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Abstract: A critically stressed fracture will slide in response to the increase in fluid pressure inside
the fracture while impounding, which will trigger induced seismicity. The mechanism of fluid
overpressure is regarded as a significant factor in the reaction of the fracture slip after water diffusing.
This study uses a shearing test with a cylinder of granite, with 100 mm height and 50 mm diameter,
under the condition of hydraulic-mechanic (HM) coupling to figure out how fluid overpressure alters
the mechanical behavior of the critically stressed fracture. The cyclic water pressurization simulates
periodical impounding in the water reservoir. Results show that several slip events happen when
water pressure continues to rise higher than the stable state. The change of roughness also indicates
the deterioration of the fracture surface while sliding. According to the results, we conclude that
the difference between inlet pressure and outlet pressure leads to an overpressure of the fracture,
promoting a series of slips and induced seismicity. Hydraulic energy is introduced to explain the
relationship between the input and output energy, which is also strong evidence to illustrate that
fluid overpressure is a crucial mechanism in reservoir-induced seismicity.

Keywords: reservoir-induced seismicity; shearing test; overpressure; hydraulic energy

1. Introduction

Reservoir-induced seismicity is an interesting area of research because there are still
many challenges in figuring out how seismicity is triggered and how long it lasts. Fractures
divide the rock mass into discontinuity and may control mechanistic behavior under certain
conditions, which is one of the main reasons for inducing seismicity and slope sliding. In
North Dakota, earthquakes are induced by the interaction of hydraulic fractures with large
faults in the region [1]. Induced earthquakes are particularly pronounced in Oklahoma
and Kansas, where studies have shown that the underground storage of salt water is the
primary cause [2]. A bimodal distribution of fluid injection-induced microseisms was
observed in 2012 at the Newberry Volcano Enhanced Geothermal (EGS) Demonstration
Project in Oregon, USA. EGS presents challenges for enhancing permeability and reducing
instability [3].

Especially near the water reservoir, the seepage field would change significantly due
to impoundment. Critically stressed fractures are expected to be unstable since the original
balance has been broken when considering the coupling influence between the liquid phase
and the solid phase. Therefore, the slight disturbance of water pressure can crucially alter
the state of a fracture. Particularly, fluid overpressure inside the fracture takes an obvious
part in reactivating a fracture and releasing energy.

Evidence shows that fluid overpressure is a significant factor in the nucleation and
propagation of ruptures [4]. The maximum fluid overpressure could be predicted and
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controlled using tectonic stress and fracture orientation [5]. Changes in the stress state
are accompanied by fluid redistribution and are ensured by the critical interdependence
of differential stress and sustainable overpressure [6]. Fluid overpressure is commonly
regarded as the reason for weak subduction plate boundaries [7]. The increase of fluid
pressure first causes an accelerated seismic creep and fault opening; with the further
increase of fluid pressure, the friction rate increases, which is conducive to seismic creep [8].
Besides, overpressure can reduce the effective overburden stress and the available stress,
and can lead to under-consolidated sediment sequences, resulting in the unstable sliding
of the slope and the induction of earthquake shaking [9]. Therefore, fluid overpressure is
comprehensively discussed, since it is a hydrodynamic phenomenon. The fluid expansion
mechanism and disequilibrium compaction mechanism are two categories used to explain
the generation of overpressure [10]. Experimental analysis shows that pore pressure can
be predicted based on elastic parameters [11]. The Mohr-Coulomb criterion can judge
when the fractures fail, but cannot predict the mechanical behavior after the fractures break.
Therefore, the energy budget is carried out to describe the input energy and output energy.
The input energy equals the output energy, according to the Law of conservation of energy.
Thus, the input energy, including the hydraulic energy and mechanic energy, is supposed
to produce the same value of output energy, composed of friction energy, radiated energy,
deformation energy and energy loss. This budget provides support to verify the role of
fluid overpressure in inducing fracture sliding.

As for the water reservoir, the alteration of the underground water level is usually
delayed after the modification of the reservoir impounding, indicating that the overpressure
of the fracture seepage might be caused by both mechanisms. This study concentrates on
the fluid expansion mechanism. However, overpressure is usually described qualitatively
in macro-geology. There are a few micro descriptions that can explain this mechanism
explicitly. To reveal the mechanism of activating a stressed fracture, a shearing test, based on
HM coupling, is adopted to concentrate on how the overpressure activates the sliding and
discusses the relationship between the input hydraulic energy and output seismic energy.

The remainder of this paper is organized as follows. Section 2 describes the exper-
imental methodology; including setup, sample preparation and procedure. The results
of the surface scanning and HM shearing test are presented in Section 3. Section 4 dis-
cusses the overpressure of the fracture reactivation and energy budget. Section 5 concludes
this article.

This paper aims to discuss how fluid overpressure induces seismicity when the fracture
is critically stressed. The HM coupling experiment shows that the unstable slip of fracture
is driven by the inlet pressure and outlet pressure. Seismic events imply that unstable
sliding happens, which occurs at the moment the fluid pressure rises over the threshold
pressure. This paper compares the overpressure and understress states of the fracture to
illustrate the mechanism of reservoir-induced seismicity. In addition, hydraulic energy is
analyzed to explain how fluid overpressure can induce unstable sliding by establishing
the relationship between the input energy and released energy, which is also an effective
method for predicting the magnitude and total released energy.

2. Materials and Methods
2.1. Setup and Sample Preparation

Granite is used for this research, which is composed of quartz, feldspar and hornblende
(as shown in Figure 1). The bulk density is 2610 kg/m3 with a Young’s modulus of 84 GPa
and a Poisson’s ratio of 0.25. A cylinder sample, with 100 mm height and 50 mm diameter, is
separated smoothly along the surface with a 30◦ inclination to the vertical axis to simulate a
pre-existing fracture. Then the fracture is refined with sandpaper with particles of 18.3 µm.
Two boreholes are drilled parallel to the vertical axis near the fracture surface, allowing the
fluid to be distributed in the fracture during the tests.
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2.2. Experimental Procedure 
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the sample will be supplied by the water tank (shown in Figure 3). The shear strength of 

Figure 1. A granite sample with a 30◦ inclination to the vertical axis.

The schematic of the HM-coupling shearing test is shown in Figure 2. The assembled
sample is placed in the triaxial cell, fixed by the core holder. The oil tank provides confining
pressure and the water tank supplies the upstream pressure during tests. A Teflon jacket is
used to isolate the sample from the confining oil and assures that the water is sealed inside
the sample to prevent the mixing of the water and oil. The process of loading and water
pressurization is controlled and recorded by the controller. In addition, the monitoring
system will record the parameters of the downstream pump, including the flow pressure
and flow rate.
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Figure 2. A schematic of the HM-coupling shearing test.

2.2. Experimental Procedure

After assembling the sample in the triaxial cell, the confining pressure will be increased
by the piston in the oil tank to the predefined value. Then the pore pressure inside the
sample will be supplied by the water tank (shown in Figure 3). The shear strength of the
pre-existing fracture is measured before each test, by compressing the sample by moving
the axial piston at a constant rate of 1 µm/s. The axial stress will be modified specifically to
satisfy the required shear stress on the fracture.
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Figure 4. A schematic of the cyclic pressurization process. 

Figure 3. The experimental setup of the HM-coupling shearing test.

Cyclic pressurization is applied during the test to simulate the cyclic impounding
process of a water reservoir. Figure 4 shows the alteration of the inlet pressures because
the inlet pressure is a typical curve for water reservoirs, such as Xiluodu Reservoir and
Three Gorge Reservoir. Each cycle has four steps corresponding to the real oscillation of
a reservoir: rising water level, high level, drawdown, and low water level. The water
pressure is increasing and decreasing at a constant rate of 0.005 MPa/s to simplify the
simulating model. This rate is adopted because it is slow enough not to cause excessive
pressure concentration around the inlet hole while being fast enough to quickly simulate the
process of reservoir impoundment. The whole process has 8 cycles, divided into 3 stages,
shown in Figure 4. The grey part shows the first impounding stage, requiring a relatively
low water level that causes the inlet pressure to rise from 5 to 6 MPa in 200 s and maintains
this for 300 s before falling to 5.5 MPa. The light red part represents the second stage,
including two cycles during which the water pressure raises to 7 MPa and reduces to
6 MPa. The blue part represents the third stage, assuming that the reservoir operates in a
normal state, and causes the water pressure to oscillate between 7 and 8 MPa.
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3. Results
3.1. Roughness Alteration

Before the shearing test, the fracture surface of each sample is scanned to examine
the evolution of the fracture after the process. Before the experiments, the fracture surface
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is polished and scanned to record the root mean square (RMS) of the fractures. The RMS
is used to represent the roughness of the fracture surface. When the RMS is larger, it
represents a greater roughness of the surface. Figure 5a shows that the fault surface is
quite smooth after polishing. Only the upper surface is shown in this article, due to the
upper surface and lower surface being mirror images of each other. Before the shearing
test, the root mean square is 0.6575. After the shearing test, an unstable slip occurs that
will damage the fracture surface. Figure 5b shows that the RMS of the fracture surface
changes to 0.7175 after shearing. This means that the roughness increases. In addition,
broken minerals are discovered inside the fracture. Figure 5c represents the shear surface
calculated using Figure 5a,b. The shear surface shows the sheared thickness of the fracture.
This phenomenon indicates that the fracture surface is damaged during the process while
the pore pressure increases to trigger the slip.
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3.2. Mechanic Behavior of Fracture While Water Pressurization

The fracture is expected to slide during water pressurization while the normal stress
on the surface remains constant so that the servo-control system can modify the confining
pressure and the axial stress simultaneously. The shear stress (τ) and normal stress (σn) of
the fracture are determined by the axial stress (σ1) and confining pressure (σ3):

σn =
1
2
[(σ1 + σ3) + (σ1 − σ3) cos 2θ] (1)

τ =
1
2
(σ1 − σ3) sin 2θ (2)

where θ is the normal angle of the fracture surface, equaling 60◦ in this experiment. Shear
displacement (D) can be calculated according to axial displacement instead of direct mea-
surement. The initial pore pressure inside the fracture is p. Therefore, the friction coefficient
(µ) is the ratio between shear strength (τc) and the effective normal stress (σn − p). rτ is
defined as the ratio between the shear stress and shear strength of the fracture while under
water pressurization [12].

Since the fracture slip can release elastic energy and induce seismicity, we introduced
the moment M0 to describe the energy released while sliding. M0 is the product of the
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fracture area (A), shear displacement (D) and shear modulus (G), determined by the Young’s
modulus and Poisson ratio.

M0 = GAD (3)

MW =
2
3

log M0 − 6.07 (4)

Figure 6 shows that the fracture is pressurized at 20.8 MPa under normal stress and
13.6 MPa under shear stress. The friction coefficient is 0.87, and the ratio rτ is 98%. The
outlet pressure rises at a nonlinear incremental rate, depending on the water pressure
diffusion along the fracture. There are 23 seismic events during the process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 12 
 

defined as the ratio between the shear stress and shear strength of the fracture while under 
water pressurization [12]. 

Since the fracture slip can release elastic energy and induce seismicity, we introduced 
the moment M0 to describe the energy released while sliding. M0 is the product of the 
fracture area (A), shear displacement (D) and shear modulus (G), determined by the 
Young’s modulus and Poisson ratio. 

0M GAD=  (3)

0
2 log 6.07
3WM M= −  (4)

Figure 6 shows that the fracture is pressurized at 20.8 MPa under normal stress and 
13.6 MPa under shear stress. The friction coefficient is 0.87, and the ratio rτ is 98%. The 
outlet pressure rises at a nonlinear incremental rate, depending on the water pressure dif-
fusion along the fracture. There are 23 seismic events during the process. 

(a) 

 
(b) 

Figure 6. The cyclic pressurization instability of a saw-cut fracture. (a) The shear stress and shear 
displacement with shearing time; (b) The inlet pressure and outlet pressure with shearing time. 

The fault failure is expected when the water pressure exceeds 5.2 MPa, due to rτ. This 
happens when the outlet pressure reaches this level, meaning that the distribution of the 
pore pressure on the whole fault surface is over 5.2 MPa. 

In the first cycle, the inlet pressure is maintained at 6.0 MPa, and the outlet pressure 
continuously increases. The fracture permeability before the fracture slip is 7.23 mD, 
which is measured based on the constant inlet pressure and increasing outlet pressure. At 
282 s, when the outlet pressure reaches 5.30 MPa, the fracture slip occurs, accompanied 
by a shear stress drop and shear displacement jump. The outlet pressure drops immedi-
ately after the slip event because of the shear dilation of the fracture [13]. However, after 
two stick slips, the outlet pressure still increases due to the imbalance between the inlet 
and outlet pressures. At the end of the first cycle, the outlet pressure is approximately 
equal to the inlet pressure. This fault is transitioning from stick-slip to stable sliding. 

Figure 6. The cyclic pressurization instability of a saw-cut fracture. (a) The shear stress and shear
displacement with shearing time; (b) The inlet pressure and outlet pressure with shearing time.

The fault failure is expected when the water pressure exceeds 5.2 MPa, due to rτ . This
happens when the outlet pressure reaches this level, meaning that the distribution of the
pore pressure on the whole fault surface is over 5.2 MPa.

In the first cycle, the inlet pressure is maintained at 6.0 MPa, and the outlet pressure
continuously increases. The fracture permeability before the fracture slip is 7.23 mD, which
is measured based on the constant inlet pressure and increasing outlet pressure. At 282 s,
when the outlet pressure reaches 5.30 MPa, the fracture slip occurs, accompanied by a shear
stress drop and shear displacement jump. The outlet pressure drops immediately after the
slip event because of the shear dilation of the fracture [13]. However, after two stick slips,
the outlet pressure still increases due to the imbalance between the inlet and outlet pressures.
At the end of the first cycle, the outlet pressure is approximately equal to the inlet pressure.
This fault is transitioning from stick-slip to stable sliding.

In the second cycle, the occurrence of the slip events is also accompanied by a slight
drop in the outlet pressure followed by a remarkable increase until the outlet pore pressure
reaches 5.5 MPa, instead of the maximum pressure (6.8 MPa), in the second pressurization
stage. However, there is no slip event in the third cycle and this could be regarded as a
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stable state in the second stage. After nine slip events, the fracture permeability becomes
12.06 mD, indicating permeability enhancement during the fracture slip.

In the third stage, the fault begins to slip at the time the outlet pressure exceeds the
maximum water pressure in the second stage. Twelve slips occur subsequently with the rise
in inlet pressure and outlet pressure. The slip events disappear when the outlet pressure
reaches 7.87 MPa. The permeability rises to 16.88 mD. Meanwhile, the outlet pressure
decreases as the granular gouges produced from previous slip events are likely being
compacted during the stable sliding.

Each stick-slip is recorded as a seismic event. The statistic of each slip event is drawn
in Figure 7. Figure 7a shows the inlet pressure and outlet pressure with the seismic event,
indicating that the necessary condition for triggering the fracture slip is an increasing
average pressure along the fracture surface. The distribution of the pore pressure due
to permeability can occur through both the delay of outlet pressure and the difference
between the inlet and outlet pressure. This is a crucial motivation in activating the unstable
slip of a critically stressed fracture. Figure 7b–d show the slip distance, maximum slip
rate, and stress drop with the seismic event, respectively. The fracture slides along the
surface in a moment. The shear displacement will increase rapidly. Each shear distance
is recorded in Figure 7b. Slip rate is the ratio of shear displacement to slip time. When
the fracture slides, the slip rate will rise suddenly. The maximum slip rate is recorded
in Figure 7c. The shear stress will drop suddenly because the machine cannot track the
movement within milliseconds, defined as a stress drop (Figure 7d). Since the inlet pressure
increases periodically, the three parameters express a periodical trend.
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4. Discussion
4.1. Overpressure in Fracture Reactivation

The stimulation of triggering pre-existing fractures by cyclic water pressurization is
a process of over-pressurization [6,14–17] and pore pressure diffusion [18–24] along the
fracture. Each process promotes the reactivation of the pre-existing fault and induces
seismicity. Overpressure is an especially crucial factor, as it controls the state of the fault.
The combinations of the shear stress, normal stress, and water pressure of a fault are plotted
in Figure 5, by modifying the graphical representation of Garagash [25] and Gischig [26].
According to the Mohr-Coulomb failure criterion, τ is the initial shear stress on the fault
and τp is the shear strength acquired from the displacement-driven shear test. rc is the
ratio between shear stress (τ) and shear strength (τp), which is used to describe the critical
state of the fault. The understress is evolved as 1 − rc. The fault is assumed to be critically
stressed if the understress decreases to zero. On the contrary, the shear stress is 0 if the
understress is equal to one. The increasing water pressure monitored by the system is
defined as ∆p and ∆p and is normalized by the fault-effective normal stress. σneff (∆p/σneff)
is defined to describe the overpressure of the fracture.

The diagonal in Figure 8 is a limitation in the fracture failure, dividing the fault into
two states: if ∆p/σn < 1 − rc, the increased pressure and shear stress cannot induce slip;
if ∆p/σn > 1 − rc, the fault is transitioning from the stable state to unstable state and an
aseismic slip or seismic slip might happen. In our test, the overpressure is a dynamic
oscillating state rather than a quasi-static state. Due to the heterogeneity of the pressure
distribution and low permeability, the change in outlet pressure is delayed compared to
the inlet pressure. Therefore, the inlet pressure and outlet pressure corresponding to every
slip are analyzed in Figure 8, showing that the unstable slip occurs with the accumulation
of pressure. The whole process is divided into three stages according to the inlet pressure
(6 MPa, 7 MPa and 8 MPa). For each stage, the overpressure increases in both the inlet and
outlet pressure. Every initiation of reactivation of the fault requires a higher pressure in
both the inlet and outlet. Therefore, a higher pressure along the fault surface is a necessary
condition for inducing a dynamic slip. And when a new balance between the inlet and
outlet pressure has formed, the pressure-controlled stick-slip will turn into a stable sliding
state. This phenomenon is consistent with the experiment investigated by Scuderi [24].
Finally, when the outlet and inlet pressure remains equal, the maximum injected energy
by the rising water pressure remains constant and there is no more dynamic slip during
pressure oscillation. Referring to the theory for describing the criterion of fault stability by
combining the elastic dislocation theory with the rate-and-state-friction (RSF) constitutive,
a relationship between fault stiffness (kc) and effective normal stress (σneff) is defined as
Equation (5). Dc is the critical slip distance for the friction of the fracture surface changing
from static friction to dynamical friction. Parameter a is the fracture friction at velocity V1.
Parameter b is the fracture friction at velocity V2. σneff is the effective normal stress on the
fracture. All the parameters can be measured in the rate and state law friction test.

kc =
σne f f (b − a)

Dc
(5)

where (b − a)/Dc is the friction weakening rate parameter [27,28]. Equation (5) shows that
increasing the pressure inside the fault can reduce kc and promote stable sliding, rather
than an earthquake slip. But seismological observations contrast with this prediction. The
dynamic slip instabilities are determined by the fluid pressurization exceeding the critical
stress state for reactivation. This process is driven by energy unbalance due to the decrease
in effective normal stress [24].
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4.2. Hydraulic Energy and Seismic Energy

To establish the relationship between input energy and output energy, the concept of
hydraulic energy is adopted. The input and output energy can be described based on the
conservation of energy. Therefore, the energy budget can be expressed using the following
balanced formulation:

EH + ∆W = E f + ER + Ed + l (6)

where EH is the injected hydraulic energy, defined as the product of the injection fluid
pressure (P Pa/s) and the injection rate (Q m3/s) (Equation (7)) [29]. The injected volume
and pressure change with time. Thus, the injection energy is calculated by integrating EH
over the injection interval (t1 − t2). ∆W is the potential elastic energy. Ef is the frictional
energy dissipated on the fault plane and is supposed to be equal to ∆W [30]. Er is radiated
energy, which is also regarded as seismic energy. It is hard to monitor the radiated energy
because of the limited knowledge of the radiation pattern and limited frequency band [31].
Thus this energy is calculated by establishing the relationship [32] with the seismic moment
(Equation (8)). Ed is deformation energy; l is energy loss, ignored in this experiment.

EH =

t2∫
t1

PQdt (7)

log10(ER) = 1.5Mw + 4.8 (8)

According to Equation (6), each seismic event has a certain hydraulic energy (EH)
and radiated energy (Er). The moment magnitude (Mw) can be calculated according to
Equation (8). Therefore, the seismic energy (M0) can be calculated according to Equation (4).
Above this, the relationship between seismic energy and hydraulic energy is established.
In Figure 9, the black line is the ratio between seismic energy and hydraulic energy. The
11 black lines represent the ratio of 100% to 0.00000001%, correspondingly. The triangles
and circles in Figure 9 are data collected from several field experiments and laboratory
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experiments. Therefore, Figure 9 shows the relationship between seismic energy and
hydraulic energy. The triangle symbols represent the triggered seismicity and the circle
symbols represent the induced seismicity. The total input hydraulic energy is 2.52 J. The
deformation energy, aiming to enlarge the fracture aperture, ranges from 88% to 93% of the
injection energy. Fluid could flow along the aperture more smoothly after several slips. The
ratio of seismic energy and hydraulic energy is defined as seismic efficiencies. For triggered
seismicity, the seismic efficiency ranges from 0.1% to 10%, referencing the field tests and
laboratory tests. But for the induced seismicity, this parameter ranges from 1 × 10−7% to
1 × 10−3%. According to Equation (7), we can deduce that the tectonic stress of a fracture
and the fluid flow inside the fracture determines the released seismic energy. Therefore,
seismic energy could be predicted using hydraulic energy.
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5. Conclusions

This article concentrates on how fluid overpressure triggers the fracture slip by using
the HM coupling shear test. A granite sample with a smooth fracture is adopted in this
research. The injected water pressure increased cyclically to simulate water reservoir
impoundment. During the test, stick-slip happens correspondingly to the inlet and outlet
pressure. The HM coupling shear test shows that the fracture becomes unstable while
the fluid pressure increases to a critical value. Cyclic water pressurization is introduced
in this experiment. Results show that the fracture begins to slip when both the inlet and
outlet pressure exceeds the theoretical water pressure and continues to stick-slip when
both the inlet and outlet pressure increase. The slip distance, slip rate, and stress drop
indicate that stick-slips happen periodically. The motivation for fracture sliding is the
unbalance between the inlet pressure and outlet pressure, driving the fracture to become
unstable. When the new balance between the inlet and outlet pressure has formed, the
pressure-controlled stick-slip will turn into a stable sliding state. In addition, the fracture
surfaces become deteriorated after several stick-slips for the RMS alteration after sliding.
The understress is defined to explain the mechanism of fracture activation. The values of
∆p/σn and 1 − rc determine the sliding state. When ∆p/σn < 1 − rc, the increased pressure
and shear stress cannot induce slip. When ∆p/σn > 1 − rc, the fault is transitioning from
a stable state to an unstable state. Furthermore, hydraulic energy is adopted as another
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explanation as to why fluid overpressure can induce unstable sliding by establishing the
relationship between the input energy and the released energy. Based on this, the seismic
energy can be estimated from the input hydraulic energy, which is an effective method
for evaluating reservoir-induced seismicity. Going forward, future work is required to
determine why seismic turns to aseismic while the new balance is formed, which is also a
complicated problem in predicting the magnitude of seismicity.
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