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Abstract: In this paper, we propose new neural activity indices for the solution of the inverse problem
of localizing sources of cortical activity from electroencephalography (EEG) measurements. Such
indices are based on reduced-rank beamformers, specifically the generalized sidelobe canceler (GSC),
and with the purpose of suppressing the contribution of interfering sources and noise. Here, the
GSC is modified with an adaptive blocking matrix (ABM) to optimally estimate and later suppress
unwanted brain sources. With respect to the rank-reduction, this is achieved through the cross-
spectral metrics (CSM) as they give a sense of the affinity of the beamformers’ eigenstructure to the
orthogonal subspace of noise an interference. Based on that, two different neural indices are proposed
for the assessment of brain activation. Our realistic simulations show that a more consistent source
localization is achieved through the proposed indices in comparison to the use of the traditional full-
rank approach, specifically for brain sources embedded in high background activity that originates at
the brain cortex and thalamus. We also prove the applicability of our methods on the localization of
sources on the visual cortex produced by steady-state visual-evoked potentials.

Keywords: reduced-rank beamforming; cortical activity; neural indices

1. Introduction

Spatial filtering techniques (also known as beamformers) have been used in electroen-
cephalography (EEG) and magnetoencephalography (MEG) for signal reconstruction and
localization of sources of brain electrical activity. In most cases, the proposed methods are
based on fitting dipole sources within a region-of-interest (ROI) which is chosen based on
anatomical restrictions and assumptions about the relationships between brain sources [1].
For example, the linearly-constrained minimum variance beamformer (LCMV) introduced
in [2], has been proved to be effective in localizing sources of brain electrical activity from
surface recordings under the consideration that such sources have minimum correlation [3].

LCMV-based solutions and, to some extent, all source activity estimation methods
based on beamforming underperform if the EEG forward model becomes ill-conditioned
due to sources being closely positioned, possibly correlated, in presence of interference,
or with poorly estimated signal and noise covariance matrices [3–5]. In order to over-
come that, different reduced-rank estimators have been proposed, as they offer a gain in
performance compared to the LCMV-solutions for estimating dipole source signals using
EEG/MEG in ill-conditioned settings [6,7]. Most recently, in [8], a minimum-variance
pseudo-unbiased reduced-rank (MV-PURE) estimation framework is proposed, which
provides higher spatial resolution than LCMV-based solutions. However, the selection of
the level of the rank-reduction is still an issue related to these methods.

The general consensus is that not a single source localization method is capable of
providing high sensitivity and specificity at the same time, hence overlapping approaches
might particularly be of help in the identification of sources whose activity may be rele-
vant in specific scenarios [9]. In particular, we are interested in studying filters that are
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specialized in reducing the influence of interfering sources, as they may be useful in appli-
cations where it is important to have such interferences removed from the reconstructed
activity, e.g., in applications of directed connectivity measures such as partial directed
coherence [10]. Hence, previous efforts of our group and collaborators have focused on
reduced-rank beamformers that explicitly consider brain activity originating in regions
different to those of main interest, but measured as correlated with signals of interest by the
EEG sensor array (see [11] and references therein). The reduced-rank approach provides a
significant gain in performance in such settings, as it introduces a small amount of bias in
exchange for large savings in variance [12]. Our group have also previously proposed a
technique in which additional restrictions on the ROIs are considered based on the sparsity
of the neural activity [13], and such an approach is inspired in the rank-reduction provided
by the eigencanceler [7].

Adding up to the listed efforts, in this paper we present an approach based on the
structure of the generalized sidelobe canceler (GSC) [14]. The proposed source localization
methods are based on the optimization of neural indices that are designed to reduce the
contribution of the noise and interference components to the output of the GSC. This idea
was initially explored in [15] but in its quiescent (non-adaptive) form, which is known to be
LCMV-optimal only if the interference signals arrive from specific directions (see [16] for
details). Instead, we propose the use of a modified structure in which signal components
are adaptively selected from the noise subspace of the GSC in order to select the optimal
rank-reduction required for effective interference suppression [17].

2. Materials and Methods

In terms of the methods, here we introduce our measurement model based on EEG
data and we explain the basis under which our proposed brain activity indices are derived
from the structure of the GSC. Since much of our evaluation will be conducted in terms
to comparisons to other well known activity indices, we review them as well. Before we
present the methods in full detail, Table 1 provides a summary of variables and notations
used throughout this paper.

With respect to the materials, in this section we explain the way in which realistic EEG
data is simulated. Finally, we briefly describe the database that was used in order to show
the applicability of our proposed methods with real EEG data.

Table 1. Summary of variables and notations used in this paper (arranged in appearance order).

Variable/Notation Description

ql lth dipole source
L number of dipoles
Q matrix containing all dipole sources

ql,x(t), ql,y(t), ql,z(t) time-varying magnitudes of lth dipole’s Cartesian components
N total number of time samples
r vector representing a position (Cartesian coordinates)
Ω volume of the brain
rl lth dipole’s position
θ matrix containing all L dipole’s positions (parameter of interest)

ym(t) time-varying EEG measurement at the mth sensor
M total number of sensors
Yk matrix with all EEG measurements at the kth experiment (trial)
K total number of independent trials

Al(rl) lth lead field matrix associated to the lth dipole’s position
A(θ) matrix comprising the L lead field matrices as a function of θ
vm(t) measurement noise realization in the mth sensor at time t

σ2
V variance of measurement noise

Vk matrix with all measurement noise at the kth trial
Ẑ indicates a consistent estimate of Z
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Table 1. Cont.

Variable/Notation Description

W spatial filter (beamformer)
I identity matrix
0 matrix full of zeros
Q̂ indicates an approximation of Q
Q̃k approximated dipoles at the kth trial

A(r) lead field matrix as a function of r
W(r) beamformer as a function of r
WLCMV linearly constrained minimum variance (LCMV) beamformer

R data covariance matrix
P noise covariance matrix

ιLCMV(r) LCMV-based neural activity index (NAI) as a function of r
ιMAI(θ) multi-source activity index (MAI) as a function of θ
G(θ) reciprocal of the noise power as a function of θ
H(θ) reciprocal of the sources’ power as a function of θ
WGSC generalized sidelobe canceler (GSC)

Wh quiescent component of the GSC
W0 noise-plus-interference components of the GSC
C⊥ blocking matrix
P⊥A projection matrix of A
X0 undesired measurement components
RX0 autocorrelation matrix of the undesired signals

b Wiener filter that minimizes the mean-squares of X0
Q0 matrix containing all undesired signals
ιRR1

first proposed reduced-rank (RR) NAI a function of θ

W̃0 RR approximation of W0
λj eigenvalues of RX0
uj orthonormal eigenvectors of RX0
ιRR2

second proposed RR-NAI as a function of θ
RX0Qh cross-correlation of X0 and Qh

θ∆ matrix with all positions of interference sources
A(θ∆) lead field matrix as a function of θ∆

Q∆ matrix containing all interference dipole sources
σ2

∆ variance of biological noise
ηm signal-to-measurement-noise ratio
ηb signal-to-biological-noise ratio

θcand matrix containing candidate dipole’s positions
bl,k bias of the estimate of rl at the kth trial
SSk sum-of-squares of bl,k at the kth trial

bMAX,k maximum bias at the kth trial
SS average sum-of-squares

σbMAX
standard deviation of the maximum bias

P(W0)min minimum power of W0

2.1. Data Model

EEG data is assumed to be generated by cortical sources that can be approximated by
l = 1, 2, . . . , L equivalent current dipoles (ECDs), whose magnitude is given by
ql = [ql,x(t), ql,y(t), ql,z(t)]T (assuming a Cartesian coordinate system), for t = 1, 2, . . . , N
time samples, and located within the brain. The dipoles are allowed to change in time
but remain at the same position rl during the measurements period. Note that the ECD
approximation is valid in practice for evoked response and event-related experiments [18].
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Under those conditions, we can define a spatio-temporal representation of our EEG
measurements through a matrix Yk of size M×N at the kth trial, for the case of k = 1, 2, . . . , K
independent experiments (trials), such that

Yk =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

...
yM(1) yM(2) · · · yM(N)

, (1)

where ym(t) is the time-varying EEG signal at the mth sensor, for m = 1, 2, . . . , M. Based
on that, the following measurement model can be proposed:

Yk = A(θ)Q + Vk, (2)

where A(θ) = [A1(r1) · · · AL(rL)] is the M× 3L lead field matrix containing the individual
Al(rl) responses to each dipole source, θ = [r1, . . . , rL]

T represents the positions of the
sources (parameter to be estimated), Q = [q1, . . . , qL]

T is the 3L × N matrix of dipole
moments, and Vk is the M× N matrix of measurement noise given by

Vk =


v1(1) v1(2) · · · v1(N)
v2(1) v2(2) · · · v2(N)

...
...

...
vM(1) vM(2) · · · vM(N)

, (3)

where vm(t) is a zero mean Gaussian noise realization, uncorrelated in time and space,
and with variance σ2

V independent of time.
In (2), the lead field matrix A(θ) allows for the calculation of the distributions of

the electric potentials given a source configuration. The calculation of those distributions
implies solving Maxwell’s equations for the physical model of source, realistic head and
measurements, with the associated boundary values. There is no known closed-form
analytic solution to this forward problem, but here we consider the case of the boundary
element method (BEM) as it is known to converge to the true solution under certain
conditions when the tessellated head model is sufficiently refined [19].

2.2. Beamforming and Neural Indices

Based on the measurements in (2), a beamformer W can be proposed in such a way
that the dipole’s signals could be approximated from the measured data, i.e., Q̃k = WTYk.
Then, a consistent estimate of Q could be obtained as Q̂ = ∑K

k Q̃k/K for a sufficiently
large value of K. Furthermore, the beamformer is usually designed in order to satisfy the
following condition:

WT(r)A(r) =
{

I if r = rl
0 if r 6= rl

. (4)

In the context of brain signals, the conditions in (4) enforce that W is designed to pass
activity coming from a specific location of interest rl , while it attenuates signals coming
from other locations r, for r ∈ Ω, where Ω denotes the volume of the brain.

There are many ways to design a beamformer, but the LCMV approach to achieve
optimality is quite effective: to minimize the variance at the filter’s output while satisfying
the linear response constraint WT(rl)A(rl) = I. The solution to such minimization problem
may be obtained using Lagrange multipliers (which is the classical method for finding local
minima of a function subject to equality constraints) and completing the square, which
results in [20]

W(rl)LCMV =
[

AT(rl)R−1 A(rl)
]−1

AT(rl)R−1, (5)
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where R = E[YYT ] corresponds to the data’s covariance matrix. For the case of unknown
R, a consistent estimate of this covariance matrix (denoted by R̂) can be used.

Furthermore, high variability in the output of the LCMV beamformer as a function of
position can be considered indicative of significant neuronal activity [3]. Therefore, to find
a source through this approach requires an exhaustive search for the maximum value of
the neural activity index within Ω. This is written as

r̂l = max
r

tr
{[

AT
l (rl)R̂−1 A(rl)

]−1
}

tr
{[

AT
l (rl)P̂−1 A(rl)

]−1
} = max

r
ιLCMV(r), (6)

where ιLCMV(r), denotes the neural activity index, P̂ is an estimate of the noise covariance
matrix, and tr{·} indicates the trace. Note that (6) is equivalent to maximize the source’s
variance (normalized by the variance of the noise) as a function of r.

Since the LCMV filter can only be applied for one source at a time, then the multi-
source activity index (MAI) is proposed in [21] as an extension of ιLCMV(r) for the case of L
neural sources:

ιMAI(θ) = tr
{

G(θ)H(θ)−1
}
− 3L, (7)

where
G(θ) = AT(θ)P̂−1 A(θ), (8)

and
H(θ) = AT(θ)R̂−1 A(θ). (9)

Theoretically, maximizing (7) provides an unbiased estimation of θ for any signal-to-
noise ratio and any level of correlation between the sources. Yet, in practice, these factors
strongly affect the spatial resolution of ιMAI.

2.3. Generalized Sidelobe Canceler

A useful implementation of the LCMV beamformer, known as generalized sidelobe
canceler (GSC), can be obtained by dividing the data into two subspaces: the constraint
subspace, which corresponds to the signal components of interest, and an orthogonal sub-
space, in which we find the noise and interference components [20]. A representation of the
GSC’s structure is shown in Figure 1. The weights of the GSC are given by WGSC = Wh −W0.
There, Wh is the quiescent component of the beamformer and it is given by the solution
of (2) for the noiseless condition:

Wh = A
[

AT A
]−1

, (10)

hence Q̂h = WT
h Yk. Note that A = A(θ) is used from now on for convenience.

The lower path of the GSC in Figure 1 is comprised by a blocking matrix, C⊥, and W0
that corresponds to the projection of WGSC onto C⊥. Note that the output of the blocking
matrix cannot contain any components in the space of A, and the design on C⊥ is not unique.
One method for constructing it is to find P⊥A = I − A

[
AT A

]−1 AT , then orthonormalize P⊥A
and choose the first M− 3L columns of the orthonormalized matrix. Such way of designing
C⊥ was used in [15] in our first proposal for a specialized neural index based on the GSC.

After applying C⊥ to the measurements, we are left with an estimate of the undesired
signals (denoted by X0). Since W0 is the projection of WGSC onto C⊥, it can be expressed
as W0 = R−X0

CT
⊥R̂Wh where RX0 = E[X0XT

0 ] and (·)− indicates the generalized inverse
(see [16] for more details).
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Figure 1. Structure of the generalized sidelobe canceler.

2.4. Adaptive Blocking Matrix

Our proposed methods rely on the optimal identification and removal of background
brain activity and interference and, in the context of the GSC, it is the blocking matrix C⊥
the main responsible of that task. Its quiescent form comes with the disadvantage of not
providing an optimal value for the level of rank-reduction. In order to overcome such
difficulty, it has been proposed in [17] that such blocking can be optimally designed with
the use of an adaptive blocking matrix (ABM). Let us consider the following design for it:

C⊥ = I− bWh, (11)

where
b = R̂Wh

[
WT

h R̂Wh

]−
, (12)

such that the filters in (12) correspond to the Wiener-Hopf solution that minimize the
mean-squares of X0. Then, the ABM in (11) comes from writing X0 as a function of Yk.

2.5. Proposed Reduced-Rank Beamforming Scheme

In many practical beamforming applications, the available training data is insufficient
to obtain a full-rank estimate of the covariance matrix of interference and noise, additionally
the interference is typically of low rank. In [15], we proposed a reduced-rank beamforming
approach using the cross-spectral metrics (CSM), since they allow the dimensionality of
the filter to be reduced below the dimension of the noise eigenstructure without signifi-
cant loss of performance in the signal-to-interference-plus-noise ratio (SINR). In addition,
the crosspectral reduced-dimension filter can outperform the full-dimension one when the
noise covariance is unknown (see [22] and references therein). Under those conditions,
we re-evaluate the activity index first proposed in [15]:

ιRR1
(θ) = tr

{[
W̃T

0 R̂−1(W̃0 −Wh)−WT
h R̂−1W̃0

]−1
}

. (13)

This index applies a rank-reduction to W0 (indicated as W̃0) according to the
J = M−rank(C⊥) largest CSM as defined in [23]. Hence, W̃0 is given by

W̃0 =
J

∑
j=1

ujuT
j RX0Qh

λj
, (14)

where λj are the eigenvalues and uj are the orthonormal eigenvectors of RX0 with largest
CSM, and RX0Qh =E[X0QT

h ]. Note that ηRR1
differs from the one in [15] because we are now

considering C⊥ as an ABM whose rank will determine the rank-reduction of W0.
In (13), all the weights of WGSC are considered, yet the rank-reduction is only applied

to W0. For this reason, we introduce an alternative activity index that only considers the
weights of the orthogonal subspace of the noise and interference components:

ιRR2
(θ) = tr

{[
W̃T

0 R̂−1W̃0

]−1
}

. (15)
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Under those conditions, our proposed brain source localization based on the reduced-
rank activity indices ιRR1

and ιRR2
is given by

θ̂ = min
θ

ιRR(·)
(θ), for θ ∈ Ω. (16)

Note that in (13) and (15) a negative sign was omitted for convenience, hence the
minimization in (16). In addition, note that their structure is inspired in the one of (6) but
with the array response matrix A replaced by a reduced-rank version of the weights WGSC

and W0 in ιRR1
and ιRR2

, respectively. This approach is used to “force” a desired response in a
similar way as in array interpolation. There, a virtual or desired array response having all
properties necessary for posterior processing is used to provide the array with the necessary
characteristics to estimate the direction of correlated sources [24].

2.6. EEG Data

In order to prove the applicability of the previously proposed methods, next we
present two types of EEG data used in our numerical examples: simulated and real EEG
data. In the examples with simulated data, the aim is to evaluate the performance of (7)
and compare it to those of (13) and (15) on the inverse problem of estimating the position
of L = 3 brain sources located on the occipital lobe, specifically in the visual cortex. For the
examples with real data, their purpose is to show the applicability of the proposed methods
to resolve the topography of cortical activation produced by visual flicker stimulation.

2.6.1. Simulated Data

Realistic EEG measurements were simulated using the four-layers geometrical model
of the head shown in Figure 2. The measurements were obtained for an array of M = 90 sen-
sors. Based on that, we generated K = 100 measurements with independent biological
noise (i.e., background activity coming from other regions in the brain) and measurement
noise realizations, such that (2) became extended to

Yk = A(θ)Q + A(θ∆)Q∆ + Vk, for k = 1, 2, . . . , K, (17)

where θ∆ and Q∆ are the positions and dipole moments, respectively, of five hundred
cortical and one hundred thalamic sources simulating the biological noise. The number
of cortical and thalamic sources were chosen to approximate realistic spatially correlated
noise and to provide enough power to simulate a desired range of noise conditions (for a
discussion on random dipole modeling of spontaneous brain activity, see [25,26]). For both
cortical and thalamic sources, their ‖Q∆‖ were modeled as independent Gaussian random
variables with zero mean and variance σ2

∆. The orientation of each Q∆ remained always
normal to surface of the triangle in which it was located in the tessellated thalamus.
Using (17), and by adjusting the corresponding variances σ2

V and σ2
∆, we created different

scenarios based on the following ratios (in decibels):

• signal-to-measurement-noise ratio, given by

ηm = 20 log
‖A(θ)Q‖F

‖Vk‖F

, (18)

where ‖·‖F denotes the Frobenius norm;
• signal-to-biological-noise ratio, given by

ηb = 20 log
‖A(θ)Q‖F

‖A(θ∆)Q∆‖F

. (19)

Hence, we simulated different sets of measurements with a combination of
ηm = 0, 5, 10 dB, and ηb = −5, 0, 5, 10 dB (average values over K = 100 independent
noise realizations).
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(a) (b)

Figure 2. Geometrical model with four layers (scalp, skull, brain and thalami). (a) Frontal. (b) Sagittal.

Under those conditions, each trial k was created through (17) to have specific (ηm, ηb)
while keeping θ and Q unchanged. In all data, we considered the case of L = 3 sources
located in the occipital lobe and in close proximity to each other in order to generate
spatially correlated measurements. For Q, their temporal evolution was chosen to model
realistic evoked responses. Furthermore, two out of the three dipoles were independent
between each other (they are shown in Figure 3). The third dipole was constructed as a
linear combination of the other two, i.e.,

q3 =

 0.4 0.1
0.2 0.7
0.5 0.9

[ q1
q2

]
. (20)
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Figure 3. Temporal evolution of dipoles q1 and q2. Their Cartesian components x, y, and z are shown
in red, blue, and green, respectively.

This approach was taken in order to further enforce a situation of source correlation
in which traditional beamformers are known to fail. Finally, A(θ) and A(θ∆) in (17) were
calculated by using the comprehensive BEM toolbox that was proposed in [11].

Once we solved the forward problem of data generation, we proceeded with the
solution of the inverse problem of estimating θ. For that, all neural indices were computed
only within a region-of-interest (ROI) comprising the visual cortex. Therefore, the ROI
contained 517 candidate positions out of the 8633 total positions that the tessellated model
of the brain cortex had. Next, the pool of candidate positions was reduced by choosing
those for which their ιLCMV(r) were above the 70-percentile. That process left out all but
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150 candidate source positions. Figure 4 shows an example of such ROI including the
sources’ positions (θ) we used in our simulations.

Figure 4. Tessellated model of the brain (top view). Red points indicate the L = 3 real sources’
positions. Other candidate positions that are part of the ROI are shown as blue points.

2.6.2. Real EEG Data

In order to prove the applicability of our proposed methods, we performed a dipole
source localization using real EEG data corresponding to the activation produced by steady-
state visual-evoked potentials (SSVEP). The data we used is freely available in [27].

The stimulus of the experiment was a violet box, presented on the center of the monitor,
flickering in five different frequencies (6.66, 7.50, 8.57, 10.00 and 12.00 Hz). The experimental
setup is shown in Figure 5. The experiment was divided into five identical sessions,
and each one was initiated with 100 s of resting period where the participant could look at
the black screen of the monitor without being involved in any activity. A 100 s adaptation
period followed, which consisted in the presentation of the five frequencies in a random
way. The following 30 s interval was left for the subject to rest and be prepared for the next
trial, which consisted in the presentation of one frequency for three times before another
30 s break. Every frequency is presented sequentially for three times and with a resting
period of 30 s between each trial. Each session eventually includes 23 trials, with eight of
them being part of the adaptation [28].

Figure 5. Experimental setup for the acquisition of EEG SSVEP data. Image taken from https://youtu.
be/8lGBVvCX5d8 (accessed on 2 February 2023).

https://youtu.be/8lGBVvCX5d8
https://youtu.be/8lGBVvCX5d8


Appl. Sci. 2023, 13, 3241 10 of 17

3. Results

This section shows the results of our numerical examples using the data described in
Sections 2.6.1 and 2.6.2, respectively.

3.1. Evaluation of Performance under Different ηb and ηm Conditions

Based on the realistically simulated EEG data, the estimation process was performed
for all the possible combinations of three candidate positions from our pool (up to 551,300
in our case). Hence, the indices in (7), (13) and (15) were computed for θcand = [rc1, rc2, rc3]

T ,
with {rc1, rc2, rc3} ∈ ROI. The estimated parameter θ̂k for MAI corresponded to the value of
θcand for which (7) was maximum, while the estimated parameter for our proposed indices
where those according to (16).

Next, we used the following metrics to evaluate the performance of all the estimations:

• the individual bias of the estimates, given by bl,k = ||rl − r̂l,k||2;
• their sum-of-squares: SSk = ∑3

l=1 b2
l,k;

• the maximum bias: bMAX,k = maxl bl,k.

The results are finally presented for different combinations of ηb and ηm as an average
over the K = 100 trials. Hence, we compared the average sum-of-squares (denoted
as SS), and the standard deviation of the maximum bias (denoted as σbMAX

). The first
provides us with an overall view of estimation errors as it adds up the squared-bias in
the estimation of the three sources, while the second give us the worst case scenario,
i.e., the largest variability in the estimation of each of the sources. These results are shown
in Figures 6 and 7, respectively. Note that both SS and σbMAX

are dimensionless as we
normalized them against the mean node distance of tessellated model of the brain cortex,
as the minimum spatial resolution that we could achieve in our simulations was constrained
by the size of the triangles in our mesh. Additionally, note that in those figures we have
included (only for comparison purposes) the result of a source localization based only on
minimizing the power of Q0 as a function of θ, which is denoted as P(W0)min.

0
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15
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(a)

0

5

10

15
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(b)

0
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(c)

0
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(d)

Figure 6. Results of evaluating SS for different noise conditions. Bars correspond to P(W0)min

(yellow), ιMAI (blue), ιRR1 (red), and ιRR2 (green). (a) Noise conditions: ηb = 10 dB, ηm = 10 dB; (b) noise
conditions: ηb = 5 dB, ηm = 5 dB; (c) noise conditions: ηb = 0 dB, ηm = 0 dB; (d) noise conditions:
ηb = −5 dB, ηm = 0 dB.
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Figure 7. Results of evaluating σbmax for the same noise conditions as in Figure 6. Bars correspond to
P(W0)min (yellow), ιMAI (blue), ιRR1 (red), and ιRR2 (green). (a) Noise conditions: ηb = 10 dB, ηm = 10 dB;
(b) noise conditions: ηb = 5 dB, ηm = 5 dB; (c) noise conditions: ηb = 0 dB, ηm = 0 dB; (d) noise
conditions: ηb = −5 dB, ηm = 0 dB.

The results in Figure 6 show that SS ≈ 10 in the case of ιRR2 for all (ηm, ηb) pairs
we evaluated. Furthermore, we noticed in our experiments that the most common case
was that of two dipoles correctly estimated while the third was off the true value of rl ,
hence accounting for most of the bias. Under that consideration, the average error in the
estimation is as large as 3.16 times the mean-node distance of our mesh modeling the brain
for ιRR2 . As expected, ιMAI keeps a lower error only in high ηb (Figure 6a,b), but the spatially
correlated biological noise rapidly degrades its performance as ηb gets lower. The standard
deviation of the worst-case scenario is shown in Figure 7. There, σbmax

≈ 0.2 times the
mean-node distance for ιRR2 . In the case of ιMAI, this value is only lower than the one
of our proposed index for the best conditions (ηm, ηb) = (10 dB, 10 dB). For all other
conditions, σbmax

increases up to 0.525 times the mean-node distance. Clearly, ιRR2 provides
a biased solution with low variability for all noise conditions, regardless of time and spatial
correlation between the sources.

3.2. Applicability of ι RR1 and ιRR2 in Dipole Source Localization Using Real EEG Data

We implemented the dipole source localization process using (13) and (15) in the
data of two different subjects. For the purpose of this test, we consider the search of
L = 3 sources as in the case of Section 2.6.1. Since the trials were presented three times
for the five selected frequencies, we were left with a 15 s period of stimulation for each
frequency which we divided into shorter processing windows of 1 s. Since the data
provided no anatomical information of the subjects, we approximated them by using the
same head model as in Section 2.6.1. This process required the sensor locations to be
adjusted (morphed) to our head model. Finally we evaluated our neural indices ιRR1 and
ιRR2 in the ROI previously defined.

The results of our source localization are shown in Figures 8 and 9 in the way of
activation maps over the cortex. There, the lower values of ιRR1 and ιRR2 are shown in darker
colors. Even though a three-dipole search was considered, the maps represent ιRR1(θcand) and
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ιRR2(θcand), i.e., the maps show the average activity index over 15 processing windows for
each candidate position in the ROI. Since a single rcl can be part of multiple combinations
of θcand, those index values were also accounted and averaged. Under those conditions, our
results show very distinctive activation over primary visual cortex V1 (right for Subject 5
and left for Subject 10) in the case of ιRR1 , while activation in secondary visual cortex V2
are more noticeable in the case of ιRR2 and in the same hemispheres as in the case of the
activation of V1 for both subjects. Given the results of Section 3.1 in which ιRR2 showed less
bias and variability than ιRR1 , we believe that activation of V2 could be unnoticeable for ιRR1

due to estimation errors.

(a)

(b)

Figure 8. Results of the source localization process through our reduced-rank beamforming approach
in EEG SSVEP data of Subject 5 in [27] and for a specific frequency. Minimum values of ιRR(·) (shown
in darker colors) correspond to zones of main brain activation. (a) ιRR1

(b) ιRR2 .
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(a)

(b)

Figure 9. Results of the source localization process through our reduced-rank beamforming approach
in EEG SSVEP data of Subject 10 in [27] and for a specific frequency. Minimum values of ιRR(·) (shown
in darker colors) correspond to zones of main brain activation. (a) ιRR1

(b) ιRR2 .

4. Discussion

It is known that LCMV-based solutions may perform sufficiently well when solving
the neuroelectric inverse problem of estimating the location of brain sources only if certain
conditions are satisfied: zero or low correlations between the sources, high enough signal-
to-noise ratios (SNRs), and sufficiently large spatial separation of sources [8]. However,
the LCMV beamformer tends to suppress source-power estimates from sources that have
highly correlated time-courses, given that it assumes that source time-courses from different
generators are uncorrelated, which cannot always be attained [3,29].
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In beamforming applications, the available training data is insufficient to obtain a
full-rank estimate of the interference-and-noise covariance matrix mainly because the
interference is typically of low rank, therefore minimum-variance filtering methods in
low-rank interference have attracted considerable attention [16]. In [8], a reduced-rank
version of ιMAI was presented, in which spatial resolution compared with its full-rank
version was improved. However, the selection of the optimal level of rank-reduction is still
an issue that requires to be solved. Therefore, in this paper we centered our comparisons
around the original neural index proposed in [21], and we avoided directly entering in the
problem of optimal rank selection for our own indices. Instead, we trusted the optimality
conditions provided by the solution of the Wiener-Hopf for the calculation of the ABM. Yet,
we recognize the issue requires further investigation, but it is out of the scope of this paper.

With respect to our results using simulated data, they indicate that our proposed
neural indices are not greatly affected by an increase in ηb and ηm, while the performance of
MAI degrades with the increase of noise. The consistency in the response of our proposed
beamformers is due to their specific design, in which optimality is achieved in the estimation
(and later cancellation) of the noise and interference components. Such affinity to the
orthogonal space in the GSC of those undesired components is achieved both by the ABS
and the rank-reduction based on the CSM. An strategy in which no rank-reduction is
applied turns to be inefficient, as the results with P(W0)min show.

For the case of real data, we used brain sources related to SSVEP. Our results under
those conditions show that our methods are capable of localizing brain sources in the
visual cortices V1 and V2, which are expected for the SSVEP. In [30], by using functional
magnetic resonance imaging (fMRI) and dipole modeling, they were able to analyze the
neural generators of the SSVEP. They found that the primarily origin for these stimulus
came from two concurrently active dipolar sources that were situated in medial and lateral
occipital cortex, providing strong evidence that phase-locked neural activity in area V1 is a
major contributor to the pattern-reversal SSVEP and in some of the single subjects fMRI
also showed activity in area V2, but due to their close proximity these were included in the
V1 sources. Our results are in agreement with those findings, as in both subjects we were
able to map brain activation in V1 and V2. Nevertheless, our results have the uncertainty
produced by fitting a head model that did not corresponded to the subjects. Still, our results
make sense in term of the physiological event, even when they were estimated as average
responses over only 15 processing windows.

Although the mechanism of SSVEP is not quite clear, their generation via the visual
pathway starts when the light projects on the rod cells or cone cells in the retina generating
electronic signals then this signals are transferred to the ganglion cells to be pre-processed
and transferred to the V1. There, the response of the neurons represents the integrated
signals in an area or even a whole visual field. Finally, the signals integrated in the V1 are
transferred to other areas in the brain for further processing. All the previous character-
ization is important because the neural networks associated to SSVEP can overlap with
parts of the visual recognition network. Hence, some researchers believe that combining
SSVEP extraction method with the superposition method is a valid way for elucidating
the process of a recognition task over a long duration of time [31]. It is here where our
proposed methods have the potential of helping, as our results show, due to the capacity of
beamforming techniques to focalize the search in specific areas of interest. This is perhaps
not fully demonstrated in our results given that we depended on a public database and we
had limited access to information related to the frequencies of stimulation. For that reason,
future work in this area will include a more exhaustive investigation with SSVEP data we
plan to acquire ourselves.

One important use for the SSVEP is to build an SSVEP-based brain-computer interface
(BCI) which can measure brain activity via invasive or non-invasive means, relying on
different mental strategies that each produce brain activity patterns that can be detected by
a pattern recognition system [32]. SSVEP-based BCIs utilize different frequency flickers
to represent different tasks, then a subject can complete a task by simply staring at the
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flicker that corresponds to that work. Therefore, the intention of the subject can be decoded
by recognizing the SSVEP frequency in the evoked EEG [31]. In that sense, our results
show that the proposed methods can be helpful with this task, as differences in the brain
activation can be related to different frequencies, as it can be seen in Figures 8 and 9.

5. Conclusions

We proposed two neural indices for the problem of dipole source localization. These
indices were designed specifically to suppress interference that are commonly present
in EEG data and are often considered as “background” activation. Our approach comes
from a combination of two different processing elements that are implemented under the
structure of the GSC in order to improve the estimation and later cancellation of noise
and interference, regardless of the SINR. Those elements are (i) an ABM that achieves an
optimal estimation of unwanted signals and defines the rank-reduction that (ii) a CSM-
based approach will apply to the filter to improve the affinity to the noise subspace. We
showed the applicability of our methods for dipole source localization using real data in
which LCMV-based methods could not be used given the ill-conditioned nature of the
problem. We also showed that our beamformers are capable of estimating real sources
from SSVEP.

There are many factors that can affect the accuracy of the EEG source localization
methods, such as the effects of the head cavities, variations in tissue conductivities, or errors
in the position of the electrodes. Hence, in addition to improve the localization methods
with techniques such as those we proposed here, other strategies need to be placed in
practice to reduce the adverse effects previously mentioned. Even beamforming techniques
such as the ones proposed here suffer a fundamental limitation: their performance directly
depends on the number of sensing elements (aperture), independently of the number of
time samples or the signal-to-noise ratio. Again, it is only through overlapping approaches
that non-invasive localization methods of the sources in the brain can be used to diagnose
pathological, physiological, mental, and functional abnormalities such as the study of
localized epilepsy, evoked-related-potentials or attention deficit/hyperactivity disorder [1].
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