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Abstract: The Internet of Things is a comprehensive system of connected computing devices and
sensors that provide extensive data sharing capability for any specific purpose. For the construction
industry, the applications of the Internet of Things have been increasing over the past few years,
and it is because technology can provide full support to construction projects in attaining significant
efficiency. The most critical part of construction products where the internet of things can be adopted
is safety management because hundreds of accidents happen every year that result in significant
injuries to construction workers and even death in some cases. For small construction projects, the
situation is much worse, as there are never enough resources to adopt the latest technology, such as
the Internet of Things. This study is structured with the aim of identifying the critical implementation
barriers of the internet of things that affect small construction projects in Malaysia specifically. A
mixed methodology study design is followed in which, after identifying the implementation barriers
of the internet of things from existing literature, they are filtered with expert opinion. A pilot survey
was conducted on which exploratory factor analysis was applied to further identify the significant
barriers relating to the Internet of Things in small construction projects in Malaysia. A main survey
was conducted afterwards, on which the structural equation modelling was done to develop the
model involving the final 16 barriers divided into 5 formative constructs. The most critical barriers
are found to be related to databases and technology, while the least impact is created by management
barriers. Positive theoretical and managerial implications are indicated for future researchers and
construction workers, respectively, by which they can improve the implementation of internet of
things in small construction projects in Malaysia.

Keywords: internet of things (IoT); safety management; small construction projects; Malaysia

1. Introduction

Commonplace objects embedded with sensors and other technologies to gather and
send data to other devices online form the IoT This development was helped along by
machine learning, embedded systems, inexpensive sensors, and real-time analytics [1,2].
Traditional wireless sensor networks, control systems, and other infrastructure are essential
building blocks of the Internet of Things. The industrial, healthcare, agricultural, and
transportation sectors are among the fastest-growing users of the IoT in Malaysia. The IoT
industry in Malaysia was valued at RM9.7 billion (about USD 2.3 billion) in 2019 and is
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projected to reach RM37.1 billion (approximately USD 8.9 billion) by 2025, according to
research by the Malaysian Communications and Multimedia Commission (MCMC) [3,4].
The construction sector is only beginning to embrace the IoT, but this trend is expected to
grow. Although the IoT is still in its infancy in Malaysia, its adoption is likely to explode
over the next several years as more businesses see the opportunities it presents for cutting
costs, increasing productivity, and differentiating themselves in the marketplace [5,6].
According to Zhou & Ding (2017), every company should make worker safety and security
its top concern [7]. The advancement of the Internet of Things has established a new
standard for risk-free construction methods. Its use may replace a separate accident
prevention program and enhance an existing construction safety system. Cheung et al.
(2018) and Tagliabue & Ciribini (2018) argued that it has aided corporations throughout
the world in improving their workspaces, amassing more precise data, streamlining their
operations, and increasing their productivity [8,9]. The use of Internet of Things devices
by workers in risky industries is not risk-free. Instead, they help managers cope with a
range of hazards that could have been avoided. Through the use of the IoT, companies
may monitor their employees’ health and the safety of their working environment, both
of which may help to lessen the occurrence of accidents. One feature of IoT software that
might be used to monitor industrial gear is predictive maintenance [10,11]. That way,
problems with the networked gadgets could be spotted before they trigger a catastrophe.
Predictive maintenance is useful because it helps organizations avoid problems in the
future by acting on insights gained from studying the past [12,13]. Instead of relying on
human evaluation of data and reports, monitoring and analysis might be consolidated and
made more comprehensive with the use of IoT technologies and data analytics [14,15]. In
the case of accidents, injuries, losses, or damages occurring during construction, a better
system in place provides access to data that may assist in the monitoring and avoidance of
such risks to the company.

Organizing training courses for employees would be a great idea. A survey of the
construction site might reveal any potential security threats. As a result, the IoT may be
utilized to keep records and provide a safe workplace for workers. Guzman & Mezovari
(2019) stated that data analysis and the use of this information assure the long-term safety
of construction workers [16]. When employees feel safe in their work environment, they are
less likely to experience injuries [17]. There is no doubting the need for setting up Internet
of Things gadgets with environmental sensors that can identify any potential threat. But
this may not be enough; therefore, existing studies propose employing networked sensors
to identify risks and take preventative action [18,19]. When improved IoT monitoring
devices are in place, employees can rest assured that they are in a secure environment. The
safety of the construction workers is ensured by the effective operation of all these linked
devices in the case of an emergency [20,21].

Regular inspections of company property and workers’ health may help make con-
struction sites safer [22]. This is now possible because of wearables and other forms of
vital sign monitoring technology. For instance, a company may provide its employees
with Internet of Things-enabled wristwatches loaded with information on workplace
safety [23,24]. Using IoT technologies, managers may monitor malfunctioning systems and
make informed estimates about how to deal with impending dangers and take preemptive
action. When it comes to IoT solutions for the office, wearable technology is one of the most
significant developments. Costin et al. (2019) and Park et al. (2019) stated that examples of
wearable electronics include smartphones and other “smart” mobile devices with built-in
capability for synchronizing and organizing data [25,26]. These innovative techniques
provide companies with confidence in the safety of their staff. Monitoring susceptible
infrastructure with the use of IoT technologies may help management anticipate threats
and plan for appropriate countermeasures.

It’s possible that workers’ usage of wearable technology might improve workplace
health and safety [3,27,28]. These may enhance on-site monitoring of operational activities,
streamline processes to boost efficiency and safety, and allow for prompt corrective action
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to be taken without requiring personnel to be relocated [29,30]. IoT solutions may benefit
organizations in a number of ways, including by increasing operational efficiency and
providing a sense of security to employees. J. Li et al. (2020) and Tan et al. (2020) found
that most workplace fires are accidental, but many may be prevented if their causes are
identified immediately [31,32]. Possible improvements to fire protection sensors include
the ability to pick up on rising temperatures, which might reveal critical moments for
stopping the development of a fire. Software connected to the Internet of Things may
help detect a sudden increase in temperature, a key clue to a fire’s origin. Businesses may
keep an eye on the temperature of the office with the use of fire safety sensors embedded
into Internet of Things software or devices, allowing for rapid response in the event of
a fire. This early detection might be highly useful for the speedy evacuation of persons
and the swift implementation of the key preventive steps. Although the advantages of
IoT implementation are proven by existing research, it is still uncertain whether we have
a comprehensive view of the barriers that affect its implementation in the construction
industry [17,22]. The rationale for this study is based on the growing interest of Malaysia’s
construction sector on the IoT and the lack of evidence from existing literature specifically
focusing on barriers to implementing the IoT. The first objective of this study is to identify
the critical barriers of implementing the IoT in Malaysian construction industry. The second
objective is to successfully utilize Structural Equation Modelling (SEM) approach to develop
a model indicating all significant barriers.

2. Literature Review

The construction industry has a history of being stereotyped as being technologically
behind the times. However, new breakthroughs, especially in the field of the Internet
of Things (IoT) and the so-called Fourth Industrial Revolution, have the potential to
bring about a genuine revolution. In the construction industry, the IoT is known as
telematics [33–35]. When it comes to construction equipment and trucks, telematics systems
can provide a wealth of information. Gamil et al. (2020) found that it provides real-time
data that may improve equipment performance and maintenance for enterprises [36].
The end outcome might be the exposure of waste and inefficient management inside the
company [37,38]. With the use of IoT technology, work patterns on the factory floor can be
tracked, quantified, and forecasted, which may lead to the identification of hazards that
would have otherwise gone unnoticed. Wearables with sensors, such as helmets, jackets,
and watches, may collect data on how workers interact with their environments [39,40].
Balamurugan et al. (2020) and Chung et al. (2020) stated that managers may monitor
workers, warn them of risks, and stop them from entering off-limits areas by using GPS
data in conjunction with blueprints of the workplace [41,42]. Employers may be able to
reduce the risk of automobile-equipment collisions in warehouses and storage facilities by
using laser scanners. Scanners are helpful since they may detect any protruding dangers
that might lead to a collision [43,44]. Häikiö et al. (2020) and Jin et al. (2020) stated that,
not only does this help reduce injuries, but it also encourages employees to follow all
applicable safety protocols [6,45]. In the event of a catastrophic accident or plant failure,
first responders may access vital data generated by IoT devices in real time, enabling them
to evaluate the situation and take the appropriate action immediately [46,47].

Some of the biggest problems with the Internet of Things are that it isn’t completely
secure, that there aren’t enough connections between devices, that the advantages of the
IoT aren’t widely known, that it hasn’t been rolled out yet, and that there aren’t enough
of them. Cristian Alejandro Rojas et al. (2020) argued that it may infer that construction
professionals are aware of IOT’s potential to improve project effectiveness by measuring
their familiarity with the IOT and their understanding of its possible uses and extensions
in construction projects [48]. Defending the interconnected parts and layers that make
up the IoT is a tough task. Intelligent sensors play a crucial role in today’s complex IoT
infrastructure [49,50]. Manufacturing, agriculture, logistics, retail, healthcare, and smart
cities are just some of the places where smart sensors are employed for data collection.



Appl. Sci. 2023, 13, 3340 4 of 24

Boje et al. (2020) and Teng et al. (2021) found that sensors such as this need to be designed
and developed so they can be used to reliably fulfill a wide range of requirements in real
time [51,52]. There is a wide range of complexity in the types of sensors that may be used
in the Internet of Things, from simple thermometers to sophisticated devices that collect
data from their surroundings. Designing, creating, and effectively integrating a wide range
of intelligent sensors might be challenging. Another major challenge is ensuring that all
connected devices are safe and secure [53,54]. As the scope of an IoT system grows, so
does the significance of maintaining its security. Hacking a single household device is far
less dangerous than bringing down a whole electrical grid. Operating system patches are
often used to improve system security. According to Nnaji & Awolusi (2021) and Soares
Júnior et al. (2021), the devices and systems connected to the internet must be able to
update and upgrade in the future [55,56]. In the heat of an industry’s battle for supremacy,
a devastating security breach might compromise the functionality of every connected
device and appliance. In the absence of a standardized strategy for the IoT, many nascent
companies may try their luck in the market without adequately protecting their customers’
personal information [57–59]. In order to maintain user trust, every technology that tracks
them must keep their data secure.

The internet of things Technology cannot be implemented easily without including
the factor of complexity of Data architecture and also the way by which absence of existing
safety Technology integration create a major barrier. It is a reality that in different parts
of construction, there are always problems related to sustainable energy supply where
digital technology cannot work efficiently [33–35]. Ultimately, it creates a major barrier
and further puts people in need of constant surveillance, which increases the overall
cost of implementation of the IoT. It’s a reality that the different social and economic
consequences are related to the management of our entire implementation process, which
will result in compromising the understanding of internet of things implementation in small
construction projects [19,60]. It is a reason that the difficult scenarios are always present,
by which notification cannot be easy, and also that it is no longer possible to maintain the
technology implementation where the privacy problems are also present [24,61]. It further
escalates the problem of implementing the Internet of Things in small construction projects
in Malaysia, where the data privacy can contribute to compromising the ethical compliance
of construction projects, which end up in creating serious legal issues. It is important to
consider the efficient management of Internet of Things technology, which can ultimately
provide great leverage to systems adopted in construction projects.

IoT devices may capture and transmit sensitive information through a wired or wire-
less connection. Phannil & Jettanasen (2021) and T. Zhang & Hao (2021) stated that after
information is gathered, it is typically stored in a database until needed. Protecting clients’
personal information requires a secure system that is impervious to hackers and other
types of unauthorized access [62,63]. There is a security concern if someone gains unau-
thorized access to a user’s data since that person’s habits, lifestyle, health, etc. might be
exploited. Protecting user anonymity and complying with local laws are two of the most
important requirements for Internet of Things platforms [5,61,64]. The IoT, similar to other
emerging technologies, is spreading into new areas and finding many applications [4,65,66].
Companies are racing to get their innovations accepted as the standard by the market as
competition increases [60,67,68]. In order to guarantee compatibility, it will be necessary
for both service providers and customers to invest in new hardware, which would increase
costs. The Internet of Things necessitates that all devices and networks used within its
framework be suitable for usage with previously established methods of information ex-
change [69–71]. T. Liu et al. (2021) and Sun et al. (2021) stated that it may be challenging to
make sure all of the devices and applications are compatible with one another when dealing
with such a varied ecosystem of endpoints [72,73]. Standardization of technology, defining
and monitoring of network protocols, transmission bands, data rates, processing, and so
on are all necessary for an efficient IoT infrastructure. Limited evidence exists from the
perspective of existing research where the barriers are listed for the Malaysian construction
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industry. The recent pandemic of 2020 has also affected the successful implementation of
IoT in Malaysia’s construction industry. The rationale behind this study is to conduct a com-
prehensive analysis of barriers that should provide constructive development of theoretical
and practical implications related to IoT implementation in the Malaysian construction
industry. The identified barriers, along with their coding, are presented in Table 1.

Table 1. Challenges of IOT implementation.

Factors Description References

F1 The absence of safety technological integration [37,39]
F2 Complexity of data architecture [55,57]
F3 The necessity for enough lighting for effective operation [56,58,59]
F4 The need for constant surveillance [61–63,65,66]
F5 deficiency of IOT service suppliers [65,66]
F6 Low cost benefit ratio [4,73]
F7 Database synchronization process modification [66,72]
F8 Limited technology implementation scope [74–76]
F9 Limitations on hardware and software as well as a lack of standardized standards [77,78]

F10 Data privacy problems [74,79,80]
F11 Absence of publicly accessible big data [72,75,76]
F12 Utilize information system management expertise. [4,66,73]
F13 Deficiencies in the capture of data onsite [65,70,71]
F14 Implementation of heterogeneous distributed IoT system [67,69]
F15 Energy and Device Management [60,68]
F16 Insecure connection between devices in network [69,70]
F17 Reduced productivity caused by wearable sensors. [4,65,71]
F18 False alarms [66,73]
F19 Safety risks [72,75,76]
F20 Absence of a Knowledge administration system [74,79,81]
F21 Legal and regulatory requirements [80,82]
F22 The need for technical education [81,83,84]
F23 Obstacles resulting from physical encounters. [77,78]
F24 inadequate government policies and incentives [74,79,80]
F25 A lack of dependence on technology [75,76]

3. Methodology

By using the IOT, this research hopes to enhance the number of construction projects
in the Malaysian building industry that are successfully completed. This work started with
a review of relevant literature on IOT barriers, as shown in Figure 1, which was taken from
the literature. The result was the establishment of twenty-five (25) sets of obstacles. Prior
to the main survey, a pilot test was done to gather data and make sure the questionnaire
was accurately filled out. For the purpose of combining their knowledge, research expe-
rience, and familiarity with the situation of the Malaysian construction industry, a pilot
survey of 50 top building experts in Malaysia was carried out. These experts’ feedback
indicated that it typically took between 30 and 40 min to complete the questionnaire. The
results revealed incorrect dot lines, inaccurate variable counts, and spelling and grammar
mistakes. According to Meng & Zhu (2020), the final version contained all the observations,
conclusions, and adjustments made to the survey equipment [40]. As a result, the survey
questionnaire underwent some changes. A round of feasibility testing was conducted with
respondents who represented the target population in order to examine the interpretation
of questions. According to Gamil et al. (2020) and H. J. Lee & Lim (2020), the correctness of
the planned activities in relation to the acquired data was verified [37,38]. The question-
naire was deemed appropriate for the IOT analysis. We issued a list of the IOT issues to
professionals in the building business so they could create a questionnaire. The accuracy
and transparency of the IOT barrier classifications were evaluated using exploratory factor
analysis (EFA) and a PLSSEM prioritization model.
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3.1. EFA-Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) and then Confirmatory Factor Analysis (CFA)
are the two most common approaches to doing factor analysis. In this study, CFA was
used to assess how different variables in hypotheses or theories fit together structurally.
However, EFA was used to collect data on inter-factor connections and to distill many
variables down to a manageable number of important frameworks [36,41]. SPSS has a
feature for doing this. Data collection led to the development of the main multivariate
analytic techniques such as EFA for investigating the fundamental building blocks of
the IOT barriers [6,42]. Measurement variables were tested for one-dimensionality and
reliability to see whether construct validity had been appropriately evaluated [85,86].
Principal Component Analysis (PCA) was chosen over Principal Axis Factoring (PAF),
Image Factoring, Maximum Probability, and Alpha Factoring, because it is more accurate
and has a broader theoretical foundation [29,43,45]. In contrast, principal component
analysis (PCA) is advised if exploratory factor analysis (EFA) yielded only preliminary
results despite the lack of a preexisting theory or model. J. Li et al. (2020) and Tan et al. (2020)
argued that exploratory factor analysis is most often performed using principal components
analysis (PCA), which is the default option in many statistical software programs. Instead
of using more labor-intensive approaches such as Oblimin or Promax, this study opted for
the more equitable Varimax Rotation [31,32]. When it comes to factor elucidation, whether
basic or complicated, Varimax stands out as a wonderful global approach [87,88]. The
sample size may be considered representative if it falls within a certain acceptable range.
Factor analysis was found to be appropriate in this investigation due to the 25 variables
and sufficient sample size. This study’s sample size and methods are consistent with those
found in the literature.
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3.2. PLS SEM

The most significant challenges to the IOT were identified by a literature study. The
best option for utilizing the IOT to construct a model for a successful building project was
narrowed down by comparing and contrasting four distinct model examples’. Multiple
linear regressions, SEM-structural equation modelling SD-system dynamics, and ANN-
artificial neural networks are some of the methods used [79,80]. As a result of correlations
between latent factors, we were unable to conduct regression analysis. This exemplifies a
major flaw in the regression equation. System dynamics were utilized since the information
gathered was not tied to previous actions. The study’s overarching goal is to uncover
the difficulties associated with using an IOT that has not before been implemented using
artificial neural networks (ANNs) as a predictive tool [74,77]. With the SEM method,
researchers may characterize the relationship between a wide range of components (both
observable and unobservable) that are suitable for their study [78,80]. When dealing
with variable errors, SEM is an effective strategy. In this investigation, the connection
between the IOT (barrier) structures was modelled using the SEM method. Rao et al.
(2022) method was employed in cases when standard techniques for evaluating hypotheses
were unknown [84]. Khan et al. (2022) also discovered that SEM is a reliable and popular
method in the social sciences [83]. Since the SEM method has already seen application
in the building sector, it was chosen for this study [82]. The hurdles to adopting the IOT
were analyzed using the Partial Least Square (PLS) model, which included reflective and
formative indicators, to establish a link between IOT barrier components.

3.2.1. Measurement Model

Understanding the underlying latent conception and how the variables are related is
made clear by the measurement model. It is for this reason that the accompanying inquiries
carefully deal with the measurement model’s convergent and discriminant validity.

3.2.2. Convergent Validity

If two or more barriers (or measures) from the same group or concept are consistent
with one another, then we have convergent validity (CV). For this population, the construct
has been shown to work reliably. Using Cronbach’s alpha (ca), the average variance
extracted (AVE), and composite reliability scores (CR), the CV of the tested construct may
be calculated in PLS [4]. According to Chen (2021), a composite reliability of 0.700 was
recommended as being indicative of only modest reliability [65]. Values greater than
7.000 in research are considered acceptable, but values of 6.00 in exploratory studies are
acceptable [71]. In the end, we ran the AVE. CV values over 0.500 indicate excellent CV, and
these values may be checked using a standard calculation to assess the model’s structures.

3.2.3. Discriminant Validity

Discriminant validity (DV) confirms that the concept being statistically examined is
unique and shows that the topic under study is not described by any SEM metric. DV is
better established when the degree of similarity across dissimilar approaches is smaller.

3.2.4. Structural Model Analysis

A Structural Model Analysis The purpose of this work is to use SEM to simulate the
significance of IOT barriers. The establishment of path or route coefficients between the
investigated coefficients was essential to the accomplishment of this goal. Prabha et al.
(2021) stated that considering this, it was proposed that there is a unidirectional route link
(causal relationship) between the two concepts of IOT barriers (£) and IOT implementation
(µ) [67]. At this stage, a linear equation indicated the structural connection between the µ,
£, and €1 formulas in the SEM model, which are the internal linkages.

Theoretically, there should be a path coefficient (PC) between the IOT obstacles and
structural-level residual variance of (€1). The standardized weight (β) used in this multiple
regression model is equal to the weight used in the standardized regression analysis. It is
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important that the results be consistent with the model’s predictions and have a high level
of statistical significance [65]. The hardest part was figuring out how important the route
coefficient was. Standard errors (SE) of the PCs were evaluated using 5000 subsamples
based on the notion proposed by Prabha et al. (2021) [67], utilizing a bootstrapping
technique already included in the SmartPLS 4 statistical tool. In addition, it limited the use
of the t-statistic for testing hypotheses. By plugging these numbers into the PLS Model, we
were able to build six (6) structural equations (SEs) for the IOT obstacles, each of which
shed light on the implicit relationships between the various conceptualizations.

µ = β £ + €1 (1)

3.3. Data Collection

For the determination of significant IoT barriers, the main questionnaire survey con-
sisted of three sections, such as respondent demographic profiles, IoT barriers, and open-
ended questions. Three major categories of respondents were involved: clients, consultants,
and contractors. We’ve narrowed it down to three (3) major categories (i.e., clients, consul-
tants, and contractors). Different types of mechanical, electrical, structural, architectural,
and quantity surveying engineers were identified. However, due to restrictions on travel,
timely data collection was challenging. As a result, data collection was set up for electronic
correspondence, social media, and telephone calls. The IOT challenges were indicated by
respondents using a 5-point Likert scale to reflect their level of expertise and familiarity
with the topic. From extremely high (5) to high (4) to normal (3) to little (2) to low (1) is the
scale’s full extent (very small). Stratified sampling was adopted due to the infancy of the
IOT analysis in Malaysia. Statistics were also used in selecting the sample size. For SEM
analysis, P. Liu (2021) also suggested a sample size of over 100 [60]. Because SEM was used
in this study, data from a whopping 138 participants could be analyzed. With a 60 percent
response rate, it was deemed adequate for structural equation modeling.

4. Data Analysis
4.1. Respondents’ Demographic Characteristics

According to Table 2, more than half of the participants have master’s degrees, and
35.51 percent are enrolled in graduate programs. In a similar manner, survey question-
naires were delivered to those seeking a Ph.D.; these individuals made up 14.410% of
the total respondents. In addition, approximately 23.190% of workers have less than five
years of experience in their field, 36.220% have between five and ten years of experience,
29.710% have between ten and fifteen years of experience, 5.800% have between fifteen and
twenty years of work experience, and the remaining 5.070% have more than twenty years
of experience.

Table 2. Demographic details of participants involved in the study.

Category Classification Frequency %

Profession

Architect 14 10.140
Quantity Surveyor 14 10.140

Civil Engineer 40 28.990
M&E Engineer 14 10.140

Project Manager 39 28.260
Other 17 12.320

Organization
Contractor 62 44.930
Consultant 51 36.960

Client 25 18.120
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Table 2. Cont.

Category Classification Frequency %

Malaysian Construction Industry Experience

0–5 Years 32 23.190
6–10 Years 50 36.230

11–15 Years 41 29.710
16–20 Years 8 5.800

Over 20 Years 7 5.070

Education
PhD 20 14.490
MS 69 50.000

BS.C 49 35.510

IOT Familiar

Well Known 20 14.490
Little Known 38 27.540

Moderately Known 44 31.880
Unknown 36 26.090

Training Yes 39 28.260
No 99 71.740

These data, taken as a whole, suggested that the respondents had a high degree of
experience and credentials. In addition, 36.960% are considered consultants, while 44.93%
are considered contractors, and 18.120% are considered to be clients or developers. 14.490%
of the individuals in this research have a high level of familiarity with the IOT, whereas
27.540% have a moderate level of familiarity with the IOT technology, and 31.88% have
a low level of familiarity with the IOT. In addition to this, 74.100% of the participants
have never received any training on the IOT, and 28.260% of the participants have never
participated in an IOT training program.

4.2. EFA and Model Development

The factor structure of 25 items related to the IoT was identified using exploratory
factor analysis (EFA). A large number of well-established correlation factorability criteria,
including Kaiser-Meyer-Olkin (KMO), have been identified. The KMO, which measures the
homogeneity factor, is often used to verify least-squares correlations between variables. For
a reliable factor analysis, the KMO index has to be at least 0.600 [13,61] but may go as high as
1. Similarly, when p < 0.05 was used as the threshold for significance, the Bartlett Sphericity
test showed that the correlation matrix was equal to the Sphericity test matrix. Initially, the
KMO sample adequacy metric was higher than the suggested value of 0.600, at 0.893 [2,66].
The Sphericity test performed by Bartlett was significant (x2 (320) = 1135.510, p < 0.05).
The diagonals of the anti-image correlation matrix were greater than 0.50, making them
suitable discrete variables for factor analysis. Lower numbers (<3) indicate variables that
did not fit the factor solution. In this investigation, the significance of all initial similarities
exceeded the criterion. All factor loadings are more than 0.500 [71]. During the analysis,
the minimum Eigen value was set to 1, by which all the constructs indicated in the EFA
have greater than 1 Eigen value. Furthermore, in total, 58.660% of the variance is explained
by the constructs identified from the analysis, as indicated in Table 3. Cross loading was
observed in the case of five variables, such as F12, F17, F18, F24, and F25. All of these
factors were removed for further analysis. For increasing accuracy, it is important that
the alpha value should also increase to more than 0.750. Less than 0.600 is not acceptable
in any case because it indicates poor reliability of results [88]. All the values observed in
analysis are greater than 0.600, which indicates acceptable reliability statistics. The average
correlation of variables across all objects is greater than 0.300, indicating stable internal
variables [61].
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Table 3. Exploratory factor analysis result generated by busing SPSS 24.

Factors
Component

Cronbach Alpha
1 2 3 4 5

F1 0.826 0.862
F8 0.779
F9 0.762
F14 0.760
F17
F11 0.731 0.797
F13 0.715
F7 0.702
F4 0.667
F2 0.655
F10 0.849 0.780
F16 0.809
F21 0.749
F20 0.526
F6 0.758 0.739
F15 0.685
F19 0.682
F12
F23 0.689 0.704
F22 0.657
F3 0.600
F5 0.558
F18

Eigen Value 3.419 2.872 2.673 2.295 2.280
% Variance 14.867 12.486 11.622 9.978 9.914

Note: Factor F12, F17, F18, F24, F25 excluded from the EFA because of loading less than 0.5.

After performing the exploratory factor analysis, the next step is to categorize all the
factors that are grouped together in a component on the basis of their factor loading criteria,
which are interlinked with how the actual questionnaire has been filled. Table 4 shows the
grouped factors from the output of the EFA analysis, and a proper name is assigned to each
category on the basis of their grouped factors relationship.

Table 4. Categorization of factors generated from EFA.

Safety Phase Assigned Code Activities

Technology Barriers

F1 The absence of technological integration
F8 Limited technology implementation scope
F9 Limitations on hardware and software as well as a lack of standardized standards

F14 Implementation of heterogeneous distributed IoT system

Database Barriers

F11 Absence of publicly accessible big data
F13 Deficiencies in the capture of data onsite
F7 Database synchronization process modification
F4 The need for constant surveillance
F2 Complexity of data architecture

Privacy Barriers

F10 Data privacy problems
F16 Insecure connection between devices in network
F21 Legal and regulatory requirements
F20 Absence of a Knowledge administration system

Operational Barriers
F6 Low cost benefit ratio

F15 Energy and Device Management
F19 Safety risks

Management Barriers

F23 Obstacles resulting from physical encounters.
F22 The need for technical education
F3 The necessity for enough lighting for effective operation
F5 Deficiency of IOT service suppliers
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For the development of a conceptual model, the results obtained from EFA are signifi-
cant enough for the development of hypotheses involving each construct and dependent
variable. Figure 2 presents the conceptual model and hypotheses as follows:

• H1: There is a significant relationship between eliminating technology-related ob-
stacles and the IOT implementation, considering the safety management of small
construction projects in Malaysia.

• H2: There is a significant relationship between eliminating database-related obstacles
and the IOT implementation, considering the safety management of small construction
projects in Malaysia.

• H3: There is a significant relationship between eliminating privacy-related obstacles
and the IOT implementation, considering the safety management of small construction
projects in Malaysia.

• H4: There is a significant relationship between eliminating operation-related obstacles
and the IOT implementation, considering the safety management of small construction
projects in Malaysia.

• H5: There is a significant relationship between eliminating management-related ob-
stacles and the IOT implementation, considering the safety management of small
construction projects in Malaysia.
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4.3. Development of Structural Models
4.3.1. Measurement Model

Estimating reflective measurement models (or barriers) inside PLS-SEM calls for
research on internal consistency, discriminant validity, and convergent validity. The whole
model’s construction was deemed valid since it met the criteria and pc > 0.600. In addition,
the whole construction has been AVE-approved. AVE values over 0.500 are required to
meet the criteria. The PLS algorithm version 4.0 used in this study yielded overall construct
and AVE value approximations greater than 50% [74,78]. Indications so far point to the fact
that the measurement model is both internally consistent and convergent. This indicated
that all constructs in the study model were accurately measured by the research variables.
When there are many important aspects associated with a notion, its external load will
be high. Figure 3 shows that external loadings over 0.600 are considered to be within
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acceptable ranges [76,82]. The observed correlation between all constructs can be easily
compared with the square root of AVE, providing greater strength to the analysis and also
utilizing the Fornell and Larcker hypothesis. A smaller value of correlations is required
than the square root of AVE. Table 5 presents the detailed outcomes of the measurement
model analysis involving AVE and correlations. Figures 4–7 present the normal probability
distribution curves of item loading, Cronbach alpha, composite reliability, and AVE. All
the observed parameters are in the normal range, which qualifies the model in terms of
reliability and validity.
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The level of shared variance between the model’s latent variables is often evaluated
using the Fornell-Larcker (1981) criterion [74,78]. With these standards in mind, we can use
the Average Variance Extracted (AVE) and Composite Reliability to assess the convergent
validity of the measurement model (CR) [89]. The output generated from smart pls for
discriminant validity should be in such a way that in each column of every construct,
the first highest value should be compared with the rest values; in this way, the Fornell
larker criteria will be satisfied. Table 6 displays the discriminant validity Fornell larker
values. The Fornell-Larcker method of evaluating hypotheses suggests that contrasting the
variance captured by the concept (AVEj) with the variance shared with other constructs is
one way to establish discriminant validity (ij).
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Table 5. Loadings of Variables along with CA, CR and AVE output.

Safety Phase Assigned Code
Loadings

Cronbach Alpha Composite Reliability AVE
Initial Modified

Technology Barriers

F1 0.880 0.880 0.863 0.907 0.709
F8 0.816 0.816 - - -
F9 0.810 0.810 - - -
F14 0.861 0.861 - - -

Database Barriers

F11 0.711 0.711 0.774 0.855 0.596
F13 0.758 0.758 - - -
F7 0.808 0.808 - - -
F4 0.806 0.806 - - -
F2 0.563 Deleted - - -

Privacy Barriers

F10 0.813 0.813 0.779 0.859 0.606
F16 0.803 0.803 - - -
F21 0.825 0.825 - - -
F20 0.660 0.660 - - -

Operational
F6 0.930 0.930 0.703 0.865 0.763
F15 0.813 0.813 - - -
F19 0.594 Deleted - - -

Management Barriers

F23 0.916 0.916 0.838 0.925 0.86
F22 0.938 0.938 - - -
F3 0.502 Deleted - - -
F5 0.564 Deleted
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Table 6. Fornell larker criterion for discriminant validity.

Constructs Database
Barriers

Management
Barriers

Operational
Barriers

Privacy
Barriers

Technology
Barriers

Database Barriers
Management Barriers 0.290
Operational Barriers 0.191 0.132

Privacy Barriers 0.313 0.204 0.241
Technology Barriers 0.504 0.252 0.175 0.497

Recently, the heterotrait-monotrait ratio of correlations (HTMT) method for assessing
discriminant validity has been developed. HTMT is the average correlation between
hetrotrait and heteromethods compared with the average correlation between monotrait
and heteromethods [89]. Table 7 shows the HTMT analysis output based on the requirement
that every construct have a value lower than 0.900. Below 0.85 is highly recommended.

Table 8 shows Cross Loadings for discriminant validity calculations. According to
Cross loadings, a specific item should have greater loadings on its own parent construct
than other constructs in the research. If an item loads well onto another construct relative
to its own parent construct, discriminant validity difficulties exist.
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Table 7. HTMT Criterion for discriminant validity.

Constructs Database
Barriers

Management
Barriers

Operational
Barriers

Privacy
Barriers

Technology
Barriers

Database Barriers 0.772
Management Barriers 0.244 0.927
Operational Barriers 0.080 0.111 0.873

Privacy Barriers 0.250 0.166 0.196 0.778
Technology Barriers 0.419 0.219 0.131 0.415 0.842

Table 8. Cross loading criterion for discriminant validity.

Factors Database
Barriers

Management
Barriers

Operational
Barriers

Privacy
Barriers

Technology
Barriers

F11 0.711 0.057 0.077 0.179 0.221
F13 0.758 0.185 −0.002 0.103 0.452
F2 0.529 0.161 0.071 0.200 0.334
F4 0.806 0.203 0.117 0.287 0.336
F7 0.808 0.283 0.053 0.192 0.270
F22 0.258 0.938 0.110 0.185 0.220
F23 0.190 0.916 0.094 0.118 0.184
F6 0.165 0.128 0.930 0.225 0.080
F15 −0.079 0.050 0.813 0.091 0.172
F10 0.111 0.105 0.207 0.813 0.278
F16 0.167 0.138 0.057 0.803 0.294
F20 0.231 0.172 0.150 0.660 0.326
F21 0.255 0.104 0.188 0.825 0.380
F1 0.408 0.181 0.226 0.381 0.880
F8 0.301 0.123 0.048 0.319 0.816
F9 0.340 0.162 0.037 0.277 0.810
F14 0.354 0.261 0.107 0.407 0.861

4.3.2. Structural Model Analysis

If we assume that the IOT barrier is a product of development, we may use the variable
inflation factor (VIF) to probe the collinearity between formative objects. As a whole, VIF
values were under 3.5. These subdomains have been proven to have an effect on higher-
order structures in a decentralized fashion [16,76]. Furthermore, the effect of the route
coefficients was anticipated using the bootstrapping technique. As a result, at the <0.001
level of significance, the whole pathway made a difference. Table 9 and Figure 8 provide
much more evidence of the findings from structural model analysis.

Table 9. Path details of all constructs on the implementation of IOT in small construction linebreak
project safety.

Path β SE t-Values p-Values VIF

Database Barriers > Implementation of IOT in Construction. 0.393 0.018 21.492 <0.001 1.258
Management Barriers > Implementation of IOT in Construction. 0.210 0.014 15.347 <0.001 1.093
Operational Barriers > Implementation of IOT in Construction. 0.225 0.014 16.519 <0.001 1.049

Privacy Barriers > Implementation of IOT in Construction. 0.350 0.015 22.679 <0.001 1.252
Technology Barriers > Implementation of IOT in Construction. 0.381 0.022 17.151 <0.001 1.402
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4.3.3. Exploratory Power of Structural Model

Overall, the findings show that the measuring model has high convergent validity and
discriminant validity, in addition to the reliability of the individual items. The model also
indicates the overall impact made by any dependent variable involved in the analysis on
the dependent variable. The observed variation should be explained with high significance
by the model‘s dependent variable, and therefore it strengthens the significance of each of
the barriers involved in analysis. The PLS approach yielded an R2 that was equivalent to
that obtained using conventional regression [6,82]. The sum of all possible permutations
was represented in R2. The explanation for this is found in the independent variables of
the dependent variable. An increase in R-Square value is always responsible for increasing
the predictive power of a structural model developed in analysis. Figure 8 presents all
path coefficient values for each barrier involved in each construct. When accounting for
corrections, the R2 values for the IOT obstacles were 0.893. The study’s findings suggested
that the scope of the IoT implementation was considerable, and that these models might
shed light on the challenges faced by the Malaysian construction industry when attempting
to apply the IoT. They came to the conclusion that the IoT constructs might be responsible
for 90% of the IoT barrier mitigation. The modification of R2 may be used to determine
whether the absence of an independent construct in a model significantly alters the DV
when testing hypotheses about the model’s fit. This measure is known statistically as the
f 2, or effect size, and is computed by following Equation (2).

f 2 = (R2 included − R2 excluded)/(1 − R2 excluded) (2)

The following criteria for assessing effect size are suggested: f 2 = 0.010 (Small),
f 2 = 0.140 (Moderate), and f 2 = 0.340 (High). The effect size is increasing as the value
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of f increases. The observed effect size is at a moderate level, which provides a major modi-
fication to the research model and provides effective insights regarding the implementation
barriers of the IoT.

4.3.4. Predictive Relevance Analysis

The structural model’s predictive power is measured using the PLS-SEM technique.
Each of the dependent constructs’ cross-validated redundancy metrics were determined
using a blinding technique. The data showed that the value of the Q2 numbers of a project’s
success was 0.264, which is statistically larger than zero. As can be seen in Table 10, it was
shown that IVs are a significant predictor of DV.

Table 10. Predictive relevance analysis of model.

SSO SSE Q2

3933.000 2908.704 0.260

4.3.5. IPMA PLS-SEM

The dependent variables were the IoT implementation barriers, and the assessment of
performance and importance was carried out. The most critical technique adopted in this
regard is Importance-Performance Matric Analysis (IPMA) where an effective comparison
is made between mean values and the realistic impact of variables. When the direct and
indirect connections are added, they form net findings in the context of overall formative
constructs. Rescaling was also performed as a major requirement the analysis approach.
Table 11 presents the findings, with the highest importance indicated by technology barriers
and the least one is operational barriers. The performance is also adequate in the sense of
overall data included in constructs of main model.

Table 11. IMPA constructs output.

Construct Performance Importance

Database Barriers 55.260 0.394
Management Barriers 40.134 0.150
Operational Barriers 62.852 0.107

Privacy Barriers 56.214 0.334
Technology Barriers 45.076 0.473

5. Discussion

In technology barriers (β = 0.381, VIF = 1.402, CA = 0.863, CR = 0.907, AVE = 0.709),
the significant factors are: F1 “The absence of technological integration”, F8 “Limited
technology implementation scope”, F9 “Limitations on hardware and software as well as a
lack of standardized standards”, and F14 “Implementation of heterogeneous distributed
IoT system”. The absence of technological integration is indicating a significant impact on
creating the major technology barrier in the implementation of the IoT. It can be justified in
Cheung et al. (2018) and Kanan et al. (2018) by the way in which technology integration is
required in the construction sector, and ultimately, the new technology cannot be easily
integrated because the already-present technology infrastructure is not capable of handling
it [9,10]. Similar is the case with other barriers, as limited technology also creates the overall
scope of implementation and, further, can create problems in managing the limitations
of hardware and software. Kochovski & Stankovski (2018) and Ronald Chun Yu Lam
et al. (2018), it is effectively indicated that the overall impact of technology barriers is
strong, but the different aspects observed indicate that more attention should be given
to technological integration, which is required at all levels when choosing the IoT [11,15].
It further strengthens the development of overall technological barriers where they can
ultimately contribute and sets up an environment in which it is very difficult for the formal
industry to adopt the IoT for specific safety management.
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In database barriers (β = 0.393, VIF = 1.258, CA = 0.774, CR = 0.855, AVE = 0.596) the
significant factors are: F11 “Absence of publicly accessible big data”, F13 “Deficiencies in
the capture of data onsite”, F7 “Database synchronization process modification” and F4
“The need for constant surveillance”. The satabase synchronization process modification is
found to be one of the significant barriers that can create possible problems in database
handling and their further implementation in the proper function of the IoT. It can be at-
tributable to R. Y. M. Li (2018) and Tagliabue & Ciribini (2018), in which the ultimate barrier
that can contribute to affecting the overall implementation of the IoT is rather different with
respect to existing studies [8,14]. It has a major impact on overall implementation in small
construction projects in Malaysia, which ultimately provide the narrative of improving it
with high priority. According to Costin et al. (2019) and Kim et al. (2019), the other barriers
in the construct also need significant attention, both in terms of increasing the technological
implementation and also making sure that the overall project works in an effective direc-
tion [18,25]. For safety management, the implications are however positive, which is more
inclined to the fact that effective database synchronization process modification will be
needed to have more fruitful outcomes for the overall implementation of the IoT in small
construction projects in Malaysia.

In privacy barriers (β = 0.350, VIF = 1.252, CA = 0.779, CR = 0.859, AVE = 0.606) the
significant factors are: F10 “Data privacy problems”, F16 “Insecure connection between
devices in network”, F21 “Legal and regulatory requirements”, and F20 “Absence of a
Knowledge administration system”. The legal and regulatory requirements are found to be
significant barriers in the implementation of the IoT. Comparatively it has more importance
than another factor in the construct which gives effective differentiation with respect to
existing studies where no indication is given towards legal and regulated retirements for
small construction projects in Malaysia, creating a barrier in the implementation of the
IoT [24,26]. (Ronald C.Y. Lam et al. (2019) and Tang et al. (2019), this is entirely showing the
possible link creating a major impact on improper implementation of the IoT if the privacy
barriers are not removed [12,23]. Further, it is evident from the findings that the privacy
barriers have a moderate level of impact on the overall implementation of the IoT, which
corresponds with the concerns of construction workers regarding the constant sharing of
their personal data for safety management purposes that can be misused.

In operational barriers (β = 0.225, VIF = 1.049, CA = 0.703, CR = 0.865, AVE = 0.763),
the significant factors are: F6 “Low cost benefit ratio”, and F15 “Energy and Device Manage-
ment”. The social and economic consequences are found to be highly significant barriers in
the group because they are creating a major impact on the successful implementation of
the IoT, which is further affecting the proper construction of small construction projects in
Malaysia. The fact cannot be ignored that operational barriers are linked to gaps in the social
and economic context where small construction projects are operating in Malaysia [3,30].
According to Awolusi et al. (2019) and Guzman & Mezovari (2019), it is because the
limited economic output of small construction projects makes it very difficult for the con-
struction workers to have a proper adoption of the IoT as a major technology for safety
management [16,19]. The different outcomes are observed, which further strengthens
the concept of removing the operational barriers as much as possible, which has positive
theoretical and practical implications related to the successful implementation of the IoT.
Effective results can be associated with maximizing the operational barrier mitigation that
can ultimately lead to an effective reduction of the low cost-benefit ratio.

In management barriers (β = 0.210, VIF = 1.093, CA = 0.838, CR = 0.925, AVE = 0.860),
the significant barriers are: F23 “Obstacles resulting from physical encounters”, and F22
“The need for technical education”. It is found that the need for technical education is
highly important when it comes to adopting that technology, such as the IoT, because
ultimately it has some major initial requirements without which it cannot be implemented
to provide effective benefits regarding safety management to workers [21,27]. It is therefore
identified as the major barrier that can create a negative impact on small construction
projects in Malaysia in which there is a need to transition to new technology. According to
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Adjiski et al. (2019) and R. Y. M. Li, Chair, et al. (2019), the possible outcomes cannot be
observed in the case of managing small construction projects successfully because ulti-
mately the technical education will be needed for every worker on which such technology
is needed to be implemented [13,29]. This further indicates the possible need to maximize
the technical training of workers, which can lead to effective outcomes in managing the
barriers and ultimately lead the overall construction project of any small scale in Malaysia
towards success.

In order to better understand the obstacles faced and solutions developed for the IoT
deployment projects in other countries, Malaysian construction businesses might study
case studies and best practices from other nations. Collaboration between Malaysian
construction firms and foreign IoT solution providers and technology firms might help
learn about successful approaches to integrating the IoT into their operations. If these can
establish networking with other construction firms and international professionals, they
can learn from their experiences with the IoT implementation. The companies may also
help their staff learn more about the IoT by allowing them to attend conferences, seminars,
and online courses.

6. Conclusions

The IoT is a relatively new technology for small construction projects in Malaysia,
for which significant barriers are found, creating a negative impact on its implementation
process. The study was aimed at investigating the critical barriers affecting the implementa-
tion of the IoT in the safety management of small construction projects, specifically. A total
of 16 implementation barriers to the IoT in the safety management of small construction
projects in Malaysia are found to be significant. These barriers are further grouped into
5 different formative constructs, such as database barriers, technology barriers, privacy
barriers, operation barriers, and management barriers. The most critical group of barriers
that is found to have a major impact on the implementation of the IoT in worker safety in
small construction projects in Malaysia is database barriers.

The least impact is indicated by management barriers, as there is a demand for
adopting the IoT technology in small construction projects in Malaysia, which highly
indicates possible control over the management. The different results are obtained as
compared with visiting studies because of the fact that the IoT technology has increased
to the level where it is certainly becoming easier for Malaysia’s construction industry to
adopt. Furthermore, the barriers are more closely linked with the possible implications of
technology and databases as compared with m the privacy operations and management.
This further strengthens the argument for the successful implementation of the IoT for the
safety management of small construction projects by giving more attention to the database
and technology barriers identified in the study.

From a theoretical perspective, the implications are strong, as this study has con-
tributed well to identifying the possible relationship between the barriers of implementing
the IoT and the safety management of small construction projects. The identified rela-
tionship and its significance can be used as ground knowledge by future researchers to
continue working on developing appropriate mitigation methods. Small construction
projects in Malaysia continuously face issues when it comes to the implementation of the
IoT. Identification of barriers by this study is actively providing managerial implications to
let safety managers improve safety. The policy improvements can be done in small con-
struction projects to create a safe working environment for all workers. Similarly, from the
theoretical perspective, the study provides ground knowledge helpful for the development
of solutions for the IoT implementation. It is further linked with providing the necessary
understanding for the overall research landscape of the IoT implementation in the safety
management of small construction projects in Malaysia because technical advancement is
necessary. From a managerial or practical implications perspective. it should be noted that
the construction engineers working in small construction projects have to improve safety
management by effectively aligning the database and technology aspects of the IoT more
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than the privacy and management aspects. This is significant in terms of providing the
necessary knowledge for the overall practical landscape of implementing the IoT, where
such technology will fail if proper attention is not given. The prioritized view of overall
barriers indicated in the final model of the study is highly helpful for construction workers
in small construction projects to easily adopt the IoT by effectively identifying its possible
results and the nature of the barriers that they are going to face during implementation. The
future studies have to develop effective mitigation methods that should possibly support
the small construction projects of Malaysia in implementing the IoT. However, the study is
only limited to the identification of barriers related to the IoT.
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