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Abstract: This paper illustrates a systematical surface topography measurement and evaluation
method based on a 3D optical system. Firstly, the point cloud data of the workpiece are extracted
by the use of a 3D structured light measurement system, and the STEP file of the design model is
converted into point cloud data. Secondly, the local measurement point cloud (LMPC) and digital
model point cloud (DMPC) are registered by a multivariate local descriptor registration scheme
proposed in this study. Thirdly, the surface shapes extracted from the STEP file are applied as a
reference to segment the measuring point cloud. Finally, an error analysis scheme is conducted on
specific functional surfaces. An experiment was conducted to analyse the flatness, cylindricity and
roughness to demonstrate the effectiveness and advantage of the method. The comparison results
show that the proposed method outperforms other 3D optical surface topography analysis methods.

Keywords: STEP files; point cloud; surface topography; multivariate local descriptor registration;
error evaluation

1. Introduction

Surface topography is defined as the interface between the part and surrounding
medium, which is the concrete reflection of product precision. The form tolerance consists of
flatness, cylindricity, roughness, straightness, etc. The assessment of the surface topography
is essential for the performance validation of parts. The standardised method for obtaining
an evaluation of surface topography is a coordinate measuring machine (CMM). However,
the CMMs usually occupy enormous space and are time-consuming. Another approach
is to use industrial CT to obtain complete workpiece scanning data and then coordinate
measurement data with the CAD data [1,2], which is costly and inefficient.

The use of 3D optical measurement has been widely used in manufacturing, scene
modelling and other fields because of its non-contact, fast measurement speed and high
accuracy [3,4]. The 3D optical measurement can be divided into the passive method,
such as binocular stereo vision, and active methods, such as time-of-flight and digital
fringe projection [5]. Compared with other methods, the digital fringe projection has high
resolution, accuracy and speed. This study will focus on digital fringe projection-based
surface topography error evaluation. Some work has been done for this method via different
approaches to improve accuracy. Peng et al. [6] proposed an adaptive grating method to
calibrate the distortion error of the projector, which has the advantage of 0.0213 mm (RMS)
standard plane measurement accuracy. Yang et al. [7] studied the residual compensation
method of projector distortion, this method needs two adjustments to the original raster
image, and its standard plane measurement accuracy is 0.0435 mm. Recently, deep learning
has been introduced into digital fringe projection. Shi et al. [8] proposed a deep learning
method based on enhanced tags and patches for phase recovery. Jeught et al. [9] investigated
a neural network with a large number of simulated data sets in the training process,
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extracting the height information of objects from a single fringe image. In metrological
studies, multiscale methods are used to analyse surface topography. Brown et al. [10]
investigated multiscale analyses and characterization to provide correlations between
topography and the performance of parts. Peta et al. [11] introduced geometric multiscale
methods into electrical discharge machining; it is possible to shape surface microgeometry.
Kang et al. [12] presented a contact model to describe normal and tangential contact
behaviors of rough interface with a multiscale method; this model provides an effective
way for studying the contact response of rough interface.

The 3D structured light system has the advantages of simple structure and low cost,
hence quickly obtaining the measurement data of a workpiece [13]. In practice, the result
of optical measurement data is in the form of a point cloud. Take a grating structured light
measurement system as an example [14]; it processes the shot raster image to obtain the 3D
point cloud of a workpiece, known as the measurement model.

The classical error analysis method of 3D optical measurement calculates the distance
between point pairs after completing the registration of the measurement model and
corresponding CAD model. However, obtaining the entire measurement model requires a
splice point cloud from multi-view because a point cloud can only photograph the data at a
particular projection direction [15], which is high-cost and has splicing errors. To overcome
the difficulty of error analysis from local data to whole CAD data, the common method
in the industry is to post positioning markers [16]. Nevertheless, it is evident that this
method will increase the time and introduce manual intervention errors. Xie et al. [17,18]
investigated multiple global descriptors to enhance the description of the point cloud
formed by the key points and their neighbourhood to complete the localisation of aircraft
partial skin. However, for some small parts, the data is obtained at a specific projection
direction, which accounts for a large proportion of the whole digital model, such extensive
local measurement data is hard to be broken into patches of the point cloud. The local
descriptor method [19] can complete small parts to complete registration, and the commonly
used point cloud-based local descriptors depend on manual processes, such as Point Feature
Histogram (PFH) [20], Signature of Histogram of Orientation (Shot) [21] and Ensemble of
Shape Functions (ESF) [22]. These descriptors are challenging to accurately describe the
characteristics of particular parts and have low generalisation.

In addition to the global deformation analysis of the local point cloud, another critical
issue to be addressed in implementing target surface error analysis is to split the point
cloud into various functional surfaces accurately. Therefore, the research on the segmen-
tation of measuring point clouds of some workpieces is still in the exploratory stage, one
of the reasons is that the functional surface is related to the mutations, but some func-
tional surfaces can be connected naturally and smoothly. According to these properties,
Qie et al. [23] employed conformal geometry to segment the mesh model of measured data
and further studied logistic regression to smooth boundaries. However, the threshold
values are difficult to generalise in this method for different parts. Yang et al. [4] used the
initial graphics exchange specification (IGES) file as a template to segment CT scan data for
error analysis of interested surfaces; however, IGES files are large, and the description of
some geometric entities is unstable [24].

In summary, there are two problems to be solved in the error analysis of 3D optical
measurement data:(1) how to accurately complete the local point cloud to the whole CAD
model registration; (2) how to isolate the target surfaces on a local measurement model.
To this end, a multivariate local descriptor registration method is introduced to solve the
registration problem in this study. The aim of this method is to establish a complete part-in-
whole point cloud registration process, including coarse and fine registration, and improve
registration accuracy. Then, to avoid unnecessary functional surfaces and computational
power, a local point cloud segmentation method to isolate target surfaces is presented.
This study aims to illustrate the entire process of 3D structured light measurement and
demonstrate the advantage of the method. Figure 1 shows the framework of the imple-
mentation of the error analysis process. Firstly, the standard for the exchange of product
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(STEP) digital model is transformed into a point cloud. Then a multivariate local descriptor
is used to complete the registration of the local point cloud to the STEP digital model. After
registration, the STEP file is used as the reference to segment each functional surface in
measurement data. Finally, the error analysis of the target surfaces is completed.
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This paper is organised as follows: Section 2 illustrates the details of generating func-
tional surfaces and point clouds based on STEP files. The construction of local point cloud
registration to the STEP model based on multivariate local descriptors is described in
Section 3. Section 4 presents the segmentation method for the local point cloud. Experimen-
tal verification of the application and demonstration of its effectiveness and advantages
are reported in Section 5. A comparison of different evaluation methods is presented in
Section 6. Finally, Section 7 concludes this paper and elaborates on future studies.

2. Generation of Functional Surfaces and Point Cloud Based on STEP File

STEP has been developed by ISO committees to describe a complete product definition
throughout the life cycle of products [25]. In addition, the STEP file contains useful
geometric and topological information [26], and all surface shapes are conformable to the
initial design intentions of CAD designers. Therefore, the STEP file can be used as a guide
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to segment the measurement data. This section introduces the basic concepts of generating
various functional surfaces and point clouds based on the STEP AP242 [27] format file.

2.1. The Division Functional Surface in STEP File

The target surfaces in STEP are defined as functional surfaces that contain the de-
manded geometric features, such as matching surface and R angle. An ADVANCED_FACE
in a STEP file represents a functional surface that includes the type and boundary informa-
tion based on boundary representation (BRep) [26]. The entity information of a surface is
shown in Figure 2. A surface contains multiple edges, and the entity of an edge is divided
into lines, circles, rational b-spline curves with knots and non-uniform rational b-spline
(NURBS) curves, and the line matrix is defined by

p =
[
1 t

]
∗
[
o d

]T (1)

where t is the length parameter of the line, o is the origin point, and d is the direction. The
circle equation is expressed as

p =
[
1 r cos θ r sin θ

]
∗
[
o a b

]T (2)

where r represents the radius, θ represents the angle of the circle, o represents the centre
of the circle, and a and b are vectors perpendicular to each other and perpendicular to the
normal direction of the circle. The NURBS curve equation is given in the form

p(k) =
∑

i=0
Ni,m(k)wi Pi

∑
i=0

Ni,m(k)wi

Ni,0(k) =
{

1(ki ≤ k ≤ ki+1)
0(others)

Ni,m(k) =
(k−ki)Ni,m−1(k)

ki+m−ki
+

(ki+m+1−k)Ni+1,m−1(k)
ki+m+1−ki+1

, m ≥ 1

(3)

where N represents the basis function, w represents weight, P is the control point, m is the
order, and k indicates the parameter between knots.
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Figure 2. The entity information of a particular functional surface in STEP file. Figure 2. The entity information of a particular functional surface in STEP file.

The analysis of circular arc is key in STEP parsing. Although the start and end points
are given in the STEP file, it is necessary to convert them into angles through specific
methods. Usually, the calculation of the cosine angle of two points can only get the range
from 0 to π but lacks the range from π to 2π. To this end, the content of the circle calculation
is given as follows:

(1) Calculating two direction vectors perpendicular to each other in the normal direction
N of the circle. Selecting any one of the x, y, and z directions of the global coordinates
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and taking the cross product with N. If the result is not 0, set it as direction a; otherwise,
choose another direction to calculate the cross-product. Keep taking N to cross a and
direction b, obtaining a, b and N as the local coordinate system of the circle, and
then projecting it into a 2D plane in the direction of N, as shown in Figure 3; the
transformation formula is expressed as Equation (4), where R = [a, b, N], p is the 3D

coordinate point,
ˆ
p is the 2D coordinate point, and here is the start point or end point,

o is the centre of the circular arc.

∧
p = Rp − Ro (4)

(2) In order to remove the z-axis of the local coordinate system, the start and end points
of the two-dimensional plane can be obtained and calculate the sine v1 and cosine v2
of the starting point S and the ending point E, respectively.

(3) The equation obtains the results of the final start point and end point (5). Finally,
the direction of the edge curve in the STEP file is used to determine the result (if the
direction is T, select θ1 in Figure 3, otherwise, select θ2 in Figure 3). The discrete points
of a circle can be determined according to the equation of a circle.

θ =


arccos(v1), v1 > 0, v2 ≥ 0
arccos(v1), v1 ≤ 0, v2 ≥ 0

arccos(v1) + 2[π − arccos(v1)], v1 < 0, v2 < 0
arcsin(v2), v1 ≥ 0, v2 < 0

(5)

According to the parse of boundary, each functional surface is finally divided, as
shown in Figure 4.
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2.2. The Generation and Trimming of Point Cloud
2.2.1. The Filling and Trim of Planar Point Cloud

The steps of plane point cloud filling are set as follows:
Input 3D model point cloud;
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Output Trimmed point cloud of the plan.
Step 1 Projecting onto a 2D plane and filling the bounding box. The ray casting method

is used to determine whether the point is inside the plane.
Step 2 Projecting onto a 2D plane continues with the projection method by Equation (4).
Step 3 Draw the bounding box of the projected polygon and equidistant lines in the

bounding box for filling.
Figure 5 shows the result of a polygon filling. After filling, it is necessary to determine

whether the filled point is inside the enclosing polygon. Therefore, the ray casting method
is adopted for judgment, and the schematic diagram of the ray method is shown in Figure 6.
In the ray method, drawing a ray from the point which needs to be determined, if the
number of edges that the ray passes through is even, the point is outside the polygon
(Figure 6, Point 2). Otherwise, the point is inside (Figure 6, Point 1). When the edge of a
polygon is a smooth curve, it can be approximated as the edge formed by multiple straight
lines, as shown in Figure 6b.

Appl. Sci. 2023, 13, 3311 6 of 19 
 

Functional surface

Functional surface

Functional surface

 
Figure 4. The division of functional surface in a certain STEP file. 

2.2. The Generation and Trimming of Point Cloud 
2.2.1. The Filling and Trim of Planar Point Cloud 

The steps of plane point cloud filling are set as follows: 
Input 3D model point cloud; 
Output Trimmed point cloud of the plan. 
Step 1 Projecting onto a 2D plane and filling the bounding box. The ray casting 

method is used to determine whether the point is inside the plane. 
Step 2 Projecting onto a 2D plane continues with the projection method by Equation 

(4). 
Step 3 Draw the bounding box of the projected polygon and equidistant lines in the 

bounding box for filling. 
Figure 5 shows the result of a polygon filling. After filling, it is necessary to determine 

whether the filled point is inside the enclosing polygon. Therefore, the ray casting method 
is adopted for judgment, and the schematic diagram of the ray method is shown in Figure 
6. In the ray method, drawing a ray from the point which needs to be determined, if the 
number of edges that the ray passes through is even, the point is outside the polygon 
(Figure 6, Point 2). Otherwise, the point is inside (Figure 6, Point 1). When the edge of a 
polygon is a smooth curve, it can be approximated as the edge formed by multiple straight 
lines, as shown in Figure 6b. 

  
(a) (b) 

Figure 5. The procedure of plane point cloud trimming: (a) The point cloud of the plane before 
trimming; (b) The trimmed point cloud through the ray casting method. 

POINT1POINT2

 

POINT1POINT2

 
(a) (b) 

Figure 6. The illustration of the ray casing method. (a) A polygon includes a curve; (b) A curve is 
reduced to a polygon with multiple straight lines.  

Figure 5. The procedure of plane point cloud trimming: (a) The point cloud of the plane before
trimming; (b) The trimmed point cloud through the ray casting method.

Appl. Sci. 2023, 13, 3311 6 of 19 
 

Functional surface

Functional surface

Functional surface

 
Figure 4. The division of functional surface in a certain STEP file. 

2.2. The Generation and Trimming of Point Cloud 
2.2.1. The Filling and Trim of Planar Point Cloud 

The steps of plane point cloud filling are set as follows: 
Input 3D model point cloud; 
Output Trimmed point cloud of the plan. 
Step 1 Projecting onto a 2D plane and filling the bounding box. The ray casting 

method is used to determine whether the point is inside the plane. 
Step 2 Projecting onto a 2D plane continues with the projection method by Equation 

(4). 
Step 3 Draw the bounding box of the projected polygon and equidistant lines in the 

bounding box for filling. 
Figure 5 shows the result of a polygon filling. After filling, it is necessary to determine 

whether the filled point is inside the enclosing polygon. Therefore, the ray casting method 
is adopted for judgment, and the schematic diagram of the ray method is shown in Figure 
6. In the ray method, drawing a ray from the point which needs to be determined, if the 
number of edges that the ray passes through is even, the point is outside the polygon 
(Figure 6, Point 2). Otherwise, the point is inside (Figure 6, Point 1). When the edge of a 
polygon is a smooth curve, it can be approximated as the edge formed by multiple straight 
lines, as shown in Figure 6b. 

  
(a) (b) 

Figure 5. The procedure of plane point cloud trimming: (a) The point cloud of the plane before 
trimming; (b) The trimmed point cloud through the ray casting method. 

POINT1POINT2

 

POINT1POINT2

 
(a) (b) 

Figure 6. The illustration of the ray casing method. (a) A polygon includes a curve; (b) A curve is 
reduced to a polygon with multiple straight lines.  
Figure 6. The illustration of the ray casing method. (a) A polygon includes a curve; (b) A curve is
reduced to a polygon with multiple straight lines.

2.2.2. The Filling and Trim of the Curved Surface Point Cloud

Compared with a plane, the curved surfaces in STEP files consist of cylindrical surfaces,
conical surfaces, b-spline surfaces with knots and non-uniform b-spline. In this study, all
curved surfaces were transformed into NURBS surfaces [28]. Similar to the planar point
cloud process, the point cloud of curved surfaces needs to be trimmed. It is difficult to trim
surfaces in a 3D form directly, and it also cannot follow the trimming steps of the plane,
which is trimming by mapping into the 2D space domain. NURBS surfaces can be trimmed
by reverse-mapping the boundary to the 2D parameter field of NURBS surfaces. As shown
in Equation (6), each point in the 3D domain corresponds to the u, v parameter of the
NURBS surface. Supposing a point P (x, y, z), a BFGS method can be used to approximate
its corresponding parameters u0 and v0 in the parameter domain. The BFGS method [29,30]
is a quasi-newton method. Thus, a better initial value of the parameter should be chosen
to avoid calculating a wrong result. The trimming steps of the curved surface point cloud
based on the BFGS method are as follows:

Input Curved point cloud.
Output Trimmed curved point cloud.



Appl. Sci. 2023, 13, 3311 7 of 18

Step 1 Supposing a set of boundary points [31], find their nearest points in the NURBS
surface and take their corresponding values ui and vi in the parametric domain as the initial
values of the Newton iterative method.

Step 2 To define the objective optimisation function:

l(u, v) = [p(u, v)− P][p(u, v)− P]T (6)

When l equals zero, the P is obtained as the optimal value in the parametric domain.
Then, determine the initial parameter x0 = [u0, v0] T and initial a symmetric positive definite
matric B0, which is the identity matrix.

Step 3 Computation of the first-order partial derivative:

g0 =

[
lu(u0, v0)
lv(u0, v0)

]
(7)

Step 4 Calculation of the xi+1:

xi+1 = xi + λiB−1
i gi (8)

where λi denotes the step size, continue to calculate the si = xi+1 − xi, yi = gi+1 − gi.
Computation of the Bk:

Bi+1 = Bi +
yyT

yTs
− BissT Bi

sT Bis
(9)

Step 5 Repeating the above step until the ‖gi+1‖ < ε.
The optimal parameters u, v in P, and the value of boundary points in the parameter

domain can be obtained according to the above steps; the parameters can be clipped by
the ray casting method, and then the clipped parameters can be converted into the spatial
domain by Equation (10), and the clipped surface can be obtained. In Equation (10), the u
and v represent the parameters in a different direction; the N is the basis function whose
details are in Equation (3), w is the weight, P is the control point, and m and n are the order
in a different direction. Figure 7 shows the flowchart of the trimmed NURBS surface.

p(u, v) =
∑

i=0
∑

j=0
Ni,m(u)Nj,n(v)wi,jPi,j

∑
i=0

∑
j=0

Ni,m(u)Nj,n(v)wi,j
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3. Part-in-Whole Point Cloud Registration

This section is to recognise local geometric features on a complete CAD model and
realize the registration of the local point cloud and CAD model, which is the basis of error
analysis [17].



Appl. Sci. 2023, 13, 3311 8 of 18

3.1. The Patch of Point Cloud

In this section, the random sphere cover sets (RSCS) method is adopted to improve the
coverage of the whole point cloud [32]. The original RSCS method increases the matching
accuracy of subsequent point cloud descriptors. However, the sphere radius associated
with this method is fixed each time, which leads to the uncharacteristic patch obtained
by a fixed radius. Therefore, the multi-scale RSCS is proposed in this study to increase
the diversity of the radius scale of points to improve the matching probability between
corresponding point clouds. The multi-scale RSCS division process of the point cloud is
as follows:

Input DMPC and LMPC.
Output Multi-scale random sphere cover set and central points of DMPC and LMPC.
Step 1 Down sampling DMPC and LMPC.
Step 2 Randomly selecting a point as the centre of the sphere and dividing the point

cloud via radius ri, all point clouds within the radius are identified as the point cloud of
the first sphere si

1.
Step 3 Randomly select a point that does not belong to a sphere si

k as the next centre
point and obtain the next sphere with ri.

Step 4 Repeat step 3 until every point is covered sphere.
Step 5 Resetting the radius and repeat step 4.
According to the above steps, the multi-scale random sphere cover set of the DMPC

p =
{

si
1, si

2, · · · , si
k
}

and its corresponding set of central points pc = {c1, c2, · · · , ck} can
be obtained. Similarly, the set of LMPC q =

{
si

1, si
2, · · · , si

K
}

and the corresponding set of
central points qc = {c1, c2, · · · , cK} can be obtained. In this study, three kinds of spheres
with different radii were selected as multi-scale RSCS. After generating each sphere, it is
also necessary to refer to some criteria for screening key points; the specific criteria can
be found in [32]. Taking the rear floor beam of a car body as an example, the multi-scale
RSCS of local measurement data on one side and the multi-scale RSCS of the digital model
are shown in Figure 8. The different colours represent the point cloud covered by each
divided sphere.
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3.2. Coarse Registration Based on Multivariate Descriptors (MD)

Based on spheres obtained from the above-mentioned method, each sphere’s feature
needs to be described. Feature descriptors are generally used for the initial alignment of
the point cloud in the coarse registration stage. Common point cloud descriptors can be
divided into global and local descriptors. Using a global descriptor requires that the size of
the local measurement be much smaller than that of the global point cloud. However, some
measurement data obtained for small workpieces are one-sided projections. When the
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whole point cloud is divided according to the spherical scale of the local point cloud, the
whole point cloud will be divided into a sphere, leading to registration failure. Therefore,
point cloud local descriptors will be adopted in this study.

This study proposed a multivariate descriptor to improve registration accuracy. The
combination of two classical descriptors: Fast Point Feature Histogram (FPFH) [33], and
Shot descriptor, which is based on a local reference frame, is used in a subsequent experi-
ment. The local descriptors used are not limited to the above two manual descriptors; it
can also use some descriptors based on deep learning, such as Spinnet [34]. This study
presented an optimised scheme to improve the description ability of descriptors. The
descriptors do not belong to the research subject of this paper. Therefore, based on the
hypothesis of the scheme, assuming that n local feature descriptors are eventually used,
each sphere will get n descriptor vectors. Coarse registration adopts sample consensus
initial alignment (SAC-IA) [33], and the main contents of SAC-IA are as follows:

(1) The descriptor sets of multi-scale RSCS of LMPC and global point cloud are calculated,
p̂n =

{
di

1, di
2, · · · , di

k
}

, q̂n =
{

di
1, di

2, · · · , di
K
}

, where n represents different descriptors,
i is RSCS of different scales, k and K are the number of LMPC and whole CAD point
cloud at a certain scale.

(2) n descriptors are randomly selected from p̂n and q̂n to determine the n corresponding
relationship. The centre of RSCS is defined as the corresponding point. Supposing
n descriptors in p̂n determine the most similar corresponding n points in q̂n, the
weighted average points between the corresponding points of n different descriptors
are calculated as the final corresponding points. Then the final corresponding point
position in q̂n is defined by Equation (11), where wi is the normalised weight of the
matching score in corresponding points from n descriptor and ci is the position of the
corresponding point from a different descriptor. Figure 9 is a sketch of a weighted
average corresponding point with three descriptors, in which the blue is the local
point cloud, and the grey is the whole DMPC. In the whole DMPC, different shapes
correspond to the corresponding points calculated by different descriptors, and the
circular points are the final weighted corresponding points.

(3) After determining the corresponding points, the corresponding points of the s group
are randomly selected to obtain the corresponding point set p̂c = {c1, c2, · · · , cs}
and q̂c = {l1, l2, · · · , ls}, according to Equations (15) and (16), the transformation
matrices R and T are calculated, where U and V are singular matrices; it is obtained
by performing a singular value decomposition on Equation (14).

(4) Using the transformation matrix to carry out a rotation and translation transformation
on corresponding points except for s corresponding points, if the distance of k-s
corresponding point is less than a certain threshold value after transformation, then
the point in the local point cloud is determined to be the inner point; otherwise, it
is the outer point, the number of inner points is counted, and si+1 corresponding
points are selected in the next round. Repeat the above process. The result is the
corresponding points with the most significant number of inner points.

(5) Comparing the point cloud registration results at different scales and selecting the
group with the smallest error as a result.

l =
n

∑
i=0

wici (11)

x =
1
n

n

∑
i=0

xi (12)

h =
1
n

n

∑
i=0

(xi − x)(yi − y) (13)

R = +VT (14)
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T = y− Rx (15)

Appl. Sci. 2023, 13, 3311 10 of 19 
 

(3) After determining the corresponding points, the corresponding points of the s group 
are randomly selected to obtain the corresponding point set �̂� = {𝑐 , 𝑐 , ⋯ , 𝑐 } and 𝑞 = {𝑙 , 𝑙 , ⋯ , 𝑙 }, according to Equations (15) and (16), the transformation matrices 
R and T are calculated, where U and V are singular matrices; it is obtained by per-
forming a singular value decomposition on Equation (14). 

(4) Using the transformation matrix to carry out a rotation and translation transfor-
mation on corresponding points except for s corresponding points, if the distance of 
k-s corresponding point is less than a certain threshold value after transformation, 
then the point in the local point cloud is determined to be the inner point; otherwise, 
it is the outer point, the number of inner points is counted, and si+1 corresponding 
points are selected in the next round. Repeat the above process. The result is the cor-
responding points with the most significant number of inner points. 

(5) Comparing the point cloud registration results at different scales and selecting the 
group with the smallest error as a result. 

𝑙 = 𝑤 𝑐  (11)

�̅� = 1𝑛 𝑥  (12)

ℎ = 1𝑛 (𝑥 − �̅�)(𝑦 − 𝑦) (13)

𝑅 = +𝑉  (14)𝑇 = 𝑦 − 𝑅�̅� (15)

 
Figure 9. Weighted corresponding points of MD. 

3.3. Iterative Closest Point (ICP) Based on Fine Registration 
After the coarse registration of LMPC and DMPC is achieved via the above steps, we 

employ the iterative closest point (ICP) [35] algorithm to accurately match the scanned 
point cloud to the whole CAD model. In acceptable registration, all local point cloud is 
iterated, but it is easy to fall into local optimisation and time-consuming. Therefore, in this 
step, ICP iterates by finding the nearest point between the centre point of the RSCS sphere 
in the measurement point cloud and the target point cloud. 

4. Local Point Cloud Segmentation 
The surface topography analysis of all local measurement data can be conducted 

when the fine registration of LMPC and DMPC is completed. First, however, it is 

Figure 9. Weighted corresponding points of MD.

3.3. Iterative Closest Point (ICP) Based on Fine Registration

After the coarse registration of LMPC and DMPC is achieved via the above steps, we
employ the iterative closest point (ICP) [35] algorithm to accurately match the scanned
point cloud to the whole CAD model. In acceptable registration, all local point cloud is
iterated, but it is easy to fall into local optimisation and time-consuming. Therefore, in this
step, ICP iterates by finding the nearest point between the centre point of the RSCS sphere
in the measurement point cloud and the target point cloud.

4. Local Point Cloud Segmentation

The surface topography analysis of all local measurement data can be conducted when
the fine registration of LMPC and DMPC is completed. First, however, it is necessary to
identify points and the functional surfaces associated with them. Let Pc = {P1, P2, . . . , Pn}
be an LMPC, the determination of ownership between measuring points and the functional
surface is through the Euclidean distance between the point and plane, then sorting the
distance between the point and each surface and finding the closest surface is the corre-
sponding functional surface. Before sorting, the point needs to be mapped to a 2D plane,
and then the radial method is used to determine whether the point belongs to this plane.
The distance from a point to the plane is expressed as Equation (16), where n is the direction
of the line, i.e., the normal direction of the plane, p is a measurement point, and o is any
point on the plane.

d =
‖n(p− o)‖
‖n‖ (16)

Compared with the triangular surface in stereolithography (STL) files, the curved
surface can be composed of multiple quadrilateral planes. Figure 10 illustrates the owner-
ship judgement between a point and a curved surface, the point cloud is down-sampled
to Figure 10b, and a plane is represented by four points. Let Ps = {P1, P2, . . . , Pk} be a
set of curved surfaces, where Pk ∈ P is the quadrilateral plane. Similar to the ownership
judgement of plane, if a point belongs to any plane in the set P, then the point belongs
to that surface (Figure 10c). Generally, the fewer planes on the surface, the higher the
judgment error and the less time.
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5. Experimental Verification and Comparisons
5.1. Experimental Conditions

In this section, we perform experiments to validate the effectiveness of the proposed
method. Ubuntu, PyCharm editor and Open3D library environment are used to analyse
errors of workpiece surfaces. The flatness, cylindricity and surface roughness [36] of specific
functional surfaces on two automobile body parts are examined. The experimental setup
and workpieces are depicted in Figure 11 [37]. The schematic diagram of the 3D structured
light measurement system is shown in Figure 12. The measured part is located on the
reference surface X-Y, Oc is the camera lens optical center, Op is the projector lens optical
center, P is a point on the measured part, and its projection on the reference surface is P’,
the length of P-P’ is h, points A and B are the intersection points between point P and the
two optical centers and the reference plane, respectively, l and d are the distances from the
optical center of the camera to the reference surface and the optical center of the projector.
According to [31,38], the function of h and phase difference θA − θB can be expressed
as follows:

h =
l(θA − θB)

(θA − θB) + 2πd/λ0
(17)

where λ0 is the optical grating pitch, θA and θB are the phase of points A and B, respectively.
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STEP files of the two parts are discretised into a point cloud, as shown in Figure 13,
where the LMPC is shown in the blue point cloud. Local measurement data are obtained
by the structured light measurement system (accuracy is 0.05 mm). The local measurement
data captured are all data on the upper surface of the workpiece.
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5.2. The Analysis of Registration

In point cloud registration experiments, two point clouds are sampled with a voxel of
size 1, and the registration error is calculated as

RMS =
1
n

√
∑(pi − f (qi))

2 (18)

where pi represents the target point cloud, qi represents the measurement point cloud, and
f represents the point cloud after registration. First, workpiece b is used to compare the
registration accuracy of single-scale RSCS and multi-scale RSCS, and the results are shown
in Table 1. Figure 14a–c shows the coarse registration results of spheres with scales of 20, 50
and 80, respectively. It can be seen that coarse registration results are relatively superior
when the scale is 80, and using multiple scales can increase the accuracy of registration
compared to a single scale. In general, the scale of the sphere in RSCS can be made
according to the volume of the measured data. There is an empirical formula for setting a
sphere’s scale, expressed in Equation (19), where V represents the volume of the minimal
circumscribed sphere, and m is the number of spheres in RSCS.
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Table 1. Influence of RSCS at different scales on parts registration error (mm).

The Scale of RSCS Registration Error

20-scale RSCS+MD+ICP 2.095
50-scale RSCS+MD+ICP 4.233
80-scale RSCS+MD+ICP 4.856
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Figure 14. Registration results of RSCS at different scales. (a) Scale of 20; (b) Scale of 50; (c) Scale
of 80.

The registration results of parts 1 and 2 are shown in Figures 15 and 16 and Table 2.
The labels a and b represent the coarse and fine registration results. Table 2, “part num-
ber_registration scheme”, shows the results of different registration schemes with different
parts. Although only two descriptors are used in the multivariate descriptors in the experi-
ment, the result is better than using a single descriptor. In the proposed coarse algorithm,
the matching relation of the point cloud patch in the final RSCS is shown in Figure 16,
where the black point is the weighted average corresponding point, the different colour of
the point cloud patch is the sphere of the final RSCS, the line represents the corresponding
relation. Although the proposed scheme can reduce the registration error and increase the
probability of registration success, it can be seen from the broken line figure in Figure 17
that with the increase of sphere candidate scale and descriptor, especially with the rise of
sphere candidate scale, the time consumption presents an exponential growth, so it needs a
tradeoff in terms of actual use.

Radius = 3

√
(

3
4π
∗ 0.7

2m
∗V) (19)
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Table 2. Registration errors of different descriptors (mm).

The Type of Descriptor Registration Error

a_Muti-scale RSCS+SHOT+ICP 6.499
a_Muti-scale RSCS+FPFH+ICP 6.211
a_Muti-scale RSCS+MD+ICP 4.279

b_Muti-scale RSCS+SHOT+ICP 4.556
b_Muti-scale RSCS+FPFH+ICP 6.988
b_Muti-scale RSCS+MD+ICP 2.095
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5.3. Point Cloud Segmentation and Error Analysis

According to the template of each surface in the STEP file, each functional surface
is segmented, as shown in Figure 18 where different colors represent different functional
surfaces. Error analysis is conducted on specific functional surfaces of the measurement
data on part 1 and part 2, respectively. The functional surfaces to be analysed were marked
as a and b in Figure 18. The cylindricity, flatness and roughness of part 1 are analysed,
and the flatness and roughness of part 2 are analysed. The results are shown in Table 3,
where the roughness refers to ISO 25,178 [39] series and ISO 16,610 [36] series, the surface
roughness was obtained by a two-dimensional Gaussian filter, and its sq parameters are
calculated. The calculation method of flatness is as follows: First, the plane is fitted, and
the linear equations shown in Equation (20) are solved, where xi, yi and zi represent the
three coordinates of the points in the surface point cloud, a, b and c represent the three
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parameters in the general equation of the plane. After obtaining the plane equation, the
distance between the points and the plane is calculated to obtain the distance set d, and
the flatness is equal to max(d) − min(d). The calculation method of cylindricity [40] is
similar to flatness. A cylinder can be regarded as composed of radius R and axis l. The
parameters to be fitted become the direction vector N (nx, ny, nz) of the line, the origin
point o(ox, oy, oz) of the line, and the radius R. Supposition a point pi (xi, yi, zi) in the
measurement point cloud, then establish the least squares model according to Equation (21)
and then calculate the partial derivative of st to each parameter to solve the least squares
cylinder. The set of distances between each point and the axis is d, and cylindricity is
max (d)−min(d). According to the above error analysis method, the calculation results
of each functional surface in Figure 18 are shown in Table 3. Through the STEP file, the
ideal model of each functional surface can be obtained. The ideal model of S1 and S3 in
Figure 18a is a cylinder, so its cylindricity can be calculated. S2 is a plane, and S1 and S2 in
Figure 18b are also planes.∑ xi

2 ∑ xiyi ∑ xi
∑ xiyi ∑ yi

2 ∑ yi
∑ xi ∑ yi n

a
b
c

 =

∑ xizi
∑ yizi
∑ zi

 (20)

st =

(
ri −

1
N

N

∑
i=0

ri

)2

(21)

ri = |opi × n| (22)
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Table 3. Error analysis for workpieces (mm).

Features Flatness Cylindricity sq Parameter in Roughness

a_S1 - 0.881 0.219
a_S2 1.037 - 1.298
a_S3 - 0.945 0.207
b_S1 0.713 - 0.813
b_S2 0.545 - 0.762

6. Discussion

Several surface topography evaluation methods are applied to evaluate the parts’
errors; their results are shown in Tables 4–6 for comparison. In the comparison, the
micrometer, CMM, and profilometer are selected.
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Table 4. Results of comparison with existing methods for flatness (mm).

Features Micrometer CMM Profilometer Proposed Method

a_S2 1.067 1.011 1.103 1.037
b_S1 0.842 0.702 0.801 0.713
b_S2 0.539 0.578 0.612 0.545

Table 5. Results of comparison with existing methods for cylindricity (mm).

Features Micrometer CMM Profilometer Proposed Method

a_S1 0.892 0.856 1.020 0.881
a_S3 1.035 0.921 1.142 0.945

Table 6. Results of comparison with existing methods for roughness (mm).

Features Micrometer CMM Profilometer Proposed Method

a_S1 0.216 0.301 0.203 0.219
a_S2 1.354 1.326 1.276 1.298
a_S3 0.235 0.244 0.198 0.207
b_S1 0.873 0.854 0.801 0.813
b_S2 0.852 0.832 0.732 0.762

As illustrated in Tables 4–6, the results of the micrometer, CMM and profilometer are
consistent with the results of the proposed method, and all of the evaluated values differ
slightly. This demonstrates the feasibility and effectiveness of the proposed method in
solving error evaluation with a 3D structured light system. Furthermore, the comparison
has verified that the proposed method has high precision and can be employed in the
automotive part measurement process.

7. Conclusions

This study presents a multi-component local descriptor method to optimize coarse
registration precision. First, they obtain the measurement and digital model point cloud,
further divided by the multi-scale RSCS. Then, multivariate descriptors were integrated to
generate feature vectors, and the SAC-IA algorithm was applied to find the corresponding
points, followed by the matching score to get the final position of the related points,
and an ICP-based fine point cloud registration was carried out. Finally, the STEP file is
applied to guide the measurement point cloud segmentation to complete the automatic
error analysis of specific functional surfaces. In the experiment, this study selects the
rear beam parts of an automobile for error analysis. One of the results is that the r-angle
cylindricity is 0.881 mm, the roughness sq parameter is 0.219 mm, and the flatness of its
plane is 1.037 mm. Compared with a micrometer, CMM and profilometer, the measurement
results differ slightly; the results show that the proposed method can solve the challenging
problem of automating error analysis based on optical measurement data.

The major contribution of this study is the development of a multivariate local de-
scriptor registration method and segmentation method, which can be applied in a 3D
structured light measurement system. The developed methods consider 3D surface to-
pography measurement and improve registration accuracy compared to existing methods.
Further, the methods are suitable for automatic error evaluation in the automobile industry
when measurement for vehicle parts needs cost consideration.

The STEP file contains geometric information, which can not only serve as the guidance
of point cloud segmentation but also complete some feature recognition and the mid-surface
generation algorithm of CAE. However, although the proposed descriptors can improve
registration precision, there are still registration failures for minimal shapes. Therefore,
deep learning-based descriptors will be considered in the registration positioning stage to
improve the registration robustness further in future work.
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