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Abstract: In recent years, the number of malicious web pages has increased dramatically, posing a
great challenge to network security. While current machine learning-based detection methods have
emerged as a promising alternative to traditional detection techniques. However, these methods are
commonly based on single-modal features or simple stacking of classifiers built on various features.
As a result, these techniques are not capable of effectively fusing features from different modalities,
ultimately limiting the detection effectiveness. To address this limitation, we propose a malicious
web page detection method based on multi-modal learning and pre-trained models. First, in the
input stage, the raw URL and HTML tag sequences of web pages are used as input features. To
help the subsequent model learn the relationship between the two modalities and avoid information
confusion, modal-type encoding, and positional encoding are introduced. Next, a single-stream
neural network based on the ConvBERT pre-trained model is used as the backbone classifier, and
it learns the representation of multi-modal features through fine-tuning. For the output part of the
model, a linear layer based on large margin softmax is applied to the decision-making. This activation
function effectively increases the classification boundary and improves the robustness. In addition, a
coarse-grained modal matching loss is added to the model optimization objective to assist the models
in learning the cross-modal association features. Experimental results on synthetic datasets show that
our proposed method outperforms traditional single-modal detection methods in general, and has
advantages over baseline models in terms of accuracy and reliability.

Keywords: malicious web pages; multi-modal learning; pre-trained model; URL; HTML

1. Introduction

The development of the Internet has undoubtedly revolutionized the way people
work and live, with web browsers serving as the main gateway to the digital world.
Unfortunately, the convenience of web services has also attracted cyber attackers who
create phishing websites [1] for financial gain. While the specific motives and techniques of
such attacks may vary, they all require an unsuspecting user to visit malicious web pages
in order to achieve their objectives. In 2021, Rising [2] reported that their cloud security
system intercepted a total of 62.79 million malicious websites worldwide, including
43.66 million Trojan-hanging websites and 19.13 million phishing websites. These malicious
websites pose a serious threat to individuals’ property and privacy security, making it
imperative to develop effective approaches to identify them.

Although current machine learning or deep learning-based detection methods offer
promising directions to address the limitations of traditional techniques. They often
rely on single-modal features or simple stacking of classifiers based on different features.
Consequently, it becomes challenging to semantic information from multiple views and
may lead to information loss, which, in turn, would adversely affect the accuracy and
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robustness of the methods. To solve these problems, this paper proposes a malicious web
pages detection model MM-ConvBERT-LMS based on a pre-trained language model and
multi-modal learning, with the following main contributions.

(1) A malicious web page detection model based on a pre-trained model is con-
structed. Our approach involves using ConvBERT as the backbone network to extract
features from malicious websites. Compared to mainstream shallow learners, ConvBERT is
able to leverage prior knowledge on a generic large-scale pre-trained dataset, leading to
better training performance.

(2) Multi-modal features are used to improve detection performance. We use both
the URL and HTML tag sequences of web pages as inputs and analyze the correlation
of the two modal information using an attention-based single-stream neural network.
Additionally, we introduce modal-type encoding to mitigate potential feature confusion.

(3) A more robust classification layer is adopted. Drawing inspiration from the large
margin classifier, we replace the commonly used softmax in the output layer of our model
with large margin softmax (LMS). This substitution enlarges the class margin between
positive and negative samples, leading to improved model performance, particularly in
cases where datasets are unbalanced or small-scale.

Experimental results on a multi-modal malicious web pages dataset synthesized from
public datasets demonstrate that MM-ConvBERT-LMS achieves a detection accuracy of
98.72% and outperforms traditional single-modal detection techniques in metrics such as
precision and F1 score, as well as outperforms current mainstream machine learning and
deep learning models. Notably, our method does not rely on web content such as text as
input, making it capable of detecting malicious web pages in multiple languages and more
generalizable.

2. Related Work

Malicious web pages pose a great threat to the privacy and property security of
users as they can steal private information without users’ knowledge, often by disguising
themselves as legitimate web pages or embedding malicious scripts in the pages. Various
approaches have been proposed to identify such malicious web pages, including blacklist-
based approaches [3], heuristic rule-based approaches [4], and interactive host behavior
approaches [5]. Although these techniques have been widely used in anti-virus tools or
browser security plug-ins, they can only detect known types of malicious web pages and
rely on large-scale features or rule bases. As a result, they require high maintenance and
update costs and are easily bypassed by encryption and obfuscation, leading to high rates of
false positives and false negatives. To solve these problems, researchers have proposed self-
learning techniques for malicious web page detection based on various machine learning or
deep learning detection methods. These techniques have the potential to improve flexibility
and accuracy, making them promising for real-world applications.

2.1. Detection Methods Based on Single-Modal Features

Uniform Resource Locator (URL) is a widely used representation for specifying the
location of information on the World Wide Web. As shown in Figure 1, a complete URL
consists of six parts, namely protocol, hostname, port, path, query, and anchor. URLs serve
as interfaces for users to access various resources on the Internet. However, attackers may
create phishing links that visually resemble the target URL, and then bind fake web pages
generated using tools such as setoolkit to the URL, thereby tricking users into visiting them.
Malicious URLs may have a high visual similarity to benign ones, but they may contain
more spelling errors and digits that are semantically irrelevant. Therefore, some researchers
have used URLs as a feature to detect malicious web pages.
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Atrees [6] used AdaBoost to integrate SVM, Naive Bayesian algorithm, and decision
tree model, and used lexical features obtained through CfsSubsetEval filtering as the input
of the model, which can effectively detect four types of malicious URLs including spam,
phishing, malware, and defacement URLs. Wang [7] proposed a malicious URL detection
method based on the fusion of word-level features and character-level features. They used
dynamic convolutional layers for feature extraction, which enables deeper feature mining
from a larger perceptual view than the original convolutional layers. Furthermore, based
on word-level and character-level features, Yuan [8] et al. used Bi-IndRNN and CapsNet
as the backbone networks to achieve richer feature mining from different perspectives.
Luo [9] et al. proposed a malicious URL detection method based on a composite neural
network. Their approach involves using an auto-encoder to generate feature vectors,
followed by a convolutional neural network that incorporates skip connections to classify
the extracted features. The experimental results on the HTTP CSIC2010 dataset show
that this approach performs well. To construct task-relevant word vectors, Yan [10] et al.
proposed an unsupervised URL embedding model. Unlike traditional feature engineering,
these pre-trained word vectors obtained from URL data can better help the downstream
model complete the detection task.

While JavaScript provides good scalability for web pages, it also introduces security
risks. Malicious code written in JavaScript can lead to attacks such as account theft and
traffic hijacking. Therefore, several studies have attempted to distinguish malicious web
pages from benign ones by analyzing the properties of JavaScript. Khan [11] et al. tested
the effectiveness of four machine learning models including Naive Bayesian, KNN, SVM,
and J48 decision tree for malicious JavaScript tasks and the results proved that KNN has
the best detection effect on their dataset. Wang [12] et al. developed a malicious JavaScript
detection framework based on stacked autoencoders and logistic regression algorithms.
In this framework, stacked autoencoders are used to extract high-level semantic features
from the input JavaScript code, and logistic regression is used for the classification task.
The framework achieved a detection accuracy of up to 95%. Huang [13] et al. proposed
a malicious JavaScript detection method called JSContana, which is based on a TextCNN
model. In the data processing stage, the JavaScript code is transformed into a sequence
of syntactic units. These units can then be used to generate dynamic word embeddings,
which can effectively enhance the performance of downstream tasks. Alex [14] introduced
S-BSA (Spider-based Bird Swarm Algorithm), a malicious JavaScript detection method
that uses Deep Belief Network (DBN) with Spider Monkey Optimization (SMO) and
Bird Swarm algorithm for classification. The method takes JavaScript code features such
as execution time, break statements, and function calls as input and achieves detection
accuracy of over 94% on public datasets. Fang [15] et al. proposed a detection method
based on LSTM, which uses an improved word vector to extract features from bytecode
and outperforms traditional models such as SVM and random forest in detection accuracy.
In subsequent work [16], an attention mechanism was introduced to extract the significant
features in syntactic unit sequences generated based on JavaScript abstract syntax tree, and
the detection was further improved. JStrong [17] was the first to apply GNN models to
malicious JavaScript detection tasks. Their method generates program dependency graphs
based on abstract syntax tree, data flow, and control flow information, and then uses GNN
for analysis. Compared to other neural networks, GNN is better at capturing the association
relations between code fragments. The above studies focus on detection techniques on
balanced datasets, whereas malicious JavaScript samples and normal samples in real-world
scenarios are commonly imbalanced. To address this challenge, Phung [18] proposed a
malicious JavaScript detection model Doc2Vec based on oversampling technique, which
also has excellent performance on unbalanced datasets.

In addition, the HTML tags on web pages can serve as evidence for detection as they
reflect the constituent elements of the pages. Hou [19] et al. developed a classifier by
extracting a mixture of statistical features extracted from DHTML data. In their work,
keyword frequencies of Native Java functions, frequency and length of HTML elements,
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and count of the use of each ActiveX object were selected as input to the model, and
experiments showed that the boosted decision tree performed the best among these feature
sets, achieving an accuracy of 96.14%. Altay [20] extracted words, keyword frequencies,
and keyword density from HTML content as features, and then used three supervised
learning models, including SVM, maximum entropy, and extreme learning machine for
classification, all of which demonstrated promising detection results.

2.2. Detection Methods Based on Hybrid Features

Several studies have shown that detecting malicious web pages based on multi-
ple features leads to better results compared to single-feature approaches. For instance,
Kazemian [21] et al. used URLs, page links, frequency of keywords contained in web
content, and screenshots of web pages as features to verify the detection effectiveness of
supervised and unsupervised learning. The classifier they built can be combined with
the Google Chrome extension and applied to real scenarios. Wang [22] et al. proposed a
two-stage detection method that combines static and dynamic features. In the first stage,
the frequencies of elements contained in HTML, JavaScript, and URLs are used as static
features, and then a decision tree model is used to classify them and label samples with con-
fidence less than the threshold as “unknown”. In the second stage, these unknown samples
are extracted from the API call information by a dynamic analysis tool and then analyzed
using a shellcode detector. Experiments show that the hybrid feature-based approach
improves the F-score by 8.8% and 11.2%, respectively, compared to the static and dynamic
feature-based approaches. However, not all elements in the hybrid features are significant
for prediction. To filter out redundant features, Deng [23] used the feature selection method
based on information gain, which was shown to remove redundant features. In addition,
considering the effectiveness of malicious web detection models on computationally con-
strained devices, Amrutkar [24] proposed a lightweight mobile malicious web detection
method called kAYO. This approach adds mobile-specific statistical features in addition to
the frequency features contained in HTML, JavaScript, and URLs. The detection accuracy
can reach 90% and has a fast-running speed.

2.3. Motivation

While there are many methods for detecting malicious web pages, a significant number
of them are trained from scratch on labeled data, without utilizing any prior knowledge.
These approaches can lead to a more challenging training process and results that are
highly dependent on the size and quality of the dataset. Although some studies have
attempted to use word2vec and fastText to extract semantic features, these static word
vector methods struggle with issues, such as polysemy, making them less suitable for
malicious web analysis tasks. Furthermore, most mainstream methods focus on feature
engineering for single-modal features and do not consider mining for cross-modal features,
which can result in additional processing costs, information loss, and insufficient learned
representations. Therefore, to solve these problems, we propose a malicious web page
detection method based on ConvBERT and multi-modal learning. Our approach improves
upon existing work, as shown in Table 1.
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Table 1. Comparison of the proposed method and the existing mainstream methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

represents that the technology is used, and

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

represents that the technology
is not involved.

Methods Models Prior
Knowledge Features Feature

Engineering
Multimodal

Matching Analysis

Atrees [6] AdaBoost

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

URL

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Methods based on a single feature and statistical
machine learning:
1. They perform well on small-scale datasets and are able to
respond quickly to meet real-time requirements.
2. They require feature engineering, which can lead to additional
data preprocessing costs and information loss.
3. Due to their relatively small number of model parameters,
these models can quickly reach convergence on large-scale
datasets, thereby entering a plain stage in a shorter time frame.
4. They mainly learn statistical features, which may be less
effective in mining high-level semantic features.

Khan [11] KNN et al.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

JS

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Hou [19] Decision Tree

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

HTML

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Wang [7] Dynamic Conv.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

URL

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Deep learning models based on a single feature and
supervised learning:
1. It is proved that the representation ability of the deep learning
models is stronger than the statistical machine learning models in
malicious web page detection tasks.
2. Complex feature engineering is often not required.
3. Models’ performance may be limited in small data set scenarios
due to a lack of prior knowledge.
4. The single-modal and multi-view work represented by the
research [7] is enlightening for the method based on
multimodal learning.

Luo [9] Composite NN

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

URL

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Alex [14] DBN

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

JS

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 



Appl. Sci. 2023, 13, 3327 6 of 23

Table 1. Cont.

Methods Models Prior
Knowledge Features Feature

Engineering
Multimodal

Matching Analysis

Yuan [8] IndRNN +
CapsNet Word2Vec URL

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Deep learning models based on a single feature and
mixed-supervised learning:
1. Pre-training with unsupervised learning can effectively
leverage prior knowledge to improve the performance of these
models on downstream tasks.
2. Static word embeddings generated by most methods struggle
to handle polysemy.
3. JSContana [13] is inspired by the ELMo [25] model and
employs a Bi-LSTM to transform word2vec into dynamic word
embedding. However, the use of an LSTM-based backbone limits
parallel computing, which negatively impacts training efficiency.
4. Most methods lack an attention mechanism that can assist the
models in extracting more relevant features while filtering
out noise.

Yan [10] URL embed

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

URL

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Wang [12] SAE + LR Layer-wise
Pre-training JS

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

JSContana [13] TextCNN Word2Vec JS

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 

Fang [15] LSTM Word2Vec JS

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23 
 

Table 1. Comparison of the proposed method and the existing mainstream methods.  represents 
that the technology is used, and  represents that the technology is not involved. 

Methods Models 
Prior 

Knowledge Features 
Feature En-
gineering 

Multimodal 
Matching Analysis 

Atrees [6] AdaBoost  URL   Methods based on a single feature 
and statistical machine learning: 
1. They perform well on small-scale da-
tasets and are able to respond quickly 
to meet real-time requirements. 
2. They require feature engineering, 
which can lead to additional data pre-
processing costs and information loss. 
3. Due to their relatively small number 
of model parameters, these models can 
quickly reach convergence on large-
scale datasets, thereby entering a plain 
stage in a shorter time frame. 
4. They mainly learn statistical features, 
which may be less effective in mining 
high-level semantic features. 

Khan [11] KNN et al.  JS   

Hou [19] 
Decision 

Tree 
 HTML   

Wang [7] 
Dynamic 

Conv. 
 URL   Deep learning models based on a sin-

gle feature and supervised learning: 
1. It is proved that the representation 
ability of the deep learning models is 
stronger than the statistical machine 
learning models in malicious web page 
detection tasks. 
2. Complex feature engineering is often 
not required. 
3. Models’ performance may be limited 
in small data set scenarios due to a lack 
of prior knowledge. 
4. The single-modal and multi-view 
work represented by the research [7] is 
enlightening for the method based on 
multimodal learning. 

Luo [9] 
Composite 

NN 
 URL   

Alex [14] DBN  JS   

Yuan [8] 
IndRNN + 
CapsNet Word2Vec URL   Deep learning models based on a sin-

gle feature and mixed-supervised 
learning: 
1. Pre-training with unsupervised 
learning can effectively leverage prior 
knowledge to improve the performance
of these models on downstream tasks. 
2. Static word embeddings generated 
by most methods struggle to handle 
polysemy. 
3. JSContana [13] is inspired by the 
ELMo [25] model and employs a Bi-
LSTM to transform word2vec into dy-
namic word embedding. However, the 
use of an LSTM-based backbone limits 

Yan [10] 
URL em-

bed 
 URL   

Wang [12] SAE + LR 
Layer-wise 
Pre-training JS   

JSContana 
[13] TextCNN Word2Vec JS   

Fang [15] LSTM Word2Vec JS   
Fang [16] Att-LSTM fastText JS   

JStrong [17] GNN Word2Vec JS   

Doc2Vec [18] SVM Doc2Vec JS   

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 23 
 

parallel computing, which negatively 
impacts training efficiency. 
4. Most methods lack an attention 
mechanism that can assist the models 
in extracting more relevant features 
while filtering out noise. 

Altay [20] SVM et al.  HTML   Statistical machine learning models 
based on mixed features: 
1. It has been demonstrated that the in-
tegration of these hybrid features can 
significantly improve detection perfor-
mance. 
2. These approaches primarily concen-
trate on feature extraction. However, 
the complexity of the data can escalate 
the difficulty and cost of feature engi-
neering, potentially leading to the curse 
of dimensionality. 
3. Statistical machine learning models 
face inherent challenges in capturing 
correlations between different features, 
especially in the context of hybrid fea-
tures. Furthermore, these models often 
lack auxiliary optimization objectives 
to facilitate the mining of information 
across modalities. 

Kazemian 
[21] SVM et al.  

Page Link, 
Screenshot, 
URL, Key-

words 

  

Wang [22] 
Decision 

Tree 
 URL, 

HTML, JS 
  

Deng [23] 
Rotation 

Forest 
 Content, JS, 

URL 
  

kAYO [24] SVM et al.  

URL, 
HTML, JS, 
Statistical 
features 

  

Ours ConvBERT 
Dynamic 
Embed. 

URL + 
HTML 

  

A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
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ing and pre-trained model: 
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ing and pre-trained model: 
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string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
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to facilitate the mining of information 
across modalities. 
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A method based on multimodal learn-
ing and pre-trained model: 
1. This method accepts the raw URL 
string and HTML tag sequence directly 
as input and does not require any fea-
ture engineering. 
2. To learn dynamic text embeddings 
using pre-training based on prior 
knowledge, ConvBERT was chosen as 
the backbone. 
3. The model incorporates modal 
matching as an auxiliary task to enable 
cross-modal information learning. 
4. The Transformer-based architecture 
is more suitable for parallel computing 
than sequential models such as LSTM. 
5. The self-attention mechanism is used 
to better focus on meaningful features. 

3. Method 
3.1. Overall Structure 

The term “modal” refers to a specific type of information and its representation, and 
the Internet is a carrier of multi-modal data. For instance, a typical web page contains 
various modal data, including the URL, text content, multimedia data such as images and 
audio contained on the web page, and the sequence of HTML tags. These distinct forms 
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Table 1. Cont.

Methods Models Prior
Knowledge Features Feature

Engineering
Multimodal

Matching Analysis

Ours ConvBERT Dynamic Embed. URL + HTML
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Yan [10] 
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Wang [12] SAE + LR 
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Fang [16] Att-LSTM fastText JS   
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A method based on multimodal learning and pre-trained
model:
1. This method accepts the raw URL string and HTML tag
sequence directly as input and does not require any
feature engineering.
2. To learn dynamic text embeddings using pre-training based on
prior knowledge, ConvBERT was chosen as the backbone.
3. The model incorporates modal matching as an auxiliary task to
enable cross-modal information learning.
4. The Transformer-based architecture is more suitable for parallel
computing than sequential models such as LSTM.
5. The self-attention mechanism is used to better focus on
meaningful features.
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3. Method
3.1. Overall Structure

The term “modal” refers to a specific type of information and its representation, and
the Internet is a carrier of multi-modal data. For instance, a typical web page contains
various modal data, including the URL, text content, multimedia data such as images and
audio contained on the web page, and the sequence of HTML tags. These distinct forms of
information may be semantically connected, while data from different modalities may also
provide complementary information to each other, revealing implicit features that are not
apparent in single-modal data.

Several multi-modal deep learning models [26,27] have been developed to address
the challenges of processing multi-modal data. By incorporating multiple types of data as
input and capturing correlations between modalities, these models have been widely used
in various fields such as sentiment analysis [28] and fake news detection [29]. Building
upon this existing research, we present a novel multi-modal learning model for detecting
malicious web pages. Our objective is to exploit the distinct features of different types of
web page data to elevate detection accuracy and expand the range of possible applications
for our model.

Given that the multi-modal data we use is essentially string-based (HTML tag se-
quences and URLs), despite representing information in different dimensions, we chose
the ConvBERT [30] rather than the visual-text models as the backbone. The model has
also been enhanced to improve its applicability to the task of analyzing malicious web
pages. The overall framework, shown in Figure 2, consists of three key components: dual
input, feature analysis network, and multi-task optimized output layer. During the input
phase, the model accepts URL strings and HTML tag sequences as input, and a modal-type
encoding is used to help the model learn the boundary between the two types of data.
In the feature analysis phase, a single stream backbone network built on ConvBERT is
selected for the feature interaction task of the two modalities. In the output stage, a linear
layer based on LMS is utilized to carry out decision classification. For the optimization
objective, in addition to detecting web page types as the main task, a coarse-grained modal
matching loss is introduced as an optimization objective to further assist the model in
learning cross-modal correlated features.
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3.2. Multi-Modal Input and Embedding

Since we use a single-stream neural network based on the Transformer architecture [31]
to analyze input data from two modalities, HTML tag sequences, and URL strings, addi-
tional processing is required at the input stage to help the model distinguish between two
modalities and learn sequential features.

First, the order of elements in the input data reflects their features. For example,
the ordered combinations of letters in a URL can form words with certain semantics,
and the order of HTML tags can describe the overall structure of the page. Since the
Transformer is mainly composed of self-attention mechanisms and feed-forward layers,
it cannot inherently represent sequential features, such as recurrent neural networks. To
avoid losing important features, we use positional encoding in the input phase to add
sequential features to word vectors.

Second, ConvBERT, the backbone of our model, was originally designed to process
single-modal text data. Concatenating HTML and URL data and feeding it directly to
the ConvBERT would lead to feature confusion, which in turn affects the detection effect.
Therefore, we also introduce modal-type encoding in the input stage. Specifically, we mark
HTML data as 0 and URL data as 1 and add a special token [SEP] as a segmentation marker
between the two types of data.

Ultimately, the input process of this model is shown in Equation (1), where h and u
denote the HTML and URL data, respectively. H and U represent the modal-type encoding
of both data, P represents positional encoding, and the special token [CLS] represents the
global features of the input sequence.

h = [[CLS]; h1; · · · ; hN ] + Htype

u = [[SEP]; u1; · · · ; uM] + Utype

x = Concat(h, u) + P
(1)

3.3. ConvBERT-Based Backbone Network

To incorporate prior knowledge into the model, we use a pre-trained ConvBERT as
the backbone. ConvBERT is an improved BERT-based [32] pre-trained model, which has
been optimized in both pre-training methods and model structure to achieve a balance of
effectiveness and efficiency.

Regarding the pre-training approach, ConvBERT uses a similar training process as
Electra [33], both of which refer to the generative adversarial network and use Replaced
Token Detection as a pre-training task, the main process of which is depicted in Figure 3.
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During the pre-training process, both the generator and discriminator are trained
simultaneously. The generator is a small masked language model (MLM) whose main goal
is to reconstruct the masked tokens in the input, whereas the discriminator is a classifier that
operates at the token level to identify whether each word in a sentence has been replaced or
not. The pre-training objective of the ConvBERT model is shown in Equation (2), where G
represents the generator, D represents the discriminator, θ represents the model parameters,
and t is the position in the input vector marked by the token [MASK]. xmasked represents
the sequence after masking and xcorrupt is the input reconstructed by the generator. By
conducting large-scale corpus-based pre-training, the model can become more sensitive to
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some elements in URL or HTML data that have a specific meaning. This prior knowledge
can help improve the accuracy of detection.

Lpt = min
θGθD

∑LMLM(x, θG) + λ×LDisc(x, θD)

= E
(

∑
i
− log pG(xi

∣∣∣xmasked)

)
+λ×E

(
∑
t
−I(xcorrupt

t = xt) log D(xcorrupt, t)−I(xcorrupt
t 6= xt) log(1− D(xcorrupt, t))

) (2)

From a structural perspective, ConvBERT makes significant improvements to the multi-head self-
attention mechanism included in the Transformer architecture. This mechanism, which is a core part
of the Transformer, is shown in Equation (3), where Q is the query matrix, and K and V correspond to
the key matrix and the value matrix, respectively. Through the use of multi-head attention, ConvBERT
is able to learn features across multiple representation subspaces, providing a more comprehensive
understanding of the input data. As shown in Equation (4), where head represents the input vector
projected into the subspace, WO is the parameter matrix used for projection, and dk is the dimension
of the vector K. The multi-headed self-attention has an expansive perceptual field of view that covers
the entire output. This allows it to effectively extract global features, enabling analysis of not only
long-term relationships in HTML sequences but also for modeling cross-modal relationships.

Attention(Q, K, V) = softmax(
QKT√

dk
)V (3)

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headn)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

(4)

However, for URL data, its local features are more useful for the detection task. For example, ad-
jacent elements can form words with independent semantics, which in turn reflect the characteristics
of the corresponding web page. Lightweight convolution is shown to compensate for the lack of local
information modeling by multi-headed self-attentiveness, which works as shown in Equation (5),
where X is the input vector, W represents the weights of the convolution kernel, i represents the
position of the feature map currently being processed, and K represents the size of the convolution
kernel. The improved dynamic convolution uses variable convolution kernel parameters and thus
enhances the diversity of the representation. As shown in Equation (6), Wf represents the parameter
matrix of the linear layer.

LConv(X, W, i) =
K

∑
j=1

Wj•X(i+j−d K+1
2 e)

(5)

DConv(X, W f , i) = LConv(X, softmax(W f Xi), i) (6)

Drawing inspiration from both convolutional and self-attention mechanisms, ConvBERT finally
uses span-based dynamic convolution to efficiently learn local features. This is achieved through
the calculation method shown in Equation (7), KS is the span-aware generated by the depth-wise
separable convolution, and � is the point-wise multiplication. The structure comparison of the
self-attention mechanism, dynamic convolution, and span-based dynamic convolution is shown
in Figure 4.

SDConv(Q, Ks, V; W f , i) = LConv(V, softmax(W f (Q� Ks)), i) (7)

To represent different levels of features, ConvBERT incorporates a mixed attention module that
combines multi-head self-attention and span-based dynamic convolution. The underlying principles
of this module are depicted in Figure 5 and the mathematical formulation is presented in Equation (8).
As such, this model is better suited for detecting malicious web pages across multiple modalities, as
it can effectively learn features at both local and global levels.

MixedAttention(K, Q, Ks, V; W f ) = Concat(SelfAttention(Q, K, V), SDConv(Q, Ks, V; W f ) (8)

Moreover, to further reduce the training costs, ConvBERT also modifies the feed-forward
network with more parameters and proposes a grouped feed-forward network. Specifically, the
grouped linear (GL) operator is introduced, as shown in Equation (9). H is the input vector of
dimension d, g represents the number of groupings, m is the dimension of the temporary variables
M and M′, and Lineara→b(•) denotes a fully connected network with a-dimensional input and b-
dimensional output. This is achieved by feature grouping to improve efficiency and learning ability
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without affecting the model performance. Finally, the mixed attention and grouping feed-forward
networks are stacked several times to form the ConvBERT model.

M = Concatg
i=0

(
Lineari

d
g→

m
g
(H[:,i−1:i× d

g ]
)

)
M′ = GeLU(M)

H′ = Concatg
i=0

(
Lineari

m
g→

d
g
(M′ [:,i−1:i× m

g ]
)

) (9)
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3.4. Multi-Task Optimization Objective
For the output section of the model, an optimization objective based on multi-task learning is

used. Specifically, we use a linear layer as the main output, whose aim is to determine whether the
input corresponds to a malicious web page. To increase the classification spacing between positive
and negative samples, we employ an efficient large margin softmax (LMS) [34] activation function in
place of the original softmax. The classification loss based on LMS is shown in Equation (10), where
C is the total number of categories, l is the true label, x is the input and f denotes the logits value of
the output.

L(x, l) = − log

 exp( fl)
C
∑

c=1
exp( fc)

+
α

2 ∑
c 6=l

 exp( fc)

∑
c∗6=l

exp( fc∗)
− 1

C− 1

 log

 exp( fc)

∑
c∗6=l

exp( fc∗)

 (10)
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In addition, a succinct auxiliary output is added to learn associative features across modalities
at a coarse-grained level. To achieve this, we introduce a label that signifies modal matching, with
samples in the original dataset labeled as 1 if their URLs and HTML belong to the same category.
We randomly select URL and HTML data from distinct categories to create new samples and set
their corresponding label values to 0. During training, a binary classification task is included to
differentiate whether the two types of data belong to the same category, thus achieving coarse-grained
modal matching.

Finally, the overall optimization objective of the model is shown in Equation (11). Where y
represents the true label, y∗ represents the predicted output of the model, and the tasks of the model
are denoted by Main and UHM, referring to the main task and the URL-HTML modal matching
task, respectively. A balanced hyperparameter λ is used to adjust the importance of the two losses.
Consider that the main output of the model is meaningless for the additional data added in the modal
matching task. Therefore, the main loss is multiplied by factor yUHM, which prevents the added data
from interfering with the main task during training. At this time, since yUHM equals 0, the gradient
is not backpropagated.

L = yUHM ×LMain(yMain, y∗Main) + λ×LUHM(yUHM, y∗UHM) (11)

4. Experiment and Analysis
4.1. Experimental Datasets and Metrics

In order to validate the effectiveness of MM-ConvBERT-LMS in the malicious web page detection
task, a synthetic malicious web page dataset based on the public dataset [35,36] is used in this paper,
which contains features of both HTML and URL modalities. The length distribution of the two data
is shown in Figure 6. In the experiments, 10,000 data are used as the training set, 5000 data are used
as the validation set, and 10,000 data are used as the test set, and the distribution of positive and
negative samples is balanced. Remarkably, we find that the HTML features extracted directly from
the original dataset suffer from severe data duplication problems between the training, validation,
and test sets, and one possible reason is that the HTML tag sequences of some of the simpler web
pages are likely to be the same. To ensure the fairness of the experiments and to avoid the data
pollution problem, we additionally de-duplicated the HTML tag sequence data, even though this
duplicated data came from different original web pages. The hardware configuration and software
environment of the server used for the experiments are shown in Table 2.
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Figure 6. The distribution of the two-modal data.

Table 2. Hardware configuration and experimental environment.

Device & Software Information

CPU Intel(R) Xeon(R) CPU E5-2690 v4
RAM 12 GB

External Storage 512 GB SSD
Operating System Ubuntu 18.04.3 LTS

Python Version 3.8.8 (AMD64)
Machine Learning Library Pytorch 1.11.0
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For the evaluation metrics, Accuracy, Precision, Recall, and F1 Score were chosen to evaluate the
performance of the model, and the calculation procedure is shown in Equations (12)–(15). Where TP
and TN represent the number of true positive samples and true negative cases, FP and FN represent
the number of false positive samples and false negative samples. Figure 7 provides a graphical
representation of these metrics, with TP and TN indicating correctly classified samples, and FP and
FN representing misclassified samples.

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2× Precision× Recall

Precision + Recall
(15)
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To better train the model, we use the AdamW optimizer and use a warm-up mechanism during
the training of the pre-trained models. The number of training epochs was set to 10 for the pre-trained
models and made adjustments to a maximum of 20 epochs for the shallow deep learning models.

4.2. Comparative Experiment
Methods from both statistical machine learning and deep neural network categories were

selected as the baselines for the experiments. For statistical machine learning methods, Naive
Bayesian (NB), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN) were selected as comparison models. For deep learning methods, in
addition to comparing with commonly used Text Convolutional Neural Network (TextCNN), Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Deep Pyramid Convolutional Neural
Network (DPCNN), we also selected several pre-trained models as a baseline, including BERT,
ALBERT [37], and the original ConvBERT. In our experiments, we evaluated the performance of each
model on three datasets: pure HTML data, pure URL data, and multi-modal dataset (HTML + URL).
The experimental results are presented in Tables 3–5, respectively. The optimal results are marked in
black bold.

According to the results, deep learning methods clearly outperform statistical machine learning
model approaches, with several deep neural networks achieving accuracy rates of more than 90%.
Meanwhile, among all the neural network models, the pre-trained methods outperform classical
neural network models trained from scratch, demonstrating the benefits of using dynamic word
vectors as prior knowledge. The MM-ConvBERT-LMS model even achieved the best results across all
three experiments, achieving 98.72% accuracy on the task of detecting malicious web pages based on
multi-modal features, and also outperforming the baselines in terms of precision, recall, and F1 score.
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Table 3. Experimental results based on URL data.

Methods Models Accuracy Precision Recall F1 Score

Machine
Learning

NB 88.72 97.52 79.64 87.68
SVM 89.63 95.27 83.57 89.04
KNN 84.11 92.28 74.72 82.58

DT 89.41 93.51 84.88 88.99
RF 91.37 94.62 87.88 91.12

Deep
Learning

Bi-LSTM 92.49 94.97 89.86 92.34
Bi-GRU 92.18 93.50 90.79 92.13

TextCNN 92.70 94.93 90.34 92.58
DPCNN 92.38 94.10 90.56 92.30
ALBERT 95.70 95.84 95.62 95.73

BERT 96.95 97.08 96.87 96.97
ConvBERT 97.63 97.66 97.64 97.65

ConvBERT-LMS(ours) 97.76 97.93 97.62 97.77

Table 4. Experimental results based on HTML data.

Methods Models Accuracy Precision Recall F1 Score

Machine
Learning

SVM 76.39 77.56 74.80 76.15
KNN 74.35 77.49 69.21 73.12

DT 77.83 79.10 76.13 77.59
RF 84.24 82.61 87.06 84.78

Deep
Learning

Bi-LSTM 75.67 75.94 75.71 75.83
Bi-GRU 76.68 79.67 72.14 75.72

TextCNN 85.68 83.78 88.77 86.20
DPCNN 83.89 85.64 81.75 83.65
ALBERT 85.65 86.25 85.10 85.67

BERT 86.45 86.81 86.21 86.51
ConvBERT 87.13 87.02 87.52 87.27

ConvBERT-LMS(ours) 87.45 86.71 88.69 87.69

Table 5. Experimental results based on multi-modal data.

Methods Models Accuracy Precision Recall F1 Score

Machine
Learning

NB 89.91 97.21 82.34 89.16
SVM 91.15 95.55 86.47 90.78
KNN 83.99 91.03 75.69 82.66

DT 83.25 84.40 81.90 83.13
RF 91.03 92.23 89.76 90.98

Deep
Learning

Bi-LSTM 93.60 96.73 90.36 93.43
Bi-GRU 93.75 96.37 91.03 93.62

TextCNN 95.02 96.38 93.63 94.99
DPCNN 93.89 94.73 93.06 93.88

ALBERT * 96.93 97.06 96.85 96.95
BERT 97.47 97.65 97.32 97.49

ConvBERT 98.06 98.29 97.86 98.07
MM-ConvBERT-LMS(ours) 98.72 98.90 98.55 98.73

* means no modal-type encoding is used, and the accuracy of the ALBERT model is only 86% after using
modal-type encoding.

Upon further comparison of the three sets of experiments, it can be seen that the models perform
better on the URL dataset than on the HTML tag sequence. For example, the Naive Bayesian method
trained on pure HTML data fails to converge even when its F1 score is below 50%, thus we do
not record this meaningless result in the Table 4. The reason for this phenomenon may be that the
difference between positive and negative samples in URL data is more obvious: the body of positive
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samples tends to contain meaningful, regular words, while negative samples tend to contain numbers
more frequently, and strings in the body part rarely represent complete semantic information.

To precisely observe the improvement in the effectiveness of the multi-modal model compared
to the single-modal model, we plotted the performance gain of each model on different types of
features, as shown in Figures 8 and 9. The results demonstrate a clear improvement in accuracy
when using multi-modal features, with an average increase of 0.44% and 11.29% compared to models
based on URL and HTML data, respectively. With the exception of random forest and decision tree
models, which exhibit a performance decrease after incorporating multi-modal features, all other
models can aggregate and analyze information from different perspectives, leading to meaningful
representations and reliable decision-making.
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To observe the reliability of classification for each model, we select the SVM, CNN, original Con-
vBERT, and MM-ConvBERT-LMS models, which exhibit better performance and greater variability in
principle, as representatives and visualize their ROC and PR curves, as shown in Figure 10. The AUC
scores of the MM-ConvBERT-LMS model outperform all three baselines, which proves that the model
has better classification ability and robustness. Moreover, we plotted the ROC and PR curves of the
models trained based on different data, as shown in Figure 11. The multi-modal model displayed
superior performance compared to the single-modal model in both ROC and PR curves, reaffirming
the effectiveness of our proposed approach.
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While the above experiments were conducted with a sufficient number of training samples,
labeled data in real-world scenarios is often extremely limited. As a result, we also explored the
impact of the size of the training set on the model’s effectiveness. The results, presented in Figure 12,
show a decreasing trend in accuracy as the size of the training set is reduced. However, even when the
training set is only 5% of the test set size, the MM-ConvBERT-LMS model outperforms the compared
models and the single-modal model, with an accuracy exceeding 93%. In contrast, the TextCNN
model tends to overfit more easily than other models and its accuracy is even lower than that of the
SVM model. These results suggest that the use of multi-modal models can be beneficial for scenarios
with limited labeled data.
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Phung [18] et al. have shown that unbalanced data distribution is another challenge for real-
world malicious web page detection tasks. In our study, we also examined the effectiveness of the
MM-ConvBERT-LMS model under different positive and negative sample ratios. We conducted
experiments by adjusting the fraction of malicious samples while keeping the total number of
training sets fixed at 5000 samples. To better observe the changes in all four-evaluation metrics, we
visualized the results, which are presented in Figure 13. Our findings show that the baseline models
are susceptible to sample fractions, resulting in significantly lower accuracy and recall when there
are fewer malicious samples. On the other hand, the stability performance of the MM-ConvBERT-
LMS model is higher, and it can maintain an accuracy above 94% even when the malicious and
normal samples are 1:9, which is 3.34% higher than the original ConvBERT model. Hence, the
MM-ConvBERT-LMS model has a higher practical potential.
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According to Tables 3 and 4, it can be observed that when the training data is sufficiently
abundant, the addition of LMS has a limited effect on the performance improvement of the single-
modal models. To further verify the effectiveness of LMS, we also evaluated the performance of
several single-modal models under the same settings, and the results are presented in Figure 14. As
expected, we observed that the difference in accuracy between ConvBERT-LMS and the original
ConvBERT becomes more pronounced as the percentage of malicious samples decreases. One
possible explanation for the observed results is that, under the condition of an evenly distributed
dataset, both the standard softmax and LMS-based models can learn good classification boundaries by
utilizing sufficient data and confidently predict the test samples, leading to no significant performance
differences between the two. However, in cases where the dataset is extremely imbalanced, ConvBERT,
with its large number of parameters, is more susceptible to overfitting. In such situations, when
standard softmax is employed, the model is only able to fit a boundary that distinguishes between
positive and negative samples, without taking into account the inter-class distance between them.
Consequently, the model’s generalization ability may be weakened. In contrast, the LMS-based
optimization objective not only helps the model fit the classification boundary, but also requires the
model to reduce the intra-class distance and increase the inter-class distance during the learning
process. This encourages the model to better distinguish between positive and negative samples,
thus improving the model’s performance. Therefore, these findings provide partial evidence for the
effectiveness of LMS.

Furthermore, it is evident that the size of the model has a significant impact on the detection
performance. Intuitively, larger models tend to achieve better results. However, more parameters
significantly increase the training cost and lead to slow inference, making it impractical for real-
time malicious web detection scenarios. To explore the effect of model parameter size on the
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detection effect, we trained several pre-trained models of different sizes, as shown in Figure 15,
and the parameter details of these models are shown in Table 6. Our experiments show that, for
both ConvBERT and MM-ConvBERT-LMS models, increasing the model size within a certain limit
does improve the detection effectiveness of the model against malicious web pages. However, as
demonstrated by comparing the BERT-base and BERT-large models, using a model that is too large
not only incurs high computational costs but also negatively affects the results due to overfitting and
other issues. In addition, the experimental results also show that MM-ConvBERT-LMS maintains an
advantage even when its number of parameters is only 1/9 of BERT, making it a viable option for some
malicious web page detection tasks with limited computing power or high real-time requirements.
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Table 6. Information on ConvBERT and BERT models of different sizes.

Models Version Layers Heads Hidden Size Parameters (M)

ConvBERT
Small 12 4 128 13

Medium-Small 12 8 384 17
Base 12 12 768 106

BERT
Base 12 12 768 109

Large 24 16 1024 335

4.3. Ablation Experiment
To verify the effectiveness of each component of the MM-ConvBERT-LMS model, ablation

experiments were performed while maintaining the same experimental dataset and hyperparameters.
The full MM-ConvBERT-LMS model was used as the baseline and the specific effects of various
components on the experimental results were analyzed.

(1) In the model comparison experiments, we observed a significant impact of mode-type
encoding on the ALBERT model and hypothesized that it might also affect the performance of the
MM-ConvBERT-LMS model. To test this hypothesis, we constructed a comparison model without
modal-type encoding and evaluated its performance. Moreover, we investigated the ability of the
model to handle modal-missing data (single-modal data) before and after removing the modal-type
encoding. It is worth noting that, in contrast to the experiments reported in Tables 3 and 4, the model
used in this evaluation was trained on a multimodal dataset, rather than on single-modal datasets.

(2) We conducted an ablation test by replacing the LMS of the classification layer with a standard
softmax in the ablation test to further validate the effectiveness of the design.

(3) In this paper, we have selected a single-stream ConvBERT as the backbone model, as we
believe that it can effectively learn representations and modal fusion. In the field of multi-modal,
two-stream neural networks are also a popular architecture that involves using multiple backbones to
process data from different modalities. To further investigate the impact of architectures on detection
tasks. To verify the impact of the model structure, we constructed and evaluated the performance
of a two-stream model, which consists of two parallel ConvBERTs. One ConvBERT is responsible
for learning the features of HTML tag sequences, while the other focuses on learning the features of
URL strings.

(4) The coarse-grained modal matching task is the core of our design to help the model learn
cross-modal relationships. We analyzed the contribution of the auxiliary module to the model’s
performance in detecting malicious web pages by removing the coarse-grained modal matching task.

The experimental results are shown in Table 7. According to the experimental results, it can be
seen that the removal of modal-type encoding, LMS, and coarse-grained modal matching auxiliary
tasks all lead to a decrease in the effectiveness of the model. These findings provide evidence for the
effectiveness of these components in detecting malicious web pages.

Table 7. Results of the ablation experiments. MTE is the abbreviation for modal-type encoding. After
the change, the result of performance reduction is marked in red, the improvement is marked in blue.
↑means the metric is improved, while ↓means the metric is decreased.

Modules Model Accuracy Precision Recall F1 Score

MM-ConvBERT-LMS 98.72 98.90 98.55 98.73

The input
modules

MM-ConvBERT-LMS w/o HTML 96.42 (2.30 ↓) 94.19 (4.71 ↓) 99.01 (0.46 ↑) 96.54 (2.19 ↓)
MM-ConvBERT-LMS w/o URL 86.20 (12.52 ↓) 86.81 (12.09 ↓) 85.63 (12.92 ↓) 86.22 (12.51 ↓)

MM-ConvBERT-LMS w/o MTE 98.41 (0.31 ↓) 98.68 (0.22 ↓) 98.15 (0.40 ↓) 98.42 (0.31 ↓)
MM-ConvBERT-LMS w/o
MTE & HTML 97.07 (1.65 ↓) 96.06 (2.84 ↓) 98.21 (0.34 ↓) 97.13 (1.60 ↓)

MM-ConvBERT-LMS w/o
MTE & URL 82.50 (16.22 ↓) 82.46 (16.44 ↓) 82.92 (15.63 ↓) 82.69 (16.04 ↓)

The output
modules

MM-ConvBERT-LMS w/o
modal-matching 98.26 (0.46 ↓) 98.43 (0.47 ↓) 98.12 (0.43 ↓) 98.27 (0.46 ↓)

MM-ConvBERT-LMS w/o LMS 98.61 (0.11 ↓) 98.42 (0.48 ↓) 98.83 (0.28 ↑) 98.62 (0.11 ↓)
Main structure Two-stream MM-ConvBERT-LMS 98.63 (0.09 ↓) 98.90 (0) 98.37 (0.18 ↓) 98.64 (0.09 ↓)



Appl. Sci. 2023, 13, 3327 20 of 23

After removing the modal-type encoding, it is noteworthy that the model’s performance on pure
HTML input deteriorates significantly, and it tends to rely more on easily learnable URL features. This
suggests that the model treats URLs and HTML as the same type of information flow during training,
and under the influence of the attention mechanism, the model considers URLs with more salient
features as meaningful information while regarding the HTML part with difficult-to-explore features
as noisy data, ultimately leading to the neglect of HTML features. However, when using modal-type
encoding, ConvBERT can effectively distinguish between HTML and URLs as two different types of
data, and the modal matching task can further ensure that the model does not overlook any features.
Therefore, the MM-ConvBERT-LMS model not only yields satisfactory results on multimodal data
but also proves to be effective in handling modal-missing samples.

The detection accuracy of the two-stream network is slightly lower than that of the single-stream
structure. One main reason is the insufficient attention-based modal interaction between the two-
stream network’s two inputs, where feature fusion occurs only near the output. This limitation results
in the model’s inability to fully explore the correlation between the two modalities. Meanwhile,
the single-stream network has a significant advantage in terms of reducing both the training and
inference cost, with 50% fewer model parameters and a training time that is approximately 39%
shorter. Therefore, a single-stream network is more cost-effective.

The above experiments indicate that pre-trained models may outperform those trained from
scratch. However, the findings are inconclusive, possibly due to the inconsistent parameter sizes
between the two types of models, and the possibility that better results achieved with pre-training may
also be due to its network architecture or the number of parameters. Therefore, we establish baselines
with a model without pre-trained weights (No PTW) and models with frozen layers and observe the
impact of freezing different layers on the model’s detection performance. The experimental results are
shown in Figure 16. Our results suggest that pre-training endows the models with prior knowledge
and improves their ability to identify malicious web pages. Specifically, the accuracy of the model
without pre-trained weights decreases by around 3% compared to the model with pre-trained weights.
At the same time, the model is also negatively impacted when too many layers are frozen. This
may be due to the fact that the word vectors obtained by pre-training on the original corpus are not
fully applicable to HTML tag sequences or URL strings, and fine-tuning is necessary to improve
the representation of these tokens. In addition, since the original ConvBERT model was designed
primarily for single-modal tasks, freezing too many layers can also limit the model’s adaptability to
multi-modal tasks.
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5. Conclusions
In this paper, we propose a novel approach to address the limitations of current methods in

detecting malicious web pages, such as lack of flexibility, insufficient feature extraction, and high
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rates of false positives and false negatives. Our proposed approach is an efficient model based on
multi-modal learning and a pre-trained model. In terms of model structure, the ConvBERT-based
backbone network can represent the local and global information of the input features through
the mixed attention module. By adding the modal-type encoding, this model can avoid feature
confusion and other problems, and enhance its capacity to analyze multi-modal features. On the
other hand, the coarse-grained modal matching task is a simple yet efficient auxiliary training method
that helps the model learn the relationship between two modalities. The optimization objective
based on LMS also enables the model to learn larger classification boundary distances and improve
robustness. Experimental results show that our proposed model achieves a detection accuracy of
98.72%, outperforming the baseline methods. Thus, our approach shows promise in the field of
malicious web page detection.

However, there are still certain aspects that require improvement:
(1) More adapted vocabulary and tokenizer. In this paper, we use the vocabulary and tokenizer

used in the ConvBERT model pre-training process to pre-process the input data. However, as these
pre-training tasks are built on a regular corpus of text, the vocabulary may lack feature elements in
HTML or URLs. Therefore, it is critical to improving the vocabulary and tokenizer to further enhance
the model’s effectiveness.

(2) A more complex yet realistic dataset. In this paper, the multi-modal samples detected are
those where both URL and HTML are malicious. Nevertheless, in a real-world scenario, only one of
the HTML or URLs may be malicious, while the other features could be normal. Therefore, collecting
such data and designing fine-grained modal matching tasks for these scenarios can broaden the scope
of the proposed approach’s application. It is essential to consider this complexity to evaluate the
model’s effectiveness in a more realistic setting.

In the next step of our research, we will not only focus on enhancing the detection performance
of the model but also improve its robustness against adversarial sample attacks [38] without affecting
the detection accuracy. Furthermore, techniques such as model distillation [39] and pruning will be
explored to improve the operational efficiency and practical performance of the model in real-world
scenarios. Additionally, by integrating the model into browser plug-ins, we hope to provide real-time
protection to users.
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