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Abstract: Despite the continuous development of convolutional neural networks, it remains a chal-
lenge to achieve performance improvement with fewer parameters and floating point operations
(FLOPs) as a light-weight model. In particular, excessive expressive power on a module is a crucial
cause of skyrocketing the computational cost of the entire network. We argue that it is necessary
to optimize the entire network by optimizing single modules or blocks of the network. Therefore,
we propose GhostNeXt, a promising alternative to GhostNet, by adjusting the module configura-
tion inside the Ghost block. We introduce a controller to select channel operations of the module
dynamically. It holds a plug-and-play component that is more useful than the existing approach.
Experiments on several classification tasks demonstrate that the proposed method is a better al-
ternative to convolution layers in baseline models. GhostNeXt achieves competitive recognition
performance compared to GhostNet and other popular models while reducing computational costs
on the benchmark datasets.

Keywords: module configuration; resource-efficient network; network design

1. Introduction

Deep convolutional neural networks have been continuously developed in image
recognition [1], object detection [2], and semantic segmentation [3] tasks, to name a few. The
networks have been designed toward deeper learning [4] to achieve additional performance
gain. However, the network design requires a large amount of computational costs and
is difficult to use universally in edge devices. To deploy it in edge devices that require
real-time operation, studies on a light-weight model have been conducted [5–7].

The basic idea for designing a light-weight model is to reduce the computational cost in
the convolution operation. Since spatial convolution with a 3× 3 kernel size has a limitation
in reducing network complexity, the network complexity has been reduced by minimizing
input and output channel dimensions through 1 × 1 convolution [4]. Furthermore, depth-
wise convolution [8] effectively reduces network complexity; thus, it has been widely used
in most light-weight models.

Recently, GhostNet [9] has been proposed, which contains a Ghost module that can
generate redundant feature maps at a low computational cost. The study [9] introduces two
components in deep neural networks: extracting intrinsic feature maps and linear trans-
forming them. When extracting the intrinsic feature maps, the existing 1× 1 convolution [4]
is used. Then, redundant feature maps are generated through a cheap linear transformation
in the feature maps. It has become one of the representative light-weight models in that it
contains a plug-and-play component that can replace the existing convolution layer and
has the efficiency of extracting feature maps at a low computational cost.

Despite the fact that it has been widely used as a light-weight model, the module
configuration of GhostNet raises concerns for designing a light-weight model. The Ghost
block comprises an expansion module that significantly increases the input channel and
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a reduction module that compresses the channel to match the output dimension of the
block. This may seem appropriate for a light-weight model structure considering only
the input and output channel dimensions. However, it involves up to six times channel
expansion from the modules, resulting in unnecessary computational costs and limiting
the expressiveness of the network [10,11].

In this paper, we propose a cost-efficient approach for designing light-weight convolu-
tional neural network by introducing dynamic module configuration using a block-level
controller based on the popular model. Our work aims to enhance the balance between
the performance and computational complexity of GhostNet by reducing parameter con-
sumption and improving its performance. Inspired by the rank analysis performed by
ReXNet [11], we conjecture that, if the expansion module is used unnecessarily, the compu-
tational complexity of the network will be significant and additional performance gain may
not be achieved due to the lack of expressive power. From this, we introduce a controller
that can dynamically select channel operations of the module. We first define the set of
channel reduction ratios for each block by referring to the design guide of the single expan-
sion layer [11]. The controller selects one of the channel reduction ratios and determines the
channel operation to construct the dynamic module configuration of each block. Accord-
ingly, we propose GhostNeXt, which can effectively reduce the network complexity while
improving the representation power by redesigning the module configuration of GhostNet.

To compare with existing light-weight models [6,7,9], we conduct experiments on
diverse image classification benchmark datasets. Diverse fine-grained datasets, CUBS [12],
Stanford Cars [13], Flowers [14], Wikiart [15], and Sketch [16] are used as large-scale
datasets. Furthermore, CIFAR-100 [17], STL-10 [18], and CIFAR-10 [17] datasets are used
as small-scale datasets. From the experiments, GhostNeXt is more efficient in terms of the
trade-off between performance and computational complexity than light-weight models,
including GhostNet. We also employ Grad-CAM [19] to visualize the importance of where
the network focuses during prediction as a heat map. Through this, we empirically show
that the dynamic module configuration enhances the expressive power of the network.

2. Related Work

The computation cost of a network highly depends on how we design the network con-
figuration. Xception [5] was proposed by modifying the depth-wise separable convolution
and using it instead of the Inception module [20]. MobileNet [8] was developed through
the depth-wise separable convolution. MobileNetV2 [7] proposed an inverted residual
block and MobileNetV3 [21] further designed a more efficient network in terms of perfor-
mance and computational complexity using AutoML [22,23] strategy. ShuffleNet [24] used
pointwise group convolution and channel shuffle. ShuffleNetV2 [6] proposed a network
design to improve practical inference speed.

GhostNet [9] argued that similar feature maps can be extracted through convolution
operations. It collects such feature maps at a low computational cost while preserving
the intrinsic information through a cheap linear transformation. It is a plug-and-play
component that can replace convolution layers of other convolutional neural networks
while relieving the computational burden. Nonetheless, designing the network by stacking
Ghost blocks weakens the advantages of the light-weight module due to the static module
configuration inside the block. Therefore, we overcome the weakness in this work by
presenting a better design configuration for a highly efficient model.

Recently, light-weight models based on neural architecture search (NAS) [25] have
been proposed [11,26–28], which have achieved competitive performance by designing
the network architecture automatically. EfficientNet [28] proposed a network design
through compound scaling of network width, depth, and resolution. FBNet [26] proposed
a gradient-based differentiable NAS framework to optimize the network. FBNetV2 [27]
designed a memory-efficient network with an expanded search space of DNAS (differen-
tiable NAS [26]), which contains a search for spatial and channel dimensions. ReXNet [11]
redesigned the channel configuration of the inverted residual block. However, they do
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not effectively consider the correlation and redundancy between feature maps. More
recently, there have been proposals for light-weight vision transformers (ViTs) [29] such
as MobileViT [30] and EdgeViTs [31]. MobileViT is mobile-friendly due to its efficient
MobileViT block that encodes local and global information. EdgeViTs introduced the LGL
bottleneck block to create a cost-effective transformer architecture. Unlike light-weight
convolutional neural networks, ViT-based light-weight networks incorporate self-attention
mechanisms, which pose a challenge in achieving a suitable balance between accuracy and
computational complexity for mobile devices.

3. The Proposed Method
3.1. GhostNet

We study a dynamic module configuration to construct an improved light-weight
module from GhostNet [9]. GhostNet is a stack of Ghost blocks and each block is composed
of two modules. The module M inside the Ghost block is defined as:

M = Li,j(X ◦ f ) ∈ Rh′×w′×dout
, (1)

where X ∈ Rh×w×din
is an input, ◦ is a channel operation that performs channel expansion

or reduction on the module, and f ∈ Rdmid×din×k×k is a convolution filter. h, w, and din are
the height, width, and the number of channels of the input, respectively. k and dmid are
the kernel size of the filter f and the number of channels in the output from the channel
operation, respectively. Li,j(x) is a linear transformation function for x, which is a major
component in GhostNet. i and j are in the ranges [1, dmid] and [1, r], respectively. r is the
number of linear transformations including one identity mapping. Li,j(x) performs linear
transformation for each channel of dmid and operates as an identity mapping when j = r.
As a result, Li,j(x) always increases the channel number regardless of the module.

The static module configuration has significant issues that need to be addressed. First,
the difference between the input and output of each module is significant, which leads to
an increase in computational complexity inside the block, making it unsuitable for light-
weight model design. Second, the channel expansion of up to six times inside the Ghost
block is excessive, as it has been empirically proven that scaling between two and three
times is optimal for designing convolutional neural networks [10]. Last, a recent work [11]
has revealed that incorporating an excessive number of expansion layers in networks can
result in bottleneck problems in representation. We design a block with a dynamic module
configuration to tackle these challenges.

3.2. The Proposed Method: GhostNeXt

Our goal is to design a better lightweight block by adjusting the module configuration
inside the Ghost block to reduce unnecessary computational costs:

B∗ = arg max
B1 ,...,Bj

Acc(N(B1, . . . , Bj))

s.t. Params(N) ≤ P, FLOPs(N) ≤ F, (2)

where ki, si, ci, ri ∈ Bi, and Acc and Bi denote the network validation accuracy and the
i-th block configuration of the network N. ki, si, ci, and ri denote the kernel size of the
convolution filter, stride, and the number of channel and linear transformation of the
i-th block, respectively. P and F denote the number of target parameters and FLOPs,
respectively.

Since most parameters and FLOPs of the network are determined by ci, we design
the module configuration by introducing a controller to adjust ci dynamically. We design
the block by considering only ci while ki, si, and ri are held fixed. In particular, we focus
on adjusting dmid

1 , which is the number of channels of the first module M1. To optimize a
block with two modules in a light-weight manner, we reduce the computational complexity
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by controlling dmid
1 , a major component that increases the complexity of the blocks. We

first define the set of channel reduction ratios for each block that serves as a criterion for
dynamically adjusting ci. Then, the controller selects one of the channel reduction ratios to
design the dynamic module configuration. We define the set of channel reduction ratios
as follows:

Ti =

{
t

∣∣∣∣∣dmid
1
t
≥ dmid

2 , t ∈ Z+

}
, (3)

where Ti denotes the set of channel reduction ratios of the i-th block. t denotes the chan-
nel reduction ratios for the i-th block. We define the set of channel reduction ratios for
light-weight blocks based on the design guide of the network [11]. Ref. [11] empirically
proved that drastic channel expansion disrupts the expressive power of an expansion layer.
Therefore, we allow the channel reduction ratio to reduce dmid

1 . In order to keep the block
in a form of the inverted residual block [7], dmid

1 /t is always greater than or equal to dmid
2 .

Finally, the module configuration for each block is constructed by the controller selecting
one of the channel reduction ratios and determining the channel operation based on it, as
shown in Figure 1. We define the controller Ci as:

Ci(t) =

{
R, if din

1 >
dmid

1
t

E, otherwise,
(4)

where din
1 denotes the input channel dimension of M1. R and E are the channel reduction

and expansion operations, respectively. If channel operation is E for all blocks, the network
architecture is equivalent to GhostNet. Note that the largest network in our module
configuration is GhostNet. The computational cost of the i-th block decreases whenever
the channel operation of E is not selected. If Ti satisfies the conditions described in
Equation (3), it signifies that the stage has been reached where it is possible to manually
examine all possible combinations for each block. In other words, it implies that the
number of combinations is not large. Thus, the controller manually selects the channel
reduction ratio to explore the most suitable module configuration, considering validation
accuracy. This process is reminiscent of the approach taken in a previous study [32], where
an empirical distribution function (EDF) was employed to narrow the search space.

(a) GhostNet block

Figure 1. Cont.
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(b) GhostNeXt block

Figure 1. (a) The i-th GhostNet block. E, R, and L denote the channel expansion operation, reduction
operation, and linear transformation function, respectively. The input X is expanded through E and
L, where the difference between the output channel dout

1 of the first module and X is limited up to six
times. dout

1 is the input of the second module and is reduced up to 12 times through R. (b) The i-th
GhostNeXt block with the controller Ci. Ti denotes the set of channel reduction ratios of the i-th block.
Ci selects t, one of the ratios in Ti to perform one of the channel operations E and R. If R is selected,
dmid

1 is reduced by t and, if E is selected, it leads to the existing module configuration. Through L, the
output channel dout

1 of the first module is generated by performing r− 1 linear transformation and
one identity mapping. We use the channel operation R in the second module.

The presented dynamic module configuration has three positive effects over GhostNet.
First, it is more general since the module configuration is not fixed and can be flexibly
changed. Second, the presented controller can reduce unnecessary computational costs
inside the Ghost block. Last, the proposed method can enhance the expressive power of the
network (see Section 4.4 for the results). Table 1 shows the required parameters and FLOPs
of M1 and M2 in the proposed method, respectively. Since the channel reduction ratio
decreases the dmid of two modules to dmid/t, the parameters and FLOPs can be reduced.
Note that when t = 1, it is equivalent to the number of parameters and FLOPs of GhostNet.
Since t is greater than or equal to 1, the required parameters and FLOPs in GhostNeXt are
always less than or equal to those of GhostNet.

Table 1. Parameters and FLOPs in the proposed method.

Module Parameters (M) FLOPs (M)

M1
din

1 dmid
1 +(r−1)(dmid

1 k2)
t h′w′( din

1 dmid
1 +(r−1)(dmid

1 k2)
t )

M2
din

2 dmid
2

t + (r− 1)(dmid
2 k2) h′w′( din

2 dmid
2

t + (r− 1)(dmid
2 k2))

4. Experiments
4.1. Setup

We conducted experiments on large-scale datasets [12–16] with 224 × 224 pixels and
small-scale datasets [17,18]. The datasets we used for the experiments are summarized in
Table 2. We initially set the learning rate of the proposed method to 0.01 in all experiments
and scheduled it by the cosine learning rate. The batch size and weight decay were set to
32 and 0.0005, respectively. We trained all the models using stochastic gradient descent
(SGD) [33]. For data augmentation, we used random crop and random horizontal flip. The
first layer of GhostNeXt consists of a standard convolutional layer with 16 filters. Then,
the GhostNeXt blocks are stacked. The last global average pooling and convolutional
layer serve to transform into a 1280-dimensional feature vector for final classification. The
proposed architecture has a channel operation strategy (between E and R) for the three
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divided groups (shallow, mid, and deep parts). We set P and F to the same number of
parameters and FLOPs of GhostNet in all experiments. Furthermore, we set the hyper-
parameter r to 2 according to the experimental results of [9]. We regulate the width
multiplier that can vary the network width to make FLOPs similar to competitors in all
experiments. We represent GhostNeXt with width multiplier α as GhostNeXt (α×).

Table 2. Datasets used for experiments.

Dataset CIFAR-10
[17]

CIFAR-100
[17] STL-10 [18] CUBS [12] Stanford

Cars [13]
Flowers

[14]
WikiArt

[15] Sketch [16]

# Train 50,000 50,000 5000 5994 8144 2040 42,129 16,000
# Test 10,000 10,000 8000 5794 8041 6149 10,628 40,000

# Class 10 100 10 200 196 102 195 250
Image Size 32 × 32 32 × 32 96 × 96 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224

4.2. Small-Scale Datasets

We first compared GhostNeXt with other light-weight models [6,7,9] on small-scale
datasets. We used GhostNeXt (1.0×) as our base model with the module configuration E−
R− R representing the best trade-off between performance and computational complexity,
based on experimental results in Section 4.4. Note that the module configuration E− R− R
is constructed by the controller selecting E, R, and R channel operations for each part. In
Table 3, GhostNeXt outperforms other competitors with fewer parameters and FLOPs for
most computational complexity levels and tasks. It consumes about three times fewer
parameters than GhostNet. We can see that dynamic module configuration not only reduces
unnecessary computational costs inside the block but also improves the expressiveness
of the network. Figure 2 shows the results on CIFAR-10 under different parameters and
FLOPs. Regardless of the number of parameters or FLOPs, GhostNeXt outperforms all
other models. While GhostNet cannot maintain the performance for a small number of
parameters, GhostNeXt exhibits a better trade-off between the number of parameters and
performance than GhostNet. Furthermore, since GhostNet has a high parameter count
compared to its FLOPs, when comparing performance with models that have similar
FLOPs, it is observed that its performance is comparable to that of ShuffleNetV2. However,
when models are compared based on similar parameters, GhostNet performs worse than
ShuffleNetV2. In contrast, GhostNeXt shows the best trade-off among all models, indicating
its flexibility in handling resource constraints. These results suggest that GhostNeXt is a
promising alternative to the compared approaches for various applications that require
efficient and accurate image classification.

Figure 2. Performance under different parameter budgets and FLOPs on CIFAR-10.

We also conducted an experiment based on ResNet-56 to demonstrate the proposed
method as a plug-and-play component, whose results are shown in Table 4. Ours-ResNet-
56 denotes ResNet-56, in which a Ghost module replaces the convolutional layer with
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a dynamic module configuration. Furthermore, Ghost-ResNet-56 denotes Ours-ResNet-
56 without dynamic module configuration. Our proposed method provides comparable
performance while reducing the parameter consumption and FLOPs by about 2.5 times
and 1.5 times compared to Ghost ResNet-56. It can be employed for other convolutional
neural networks stacked by modules or blocks and effectively reduce the computation cost
of the network.

Table 3. Performance on the CIFAR-100, STL-10, and CIFAR-10 datasets.

Model CIFAR-100 STL-10 CIFAR-10
ACC
(%) Params (M) FLOPs (M) ACC (%) Params (M) FLOPs (M) ACC (%) Params (M) FLOPs (M)

VGG-16 74.4 14.8 314.0 75.4 14.7 - 93.6 14.7 313.0
ResNet-56 72.5 0.8 127.3 77.7 0.8 290.0 93.0 0.8 125.0

ResNeXt-29 (2 × 64d) 79.8 7.6 263.6 80.6 7.5 606.6 96.0 7.5 263.5
ResNeXt-29 (4 × 64d) 81.0 14.7 511.4 81.5 14.6 1160.0 96.2 14.6 511.3

MobileNetV2 (0.5×) 68.1 0.8 19.6 71.3 0.7 49.6 90.1 0.7 19.5
ShuffleNetV2 (0.5×) 69.2 0.4 11.9 71.4 0.3 26.6 90.9 0.3 11.8

GhostNet (0.5×) 71.6 1.4 11.8 70.1 1.3 25.2 91.6 1.3 11.7
Ours (0.7×) 71.5 0.5 10.3 71.2 0.4 22.5 91.8 0.4 10.1

MobileNetV2 (1.0×) 72.9 2.3 68.9 73.2 2.2 161.0 92.2 2.2 68.8
ShuffleNetV2 (1.0×) 73.7 1.3 45.5 74.7 1.2 102.3 93.3 1.2 45.4

GhostNet (1.0×) 75.3 4.0 40.6 71.6 3.9 87.7 93.0 3.9 40.5
Ours(1.5×) 75.4 1.4 39.1 75.7 1.3 87.0 94.1 1.3 38.9

MobileNetV2 (1.5×) 72.8 5.1 144.7 74.4 4.9 355.0 92.3 4.9 144.0
ShuffleNetV2 (1.5×) 75.7 2.5 93.9 75.5 2.4 211.0 94.0 2.4 93.8

GhostNet (1.5×) 77.2 7.9 86.4 74.4 7.7 187.7 94.3 7.7 86.3
Ours (2.2×) 76.2 2.6 79.8 77.1 2.5 178.1 94.2 2.5 79.6

Table 4. Performance of the compared methods on CIFAR-10.

Model ACC (%) Params (M) FLOPs (M)

ResNet-56 [4] 93.0 0.8 125.0
Ghost-ResNet-56 92.6 0.5 53.5
Ours-ResNet-56 92.5 0.2 38.0

4.3. Large-Scale Datasets

We also compared with other light-weight models [6,7,9] to demonstrate the superior-
ity of GhostNeXt for recognizing large-scale images, as described in Table 2. From CUBS to
Sketch, each is a fine-grained classification dataset consisting of birds, cars, flowers, paint-
ings from artists, and sketches. Since these require better preservation of the fine-grained
features of an image than a general coarse-grained classification, we considered that these
are appropriate for determining whether detailed feature information is well preserved.
Furthermore, we set it the same way, except that the batch size was increased to 64 in
the setting of small-scale datasets. We resized all images to 256 × 256 pixels and random
cropping to 224 × 224 pixels.

Table 5 shows the experimental results on the large-scale datasets. GhostNeXt outper-
forms other lightweight models, including GhostNet, with fewer parameters and FLOPs.
In particular, it consumes about three times fewer parameters than the competitor and has
the same number of parameters as MobileNetV2 but fewer FLOPs. The dynamic module
configuration for each block effectively reduces the parameter consumption of GhostNet
and preserves detailed feature information, resulting in performance improvements.
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Table 5. Performance of the compared methods on the large-scale datasets.

Dataset
MobileNetV2 (0.6×) ShuffleNetV2 (1.0×) GhostNet (1.0×) Ours (1.3×)

ACC
(%)

Params
(M)

FLOPs
(M)

ACC
(%)

Params
(M)

FLOPs
(M) ACC (%) Params

(M)
FLOPs

(M)
ACC
(%)

Params
(M)

FLOPs
(M)

CUBS [12] 53.6 1.2 164.0 53.1 1.5 149.0 55.9 4.1 150.0 58.2 1.2 136.0

Stanford Cars [13] 76.0 1.2 164.0 75.7 1.5 149.0 79.0 4.1 150.0 80.3 1.2 136.0

Flowers [14] 58.2 1.1 164.0 60.5 1.4 149.0 64.8 4.0 150.0 66.3 1.1 136.0

WikiArt [15] 64.2 1.2 164.0 59.4 1.5 149.0 62.0 4.1 150.0 65.0 1.2 136.0

Sketch [16] 72.8 1.3 164.0 71.7 1.5 149.0 71.6 4.2 150.0 72.3 1.3 136.0

4.4. Analysis

We conducted an experiment to demonstrate the performance under different module
configurations. The results of different strategies for selecting channel operations in each
part are shown in Table 6. As the same channel operation can be chosen when the channel
reduction ratio varies, we report the average accuracy, parameters, and FLOPs in the
table. The table shows that dynamic module configuration effectively reduces the number
of parameters and FLOPs compared to the existing module configuration. Most of the
network configurations constructed by dynamic module configuration outperform or
perform similarly to GhostNet. It can be observed from the table that selection in the deep
part (close to the classification head) has a key influence on the number of parameters
and FLOPs of the network. Moreover, continuous channel expansion can increase the
complexity of the network.

We also experimented with demonstrating that the dynamic module configuration
preserves the key feature of an image. We empirically prove this by providing a visualiza-
tion of the output features of six different blocks using Grad-CAM [19]. We make notable
observations from the results in Figure 3. GhostNet loses significant feature information. It
primarily focuses on the background in the early layers and the object in the deep layers.
In contrast, the proposed method can preserve meaningful information about object shapes
from the early layer. It continuously preserves the meaningful shape information of an
object throughout the network and thus gains additional performance improvement.

Figure 3. Visualization of features extracted from GhostNet and GhostNeXt on STL-10.

We conducted experiments to evaluate the expressiveness of the GhostNet and Ghost-
NeXt quantitatively. This evaluation is to see how the dynamic module configuration
affects the expressiveness of the network. We visualize the expressiveness represented by
the nuclear norm with respect to the consumption of FLOPs and parameters. We used
the validation set of CIFAR-10 to analyze the expressiveness of final features extracted
from the trained networks in Table 6. The result in Figure 4 shows that GhostNeXt’s selec-
tion of different channel operations for each part are similar to or more expressive than
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GhostNet. We especially observed that networks with expansion operations selected in the
deep part had higher expressiveness than those without the operations. Dynamic module
configuration encourages expanding the expressiveness of the network while consuming
fewer parameters and FLOPs than GhostNet. Furthermore, we analyzed the expressiveness
by block in the network used in the Grad-CAM experiment. As shown in Figure 5, the
expressiveness of GhostNeXt is higher than that of GhostNet in all blocks.

Figure 4. Visualization of the nuclear norm with respect to parameters and FLOPs on CIFAR-10.

Figure 5. Visualization of the nuclear norm of the blocks of GhostNet and GhostNeXt on STL-10.

Table 6. Results with respect to different module configurations on CIFAR-10.

Model ACC (%) Params (M) FLOPs (M)

E− E− E 93.0 3.9 40.5(GhostNet)

E− E− R 93.4 1.5 28.8

E− R− R 93.1 0.8 19.1

E− R− E 93.2 3.1 30.8

R− R− R 92.5 0.7 15.1

R− R− E 93.0 3.1 26.6

R− E− R 92.9 1.4 24.6

R− E− E 93.3 3.8 36.3

5. Conclusions

We have proposed GhostNeXt, a simple yet effective dynamic module configuration
approach. We argue that static module configuration results in unnecessary computational
costs that are unsuitable for the light-weight network and also causes the lack of expressive
power of the network. From this, we have introduced a controller that dynamically selects
channel operations inside the module. The controller discovers the channel reduction
ratio with a better trade-off between computational complexity and performance inside



Appl. Sci. 2023, 13, 3301 10 of 11

the block. It can flexibly design the network structure depending on the selected channel
reduction ratio. GhostNeXt is more efficient in terms of computational complexity than
existing light-weight models and outperforms them in several experiments.
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