to validate and discuss the identification performance of the LLs of
metro tracks at present. Second, this study assumed that only one TGD was present within
a small distance (20 m in this study); thus, the proposed model needs to be further ex-
panded for the special situation featuring multiple defects within 20 m. Finally, the actual
data used in this study were limited in scope. To address these shortcomings, further
research should focus on the applicability of other types of TGD. Additionally, sufficient
data should be acquired to validate the model and further verify the model’s ability to
handle actual situations.

Author Contributions: Conceptualization, Z.W. and R.L.; methodology, Z.W. and R.L.; software,
Z.W.; validation, Y.G. and Y.T.; data curation, Z.W. and Y.G.; writing—original draft preparation, Z.W.;
writing—review and editing, R.L., Y.G. and Y.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
under Grant 62132003, 71801010, and the Science and Technology Research and Development Plan
Project of China State Railway Group Co., Ltd. under Grand (Temp-37).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study was available from a public data
repository. The use of data follows the statement file in the repository: https://github.com/Elscip/
scidata_jrrt_1. Access date: 30 March 2022.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/Elscip/scidata_jrrt_1
https://github.com/Elscip/scidata_jrrt_1

Appl. Sci. 2023, 13, 3457 21 of 23

References
1. Soleimanmeigouni, I.; Ahmadi, A.; Kumar, U. Track geometry degradation and maintenance modelling: A review. Proc. Inst.

Mech. Eng. Part F J. Rail Rapid Transit 2016, 232, 73–102. [CrossRef]
2. Bai, L.; Liu, R.; Sun, Q.; Wang, F.; Wang, F. Classification-learning-based framework for predicting railway track irregularities.

Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 230, 598–610. [CrossRef]
3. EN 13848-5:2017; Railway Applications—Track—Track Geometry Quality—Part 5: Geometry Quality Levels—Plain Line, Switches

and Crossings. CEN (European Committee for Standardization): Brussels, Belgium, 2017.
4. FRA (Federal Railroad Administration). Track and Rail and Infrastructure Integrity Compliance Manual: Volume II Track Safety

Standards. 2018. Available online: https://railroads.dot.gov/elibrary/track-and-rail-and-infrastructure-integrity-compliance-
manual-volume-ii-chapter-2-track-0 (accessed on 30 March 2022).

5. GB/T 39559.4-2020; Specifications of Operational Monitoring of Urban Rail Transit Facilities—Part 4: Track and Earthworks. SAC
(Standardization Administration of the P.R.C.): Beijing, China, 2020.

6. Andrade, A.R.; Teixeira, P.F. Hierarchical Bayesian modelling of rail track geometry degradation. Proc. Inst. Mech. Eng. Part F J.
Rail Rapid Transit 2013, 227, 364–375. [CrossRef]

7. Xu, P.; Sun, Q.; Liu, R.; Souleyrette, R.R.; Wang, F. Optimizing the Alignment of Inspection Data from Track Geometry Cars.
Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 19–35. [CrossRef]

8. Zhang, Y.J.; Rusk, K.; Clouse, A.L. Decades of automated track inspection success and strategy for tomorrow. In Proceedings of
the 2012 AREMA Annual Conference, Chicago, IL, USA, 16–19 September 2012.

9. Sadeghi, J.M.; Askarinejad, H. Development of track condition assessment model based on visual inspection. Struct. Infrastruct.
Eng. 2011, 7, 895–905. [CrossRef]

10. Sadeghi, J.; Fathali, M.; Boloukian, N. Development of a new track geometry assessment technique incorporating rail cant factor.
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2008, 223, 255–263. [CrossRef]

11. Jamieson, D.; Bloom, J.; Kelshaw, R. T-2000: A railroad track geometry inspection vehicle for the 21st century. In Proceedings of
the 2001 AREMA Annual Conference, Chicago, IL, USA, 9–12 September 2001.

12. Weston, P.; Roberts, C.; Yeo, G.; Stewart, E. Perspectives on railway track geometry condition monitoring from in-service railway
vehicles. Veh. Syst. Dyn. 2015, 53, 1063–1091. [CrossRef]

13. Balouchi, F.; Bevan, A.; Formston, R. Development of railway track condition monitoring from multi-train in-service vehicles.
Veh. Syst. Dyn. 2021, 59, 1397–1417. [CrossRef]

14. Wang, Z.; Liu, R.; Wang, F.; Tang, Y. Development of metro track geometry fault diagnosis convolutional neural network model
based on car-body vibration data. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 1135–1144. [CrossRef]

15. Tsunashima, H. Condition Monitoring of Railway Tracks from Car-Body Vibration Using a Machine Learning Technique. Appl.
Sci. 2019, 9, 2734. [CrossRef]

16. Li, C.; Luo, S.; Cole, C.; Spiryagin, M. An overview: Modern techniques for railway vehicle on-board health monitoring systems.
Veh. Syst. Dyn. 2017, 55, 1045–1070. [CrossRef]

17. Scott, G.; Chillingworth, E.; Dick, M. Development of an Unattended Track Geometry Measurement System. In Proceedings of
the 2010 Joint Rail Conference, Urbana, IL, USA, 27–29 April 2010.

18. Weston, P.F.; Ling, C.S.; Goodman, C.J.; Roberts, C.; Li, P.; Goodall, R.M. Monitoring lateral track irregularity from in-service
railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2007, 221, 89–100. [CrossRef]

19. Weston, P.F.; Ling, C.S.; Roberts, C.; Goodman, C.J.; Li, P.; Goodall, R.M. Monitoring vertical track irregularity from in-service
railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2007, 221, 75–88. [CrossRef]

20. Wei, X.; Liu, F.; Jia, L. Urban rail track condition monitoring based on in-service vehicle acceleration measurements. Measurement
2016, 80, 217–228. [CrossRef]

21. Li, C.; He, Q.; Wang, P. Estimation of railway track longitudinal irregularity using vehicle response with information compression
and Bayesian deep learning. Comput.-Aided Civ. Infrastruct. Eng. 2020, 37, 1260–1276. [CrossRef]

22. Kawasaki, J.; Youcef-Toumi, K. Estimation of rail irregularities. In Proceedings of the 2002 American Control Conference (IEEE
Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002.

23. Lee, J.S.; Choi, S.; Kim, S.; Park, C.; Kim, Y.G. A Mixed Filtering Approach for Track Condition Monitoring Using Accelerometers
on the Axle Box and Bogie. IEEE Trans. Instrum. Meas. 2012, 61, 749–758. [CrossRef]

24. Tsunashima, H.; Naganuma, Y.; Kobayashi, T. Track geometry estimation from car-body vibration. Veh. Syst. Dyn. 2014,
52, 207–219. [CrossRef]

25. De Rosa, A.; Alfi, S.; Bruni, S. Estimation of lateral and cross alignment in a railway track based on vehicle dynamics measurements.
Mech. Syst. Signal Proc. 2019, 116, 606–623. [CrossRef]

26. Ma, S.; Gao, L.; Liu, X.; Lin, J. Deep Learning for Track Quality Evaluation of High-Speed Railway Based on Vehicle-Body
Vibration Prediction. IEEE Access 2019, 7, 185099–185107. [CrossRef]

27. Tsunashima, H.; Hirose, R. Condition monitoring of railway track from car-body vibration using time-frequency analysis. Veh.
Syst. Dyn. 2022, 60, 1170–1187. [CrossRef]

28. Xu, L.; Zhai, W. A novel model for determining the amplitude-wavelength limits of track irregularities accompanied by
a reliability assessment in railway vehicle-track dynamics. Mech. Syst. Signal Proc. 2017, 86, 260–277. [CrossRef]

http://doi.org/10.1177/0954409716657849
http://doi.org/10.1177/0954409714552818
https://railroads.dot.gov/elibrary/track-and-rail-and-infrastructure-integrity-compliance-manual-volume-ii-chapter-2-track-0
https://railroads.dot.gov/elibrary/track-and-rail-and-infrastructure-integrity-compliance-manual-volume-ii-chapter-2-track-0
http://doi.org/10.1177/0954409713486619
http://doi.org/10.1111/mice.12067
http://doi.org/10.1080/15732470903194676
http://doi.org/10.1243/09544097JRRT237
http://doi.org/10.1080/00423114.2015.1034730
http://doi.org/10.1080/00423114.2020.1755045
http://doi.org/10.1177/09544097221080366
http://doi.org/10.3390/app9132734
http://doi.org/10.1080/00423114.2017.1296963
http://doi.org/10.1243/0954409JRRT64
http://doi.org/10.1243/0954409JRRT65
http://doi.org/10.1016/j.measurement.2015.11.033
http://doi.org/10.1111/mice.12802
http://doi.org/10.1109/TIM.2011.2170377
http://doi.org/10.1080/00423114.2014.889836
http://doi.org/10.1016/j.ymssp.2018.06.041
http://doi.org/10.1109/ACCESS.2019.2960537
http://doi.org/10.1080/00423114.2020.1850808
http://doi.org/10.1016/j.ymssp.2016.10.010

Appl. Sci. 2023, 13, 3457 22 of 23

29. Paixão, A.; Fortunato, E.; Calçada, R. Smartphone’s Sensing Capabilities for On-Board Railway Track Monitoring: Structural
Performance and Geometrical Degradation Assessment. Adv. Civ. Eng. 2019, 2019, 1729153. [CrossRef]

30. Liu, R.; Wang, F.; Wang, Z.; Wu, C.; He, H. Identification of Subway Track Irregularities Based on Detection Data of Portable
Detector. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 703–713. [CrossRef]

31. Wang, R.; Jiang, H.; Li, X.; Liu, S. A reinforcement neural architecture search method for rolling bearing fault diagnosis.
Measurement 2020, 154, 107417. [CrossRef]

32. Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis.
Neurocomputing 2020, 417, 36–63. [CrossRef]

33. Li, X.; Zheng, J.; Li, M.; Ma, W.; Hu, Y. One-shot neural architecture search for fault diagnosis using vibration signals. Expert Syst.
Appl. 2022, 190, 116027. [CrossRef]

34. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.; Li, Z.; Chen, X.; Wang, X. A Comprehensive Survey of Neural Architecture Search. ACM
Comput. Surv. 2022, 54, 1–34. [CrossRef]

35. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019, 20, 1–21.
36. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2017. [CrossRef]
37. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing Neural Network Architectures using Reinforcement Learning. arXiv 2017.

[CrossRef]
38. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. In Proceedings of the Seventh International Conference

on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019.
39. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. SMASH: One-Shot Model Architecture Search through HyperNetworks. arXiv 2017.

[CrossRef]
40. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.

Neural Netw. 2018, 106, 249–259. [CrossRef]
41. Bai, L.; Liu, R.; Li, Q. Data-Driven Bias Correction and Defect Diagnosis Model for In-Service Vehicle Acceleration Measurements.

Sensors 2020, 20, 872. [CrossRef] [PubMed]
42. Vinberg, E.M.; Martin, M.; Firdaus, A.H.; Tang, Y.; Qazizadeh, A. Railway Applications of Condition Monitoring; Technical Report;

KTH Royal Institute of Technology: Stockholm, Sweden, 2018.
43. Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection:

Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [CrossRef]
44. Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Multiclass Damage Identification in a Full-Scale Bridge Using Optimally Tuned

One-Dimensional Convolutional Neural Network. J. Comput. Civil. Eng. 2022, 36, 4021035. [CrossRef]
45. Zhang, Y.; Xie, X.; Li, H.; Zhou, B.; Wang, Q.; Shahrour, I. Subway tunnel damage detection based on in-service train dynamic

response, variational mode decomposition, convolutional neural networks and long short-term memory. Autom. Constr. 2022,
139, 104293. [CrossRef]

46. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

47. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

48. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 30TH IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2016; pp. 1800–1807.

49. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016. [CrossRef]
50. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of Machine Learning Research, Lille, France, 6–11 July 2015; pp. 448–456.
51. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair. In Proceedings of the

International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
52. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive Neural Architecture

Search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
53. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
54. Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [CrossRef]
55. Bowyer, K.W.; Chawla, N.V.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. arXiv 2011.

[CrossRef]
56. Chinchor, N.; Sundheim, B.M. MUC-5 evaluation metrics. In Proceedings of the Fifth Message Understanding Conference

(MUC-5), Baltimore, MA, USA, 25–27 August 1993.
57. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016. [CrossRef]
58. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017. [CrossRef]
59. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014. [CrossRef]
60. Devries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017. [CrossRef]

http://doi.org/10.1155/2019/1729153
http://doi.org/10.1177/03611981221097088
http://doi.org/10.1016/j.measurement.2019.107417
http://doi.org/10.1016/j.neucom.2020.07.088
http://doi.org/10.1016/j.eswa.2021.116027
http://doi.org/10.1145/3447582
http://doi.org/10.48550/arXiv.1611.01578
http://doi.org/10.48550/arXiv.1611.02167
http://doi.org/10.48550/arXiv.1708.05344
http://doi.org/10.1016/j.neunet.2018.07.011
http://doi.org/10.3390/s20030872
http://www.ncbi.nlm.nih.gov/pubmed/32041359
http://doi.org/10.1016/j.neucom.2017.09.069
http://doi.org/10.1061/(ASCE)CP.1943-5487.0001003
http://doi.org/10.1016/j.autcon.2022.104293
http://doi.org/10.1109/5.726791
http://doi.org/10.48550/arXiv.1511.07122
http://doi.org/10.3233/IDA-2002-6504
http://doi.org/10.48550/arXiv.1106.1813
http://doi.org/10.48550/arXiv.1609.04747
http://doi.org/10.48550/arXiv.1608.03983
http://doi.org/10.48550/arXiv.1412.6980
http://doi.org/10.48550/arXiv.1708.04552

Appl. Sci. 2023, 13, 3457 23 of 23

61. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

62. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32;
Wallach, H., Larochelle, H., Beygelzimer, A., Buc, F.D.T.A., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2019; pp. 8024–8035.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Literature Review
	Traditional Train Vibration Data Analysis Methods
	ML-Based Train Vibration Data Analysis Method
	Network Architecture Search in the Field of ML
	Discussion of Existing Research

	Problem Description
	Basic Problem
	Transformed Problem

	Metro Track Geometry Defect Identification Model and Its Optimization Method
	Example Dataset Design
	Sample Generation Rules
	Sample Labeling Rules

	MTGDI-CNN Based on DARTS
	Model Architecture
	Cell Architecture
	Computing Operation Architecture
	Cell Architecture Search Based on DARTS
	Coping with Dataset Class-Imbalance Problem

	Model-Performance Evaluation Metric
	Selection Principles of Model-Performance Evaluation Metrics
	TGD-Identification Performance-Evaluation Metric

	Case Study
	Case Data Description
	Analysis of Identification Effect
	Setting of Model Parameters
	Model Identification Results

	Validation of the Effectiveness of Coping Strategies for Class-Imbalance Problem
	Setting of Validation
	Results of Validation

	Comparison with Other Models
	Comparison with the Model Constructed by 1D Convolution
	Comparison with the Model Obtained by a Black Box Trial Method

	Conclusions
	References

