friried applied
e sciences

Article

A Semi-Supervised Learning Framework for Machining Feature
Recognition on Small Labeled Sample

Hongjin Wu 10, Ruoshan Lei (¥, Pei Huang ? and Yibing Peng 1'*

check for
updates

Citation: Wu, H.; Lei, R.; Huang, P,;
Peng, Y. A Semi-Supervised Learning
Framework for Machining Feature
Recognition on Small Labeled
Sample. Appl. Sci. 2023, 13, 3181.
https:/ /doi.org/10.3390/app13053181

Academic Editor: José Salvador

Sanchez Garreta

Received: 1 February 2023
Revised: 28 February 2023
Accepted: 28 February 2023
Published: 1 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China

2 Wuhan E-Works Technology Ltd. Co., Wuhan 430070, China

Correspondence: ybpeng@hust.edu.cn

Abstract: Automated machining feature recognition is an essential component linking computer-
aided design (CAD) and computer-aided process planning (CAPP). Deep learning (DL) has recently
emerged as a promising method to improve machining feature recognition. However, training
DL-based recognition models typically require annotating large amounts of data, which is time-
consuming and labor-intensive for researchers. Additionally, DL models struggle to achieve satisfac-
tory results when presented with small labeled datasets. Furthermore, existing DL-based approaches
require significant memory and processing time, thus hindering their real-world application. To ad-
dress these challenges, this paper presents a semi-supervised learning framework that leverages both
labeled and unlabeled data to learn meaningful visual representations. Specifically, self-supervised
learning is utilized to extract prior knowledge from a large dataset without annotations, which is then
transferred to improve downstream feature recognition tasks. Furthermore, we apply lightweight
network techniques to two established feature recognizers, FeatureNet and MsvNet, to develop
reduced-memory, computationally efficient models termed FeatureNetLite and MsvNetLite, respec-
tively. To validate the effectiveness of the proposed approaches, we conducted comparative studies on
the FeatureNet dataset. With only one training sample per class, MsvNetLite outperformed MsvNet
by about 19%, whereas FeatureNetLite outperformed FeatureNet by approximately 20% in machining
feature classification. On a common X86 CPU, MsvNetLite gained 6.68 x improvement in speed
over MsvNet, and FeatureNetLite was 2.49 x faster than FeatureNet. The proposed semi-supervised
learning framework shows a significant improvement in machining feature recognition on small
labeled data while achieving the optimal balance between recognition accuracy and inference speed
compared to other DL-based approaches.

Keywords: machining feature recognition; semi-supervised learning; small labeled sample learning;
computer aided process planning (CAPP)

1. Introduction

In the vision of Industry 4.0, the manufacturing industry is undergoing an unprece-
dented revolution. Traditional patterns are progressively turning to the new paradigm
of intelligent automation. As a connection between computer aided design (CAD) and
computer aided manufacturing (CAM), computer aided process planning (CAPP) plays
a critical role in the future of intelligent manufacturing and is expected to be capable of
self-perception, self-decision, and self-execution. Self-perception, which is a prerequisite for
subsequent decision-making, has the ability to extract high-level machining semantics (e.g.,
chamfer, slot, step) from low-level geometry and topology representations (e.g., vertex,
edge, face) in CAD models. This is also known as automatic feature recognition.

Feature recognition techniques have been developed for nearly four decades. Dur-
ing this time, numerous impressive methods with engineering value have been proposed [1].
Currently, there are two types of automatic feature recognition approaches: rule-based and

Appl. Sci. 2023, 13, 3181. https:/ /doi.org/10.3390/app13053181

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13053181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5604-2512
https://orcid.org/0000-0002-2416-7652
https://orcid.org/0000-0002-2464-4199
https://doi.org/10.3390/app13053181
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13053181?type=check_update&version=2

Appl. Sci. 2023,13, 3181

2 of 27

learning-based. In the last 40 years, rule-based approaches [2], such as hint-based [3,4],
graph-based [5-7], volume decomposition [8-10], hybrid-based [11,12], expert systems [13],
and others have been thoroughly investigated. Although the programming implementa-
tion and application of the rule-based approach are well-developed, there are still many
issues to be resolved in terms of generalization and automation [1,14,15]. One limitation of
rule-based feature recognition is that it relies on expert-defined machining feature matching
rules, making it ineffective in complex situations and undefined rules. The other is the
learning-based approach, which enables the model to learn complex transformations from
low-level geometric information to high-level machining features like experts [16,17]. Since
the 1990s, learning-based approaches, such as artificial neural networks (ANNSs), have
been widely utilized in the field of feature recognition [1]. Theoretically, an ANN-based
approach is able to recognize user-defined, incomplete, and intersecting features, but its
effectiveness is limited by the scale of dataset, the size of network, and the data structure
fed into network. With the rapid development of artificial intelligence (Al), especially
deep learning (DL), many recent feature recognition studies are attempting to apply it
to achieve more autonomous and flexible recognition [14,18,19]. These methods address
some shortcomings of early neural network research, but some issues still remain, such
as the need for a large amount of labeled data (machining-feature-dataset [14] has 144
K CAD models) or large neural network architecture (MsvNet [20] has over 128.86 M
parameters and 7.46 G FLOPs). In real-world applications, it is challenging to collect and
annotate large amounts of data, which requires significant time and resources to deploy
neural networks in computer-aided process planning (CAPP) systems. In addition, large
neural networks consume a lot of memory and processing time, making them unsuitable
for ordinary computers and users.

Motivated by recent advances in self-supervised learning and semi-supervised learn-
ing for image data [21], this paper proposes a semi-supervised machining feature recog-
nition framework, aiming at efficiently learning to recognize machining features with
small labeled samples. Additionally, inspired by some novel mobile convolution neural
networks (CNNSs), this paper presents two CPU-optimized lightweight CNNs called Fea-
tureNetLite and MsvNetLite, which are the lite versions of well-known FeatureNet [14] and
MsvNet [20] for reducing memory usage and inference time while keeping high accuracy.

The rest of this paper is organized as follows: Section 2 presents a review of recent
related work. Section 3 describes the proposed methodology in detail. Section 4 shows the
effectiveness and efficiency of the proposed methods. Section 5 presents a conclusion for
this paper and discusses some future work.

2. Related Work

The primary task of CAPP is feature recognition, which is recognizing high-level
machining feature semantics (such as slots, holes, and steps) from the geometric information
in CAD models. Feature recognition is the prerequisite of process planning. Since the 1980s,
researchers have been studying automatic feature recognition. There are two approaches to
implementing such a system that have been explored: rule-based and learning-based.

2.1. Rule-Based Approach

The main idea of the rule-based approach is to search for matched features according
to rules that are predefined by experts. Due to its interpretability and reliability, a variety
of rule-based approaches have been proposed and widely used. The work in [13] designed
a feature recognition based on an expert system, which recognized features using the rule-
defined boundary pattern. The authors in [5] proposed a graph-based feature recognition
method. This method constructs the attribute adjacency graph (AAG), which represents the
relationships and the attributes between faces in a CAD model, and then searches for match-
ing sub-graphs in AAG to recognize features. Naturally, some researchers have proposed
improved versions of AAG, such as extended attribute adjacency graph (EAAG) [11,22],
generalized attribute adjacency graph (GAAG) [23], and holistic attribute adjacency graph

Appl. Sci. 2023,13, 3181

3 0f27

(HAAG) [7]. The graph-based feature recognition is mainly based on predefined sub-graph
matching rules or heuristic sub-graph matching algorithms. Another rule-based approach
is volume decomposition, which decomposes the removal volume of a CAD model into a se-
ries of intermediate volumes first, and then utilizes heuristic rules to match and reconstruct
machining features according to these intermediates [1]. Based on the process of decom-
posing volumes, volume decomposition approaches can be categorized into convex-hull
decomposition [24,25] and cell-based decomposition [9,10,26,27]. In addition, a hint-based
approach [3,4,28] is also a promising rule-based feature recognition solution, which is a
two-step approach for recognition. First, potential hints are extracted from the CAD model
according to heuristic rules. Then, geometric reasoning and matching procedure are used
to recognize the machining features from the extracted hints.

All of the aforementioned approaches have their advantages and shortcomings. As a
result, some researchers are attempting to combine different rule-based approaches into a
hybrid system for overcoming the limitations of existing rule-based recognition approaches.
For example, Ref. [11] proposed an automatic feature recognition approach combing graph-
based and hint-based approaches.The work in [29] developed a similar graph-hint hybrid
recognition system. The authors of [12] constructed a feature recognition solution based
on convex-hull decomposition and graph-based approaches. The work in [30] presented
a hybrid machining feature recognizer combining the advantages of graph-based and
hint-based approaches.

In general, despite the fact that rule-based recognition studies have been ongoing for
nearly 40 years, there are still many issues to be solved in terms of their application scope
and universality: (1) Rule-based approaches require a large number of human-defined
rules, which are time-consuming and inflexible [19]. (2) When faced with undefined
rules, rule-based approaches will fail to recognize features, indicating a lack of robustness
and generalizability [31]. (3) Existing rule-based approaches have difficulty recognizing
intersecting and incomplete features, as the geometry and topology of the features are
destroyed or changed [32].

2.2. ANN-Based Approach

As noted in the introduction, another branch of feature recognition is the learning-
based approach. The artificial neural network (ANN) is one of the most common and
well-known learning-based approaches. The authors of [16] first introduced neural network
technology into 3D feature recognition. They proposed a CAD data descriptor and a multi-
layer perceptron feature recognizer with the data descriptor as input. The work of [33]
introduced a 3D feature recognition system based on a two-hierarchy Hopfield network.
In addition, Ref. [34] presented an ANN-based approach based on adaptive resonance
theory (ART). First, a boundary representation (B-rep) solid model was converted to
modified face score vectors, which depict the topological relationships between faces.
Then, the vectors were fed into a self-organizing neural network to identify the category
of machining feature. The authors of [35] proposed a hybrid feature recognition system
that combined the characteristics of a neural network and a genetic algorithm, aiming at
reducing the computational complexity of network. The most significant characteristic of
the learning-based approach is that it can learn the patterns of machining features from the
data, instead of relying on a human-designed algorithm [14]. However, early ANN-based
approaches failed to solve the intersection features because they were limited by the scale
of dataset, computer performance, and network architecture. Furthermore, these early
studies attempted to convert CAD models to a specific format, such as face score vector,
which resulted in the loss of geometric and topological information [19].

2.3. DNN-Based Approach

In recent years, with the successful advancement of machine learning techniques,
particularly the deep neural network (DNN), a new paradigm has emerged for many
industrial-related studies (e.g., process planning [36], manufacturing cost estimation [15],

Appl. Sci. 2023,13, 3181

4 of 27

and parts classification [37]). Due to the growing popularity of DNN, many researchers are
attempting to apply it to machining feature recognition. For example, Ref. [14] proposed a
3D convolutional neural network (3D CNN) called FeatureNet for solving feature recog-
nition. This approach has two stages: an unsupervised watershed algorithm segments
isolated features from a voxelized CAD model, and then FeatureNet is used to recognize
the category of the isolated feature. The authors of [38] also proposed a 3D CNN that is
capable of identifying both the type of machining feature and the manufacturing process
(milling or cutting). Ref. [39] proposed a YOLO-based machining feature detection system
called MFR-Net, which can recognize shapes, dimensions, tolerances, symbols, and texts
of machining features. However, this method detects features from 2D images, losing the
geometric and topological information of 3D models. Another similar two-stage approach
called MsvNet [20] was proposed, which combined the Felzenszwalb segmentation algo-
rithm and multiple sectional view CNN. Following the same idea, Ref. [40] developed an
AAG-based and 3D CNN-based hybrid feature recognition system, which integrated a
brand-new DNN technique and the traditional graph-based approach. Inspired by single-
stage object detection algorithms, Ref. [32] proposed an end-to-end recognizer SsdNet,
and its upgraded version RDetNet addressed highly interacting machining feature recogni-
tion [18]. Additionally, some researchers are concentrating on CAD representation that is
suitable for DNN. Ref. [41] presented a 3D descriptor called improved dexel representation
(IDR), which was designed for feeding CAD holistic information to CNN.

However, it should be pointed out that DNN is a deeper and more modern artificial
neural network (ANN) that uses more training data. Some DL-based feature recognition
approaches require a large number of labeled samples for training (e.g., the FeatureNet
dataset [14] has 144K labeled examples of machining features, the MFCAD dataset [42] has
more than 15K, and Zhang et al. proposed a point cloud machining feature dataset [19]
that has 55K labeled samples). In practice, collecting and annotating large amounts of data
is a time-consuming burden for researchers and developers that has become a bottleneck of
deep learning applications in machining feature recognition. In addition, the current feature
recognition DL models have a large scale of parameters and computational complexity
(FeatureNet has 33.94 M parameters and 12.51 G FLOPs, MsvNet has 128.86 M parameters
and 7.46 G FLOPs), which places high demands on computer performance. This reason
further limits its application in CAPP.

As aforementioned, the further development of deep learning in the field of machin-
ing feature recognition has been restricted by the requirement of large labeled data and
computing resources. The paper proposes two main contributions to address the problems
encountered in small sample recognition:

* We propose a semi-supervised learning framework to improve recognition on small
samples. MsvNetLite and FeatureNetLite with semi-supervised learning surpassed
their counterparts (MsvNet and FeatureNet) in machining feature classification, demon-
strating the effectiveness of the proposed approaches.

* We use lightweight compressing techniques to reduce nearly 99% parameters and 98%
computational complexity. Both MsvNetLite and FeatureNetLite achieved significant
reductions in parameters and FLOPs compared to their counterparts, proving the
efficiency of the proposed approaches in model scale and inference speed.

3. Methodology

Section 3.1 introduces a simple and effective semi-supervised machining feature recog-
nition framework that can learn discriminative visual representation from both labeled and
unlabeled data. The framework comprises three stages, namely self-supervised learning,
fine-tuning, and inference. Section 3.1 introduces lightweight techniques to address this
problem, with the goal of maintaining high recognition accuracy while reducing inference
latency and memory usage. The subsection then presents two lightweight versions of
existing networks, namely FeatureNetLite and MsvNetLite.

Appl. Sci. 2023, 13, 3181

5of 27

3.1. Semi-Supervised Machining Feature Recognition Framework

Semi-supervised learning, which is able to perform certain learning tasks from both
labeled and unlabeled data, has made significant progress in many machine learning
fields in recent years [43,44]. Motivated by the latest progress in self-supervised and
semi-supervised representation learning in computer vision tasks [21,44-47], a simple
and effective semi-supervised machining feature recognition framework is proposed to
learn discriminative visual representation from a large amount of unlabeled data and
smaller sets of labeled data. The proposed framework is concise and effective. There are
only three stages: self-supervised learning, fine-tuning, and inference. In the first stage,
the encoder network learns the general visual representation from large unlabeled data
through self-supervised learning. In the second stage, the backbone of the encoder network
is transferred to the downstream machining feature classification task, then the backbone
and the classifier are fine-tuned with a few labeled data. In the final stage, the entire
network’s parameters are frozen and applied to recognize machining feature. The pipeline
of the proposed semi-supervised learning framework is depicted in Figure 1.

Self-supervised learning stage Fine-tuning stage
(@) -
- W N
g g 0 g: "Through hole" |

large unlabeled data few labeled data
\ v weight — — —
h transfer
e CRE s S

ght
: DR :
2

Predictor

o o) = o = o o) —) — —

Backbone

Classifier

Classifier

|
|
|
|
|
(

Similarity Classification

loss

loss

Figure 1. The pipeline of the proposed semi-supervised machining feature recognition framework.

3.1.1. Self-Supervised Learning Stage

In this paper, a self-supervised learning method, similar to SimSiam [21], is proposed
for machining feature recognition. SimSiam is a self-supervised learning framework that
can learn meaningful visual representation without requiring a complex architecture design,
momentum encoder, negative sample pairs, or large batch size. However, SimSiam is
designed for 2D visual tasks (e.g., image classification, 2D object detection, 2D semantic
segmentation), which cannot meet the requirement for 3D machining feature recognition.
Therefore, the proposed method extends SimSiam to learn effective visual representation
from a large number of unlabeled 3D machining feature data for transferring to downstream
tasks. The architecture of the self-supervised learning method is shown in Figure 2.

At first, two randomly transformed (augmented) models x; and x; from a 3D model x
are accepted as the architecture input. Then, the two models are fed into a shared weight
encoder f composed of a CNN backbone network (e.g., ResNet-50) and a three-layer MLP
projector (Figure 3). The encoder, which is in charge of projecting input into a representation
space, generates two corresponding embeddings z; and z; according to x; and x;. In this
process, the projector is a key component whose main function is to transform visual

Appl. Sci. 2023, 13, 3181 6 0f 27

representation into the space where similarity loss is applied [44]. The above operations
are defined as follows:

X1 = T(X)/
Xy = T/(X),
5 = f(x), g
23 = f(x2),

where 7 denotes random augmentation, and f is a shared weight encoder.

similarity loss

stop gradient

X
4 —
Augmentation
X2

Figure 2. The architecture of the self-supervised method.

2

BatchNorm1D
BatchNorm1D

=
£
S
5
S
m

. Projector

Figure 3. The architecture of the three-layer MLP projector.

After that, one of the embeddings is sent to a predictor / (Figure 4), which returns
a transformed embedding p;. The predictor only works on one embedding at a time,
and its function is to match the output of one encoder to the other [46]. In other words,
the predictor learns to predict and compensate for the difference between the outputs of
two encoders. The predictor is a simple two-layer MLP, which has a similar architecture
to the projector. The last batch normalization (BN) layer is removed in contrast to the

projector because the BN layer causes the training results to be unstable [21]. The predictor
transformation is as follows:

p1 = h(z1).)

|
|
|
]
._.]I
|
|
|
|

Figure 4. The architecture of the two-layer MLP predictor.

Appl. Sci. 2023,13, 3181

7 of 27

After the predictor, the cosine similarity criterion is used to measure the distance
between the two embeddings p; and z,, which is defined as follows:

X1+ X2
max(|[xq |2 - [|x2][2,€)

®)

criterion(x1, xp) =

where || - ||2 is I — norm of a vector, and € is a small value to avoid division by zero, usually
1x1078.

Correspondingly, we get z; and p; by switching the input order of x; and x; according
to [46]. The above operations can be written as follows:

z1 = f(x1),

4)
pa = h(f(x2)).
Now, the similarity loss is defined as follows:
1, . . o
l= —E(crltenon(p1,22) + criterion(z1, p2)), (5)

which is symmetric. For the symmetrized similarity loss, an intuitive explanation is to pull
the two embeddings closer in a representation space by maximizing their cosine similarity
(i-e., to minimize L).

Finally, error back propagation and the optimizer are utilized to compute the gradient
and update the learnable parameters of the encoder and predictor. At each training
step, stochastic gradient descent with momentum (SGDM) is performed to minimize the
similarity loss I, which is summarized as:

Upp1 = mM*x 0+ 811,

Or1 =0k — p*xvpp,

(6)

where 0, g, v, i1, and m denote the parameters of network, gradient, velocity, learning rate,
and momentum, respectively.

In this process, the significant stop-gradient operation (Figure 2) is used to cut off
the gradient from the output of the similarity loss ! to the encoder f. This operation
means that the encoder f receives the gradient from the predictor rather than directly
from similarity loss I. The stop-gradient is a key to preventing the Siamese network from
finding a degenerated solution as a result of collapsing [21]. Collapsing is a key concept in
contrast learning, which refers to the phenomenon of the network learning to output the
same embedding for all inputs, resulting in a trivial solution to the contrastive loss (i.e.,
the similarity loss is always optimal —1.0). As a result, this learning process is unable to
generate gradient in order to update the network parameters and learn any valid visual
representation.

In summary, the method is a simple self-supervised learning framework, requiring
only a few extra modules (projector and predictor) and operation (cosine similarity and stop-
gradient). Intuitively, Siamese networks maximize the agreement between two randomly
augmented views from a 3D model, enabling the encoder network to ignore irrelevant
information and learn distinguishable visual representation. In practice, we can easily use
this approach to pre-train a visual encoder on large amounts of unlabeled data and then
transfer to the downstream task (e.g., machining feature recognition).

3.1.2. Fine-Tuning

After the self-supervised learning stage, the encoder has a certain level of feature
extraction capability and is able to extract discriminative representation from a 3D model.
To use the knowledge gained from a self-supervised task, transfer learning is adopted to
enhance the performance of the downstream task. Specifically, a small amount of labeled

Appl. Sci. 2023,13, 3181

8 of 27

data is utilized to fine-tune the transferred backbone and train the classifier. This procedure
is very simple and the same as multi-classification training.

During the fine-tuning stage, we keep only the parameters of the backbone network (as
shown in Figure 1) and discard the parameters of other layers. First, the backbone network
receives a 3D model and outputs a corresponding embedding vector. Then, the vector is
sent to the softmax classifier that consists of a fully connected (FC) layer and a softmax
function. The softmax is defined as follows:

exp(x,) i
T, exp(x)’ 7

where x is a 1D vector, and N is the length of the vector (equal to the number of classes
defined in the dataset).

The final output of the classifier is a probability distribution over predicted classes.
In the end, cross-entropy (CE) loss is applied between the predicted probability distribution
and the one-hot label. The CE loss is defined as follows:

Softmax(x) =

N
CE(y,y) = — ;yi log(vi), (8)

where N is the number of class, y; denotes the prediction probability of a sample belonging
to class 7, and y/ is the one-hot vector label, when label = i, y; = 1, otherwise y; = 0. An
SGDM optimizer is employed to minimize the loss function and update the parameters of
the network. It is important to note that we adopt different learning rates for the backbone
and the classifier in order to prevent the transferred knowledge from being destroyed while
achieving rapid convergence. The initial learning rate is set to 1 x 1073 for the backbone
and 30.0 for the classifier. To summarize, the classifier is the final component that is used to
learn the mapping between the embedding vector and the real value.

3.1.3. Inference Stage

In the inference stage, the parameters of the entire network are frozen and prepared
for deployment. Three-dimensional models from CAD are fed into the network to obtain
the probability distribution corresponding to predicted classes so as to identify the category
of machining feature.

3.2. Lightweight CNN Models for Machining Feature Recognition

As noted in the introduction, current machining feature recognition networks have
large parameters and many floating-point operations per second (FLOPs). These large
networks take up a lot of memory and become challenging to achieve fast inference speed
on personal computers. In addition, a better computer with faster GPU(s) and more
graphic memory is needed to train a large network, so more money must be spent on
hardware. Motivated by recent excellent mobile networks [48-50], this paper applies some
lightweight techniques to neural networks for addressing the above problem, with the goal
of maintaining high recognition accuracy while reducing inference latency and memory
usage. The following part introduces FeatureNetLite and MsvNetLite, which are the
lightweight versions of FeatureNet and MsvNet.

3.2.1. FeatureNetLite

To our best knowledge, Ref. [14] first attempted to apply 3D CNN to machining feature
recognition and proposed voxel-based FeatureNet. Voxel is a concept in 3D computer
graphics that refers to a 3D grid that represents the occupancy of space within an object.
However, FeatureNet has a lot of parameters (33.94 M) and FLOPs (12.51 G), so we apply
lightweight techniques to it and propose FeatureNetLite. The topological architecture of the
proposed FeatureNetLite is similar to PP-LCNet [50]. However, PP-LCNet is designed for
2D image classification and incompatible with our 3D voxel machining feature classification

Appl. Sci. 2023, 13, 3181

9 of 27

task. Therefore, this paper modified the convolution block of the network to allow for
accepting 3D voxel input with fewer parameters (1.91 M) and lower FLOPs (0.14 G). As
depicted in Figure 5, the FeatureNetLite consists of two parts:

The first part is a CNN backbone for feature extraction, which contains a stem Conv3D
block, multiple depth-wise separable convolution 3D (DSConv3D) blocks, a global average
pooling 3D (GAP3D) layer, and a Conv3D layer after GAP3D. As the core of the entire
network, DSConv3D is a 3D variant of depth-wise separable convolution [51], which
is widely used in mobile networks. In FeatureNetLite, the DSConv3D block is used
instead of a standard 3D convolution block, allowing the network to significantly increase
computation efficiency while preserving the same learning capability. Additionally, the
DSConv3D block makes the convolutional layers more sparse, which can effectively avoid
overfitting. Figure 6 shows the difference between the DSConv3D block and a standard 3D
convolution block.

D S ©v v
| i3
VIJ Q
a — e X
\) I :
‘ g - T o
—_ S @) B3
—E 7 53
B g B
‘ 53‘: Q R
N
INPUT | 153
\\ 777777 &
50
=
R
o)

epthWiseConv3D

BatchNorm3D
HardSwish
HardSwish

PointWiseConv3D
BatchNorm3D

D)

BatchNorm3D |
HardSwish Ir

BatchNorm3D |
HardSwish |

i 2t Standard 3D
DSConv3D Block ¢4 yolution Block

Figure 6. The difference between the DSConv3D block and a standard 3D convolution block.

The DSConv3D block is composed of depth-wise convolution 3D [52], batch nor-
malization 3D [53], point-wise convolution 3D [52], and HardSwish nonlinear activation
function [49].

At the head of block, there is a depth-wise convolution 3D, which only uses one convo-
lutional kernel for each input channel. After the depth-wise convolution 3D, BatchNorm3D
is applied to reduce internal covariate shift and speed up the training process. Aiming
at better quality of the activation function, ReLU is replaced by HardSwish, which can

Appl. Sci. 2023,13, 3181

10 of 27

significantly increase performance while avoiding a large number of exponential operations.
The HardSwish activation function is defined as follows:

0, x < =3
HardSwish(x) = { x, x >3 9)
@, otherwise

In addition, a Squeeze-and-Excite (SE) module [54] is added to DSConv3D blocks
to improve recognition performance. The SE is a channel attention module that enables
the network to pay more attention to the channel with important information and less to
irrelevant information. However, extensive use of an SE module results in a significant
increase in inference time. To keep the balance between accuracy and inference speed,
the SE module is only added to the blocks near the tail of network. Subsequently, point-
wise convolution 3D, whose kernel size is set to 1, is applied to compute the weighted
combination of the output of the depth-wise convolution 3D.

Due to the above designs, the parameters and computational complexity of DSConv3D
are significantly reduced compared to a regular convolution layer. The last Conv3D layer
with kernel size set to 1 lifts up the output of network from 512 x 1% to 1280 x 13, which
slightly increases inference time but greatly improves nonlinear fitting ability.

The second part involved in the network is a softmax classifier, which is commonly
adopted in multi-classification task. The classifier only contains a fully connected (FC) layer
and a softmax nonlinear activation function. The output dimension of the classifier is the
number of machining feature classes in FeatureNet dataset.

The detailed configuration of FeatureNetLite is shown in Table 1. The parameter
stride controls the stride size for the convolution operator. The stride controls the stride
size for the convolution operator. When stride set to 1, it is a plain convolution and
does not change the resolution of the output feature map. When stride set to 2, the layer
performs a down-sampling operation. The dimension order of the convolution output is
channel x height x width x depth (C x H x W x D).

Table 1. Configuration details of FeatureNetLite; k = 3 denotes that convolution kernel size is set to
3, and SE denotes whether to use the Squeeze-and-Excite module. And if SE is set to v/, it means
Squeeze-and-Excite module is enabled.

Operator SE Stride Input(CX HX W X D) Output(C X HX W X D)
Stem Conv3D, k=3 - 2 1 x 643 16 x 323
DSConv3D, k =3 - 1 16 x 323 32 x 328
DSConv3D, k =3 - 2 32 x 328 64 x 16°
DSConv3D, k =3 - 1 64 x 16° 64 x 16°
DSConv3D, k =3 - 2 64 x 16° 128 x 83
DSConv3D, k =3 - 1 128 x 83 128 x 83
DSConv3D, k = 3 - 2 128 x 83 256 x 43
5x DSConv3D, k=5 - 1 256 x 43 256 x 43
DSConv3D, k=5 v 2 256 x 43 512 x 23
DSConv3D, k=5 v 1 512 x 28 512 x 23
GAP3D - - 512 x 28 512 x 13
Conv3D, k=1 - 1 512 x 13 1280 x 13
Flatten - - 1280 x 13 1280
Linear - - 1280 24

3.2.2. MsvNetLite

Another well-known machining feature recognizer is MsvNet [20], which is a multi-
view based approach. Multi-view is a method to represent a 3D object through multiple
2D images from different viewpoints. Similar to FeatureNet, MsvNet also has a large
number of parameters (128.86 M) and FLOPs (7.46 G). Therefore, we present a lightweight
CNN called MsvNetLite, whose architecture is similar to MsvNet. MsvNetLite can be

Appl. Sci. 2023,13, 3181

11 of 27

considered a lightweight and modernized version of MsvNet (only 1.70 M parameters and
0.16 G FLOPs). Compared to MsvNet, the most significant change in MsvNetLite is the
replacement of the 2D CNN backbone network from VGGNet-11 [55] to PP-LCNet [50].
Furthermore, a smaller MLP takes the place of the original large MLP as the final classifier.
After the aforementioned adjustments, the recognition performance also shows strong
competitiveness while using fewer parameters and FLOPs. As shown in Figure 7, this
network takes multiple sectional views (MSV) representation as input. In MSV, many
2D images are taken from a variety of viewpoints to represent a 3D voxel model. The
detailed configuration of MsvNetLite is shown in Table 2. The Stem Conv2D block contains
Conv2D, BatchNorm?2D, and HardSwish layers. DSConv2D denotes a depth-wise separable
convolution block [50]. The view pooling layer uses an element-wise max operator to
combine all embeddings into one embedding [56]. The dimension order of convolution
output is view x channel x height x width (V x C x H x W).

© o
I <2
| e - JZ 2
I m £ I 5 i
= iz
I =R n 2 T
N =3
|] N—c Q=<
[J 3 >;.‘
| o 5 (=] <
hd e o = 0 o
| 1d B 3
| ;a
~
l 80
| 5
| %
Q

Figure 7. A detailed view of MsvNetLite.

Table 2. Configuration details of MsvNetLite; k = 3 denotes convolution kernel size is set to 3,
and SE denotes whether to use the Squeeze-and-Excite module. And if SE is set to v/, it means
Squeeze-and-Excite module is enabled.

Operator SE Stride Input(VXCXHXW) Output(VxCXxXH X W)
Stem Conv2D, k=3 - 2 12 x 3 x 642 12 x 16 x 322
DSConv2D, k = 3 - 1 12 x 16 x 322 12 x 32 x 322
DSConv2D, k = 3 - 2 12 x 32 x 322 12 x 64 x 162
DSConv2D, k =3 - 1 12 x 64 x 162 12 x 64 x 162
DSConv2D, k =3 - 2 12 x 64 x 162 12 x 128 x 82
DSConv2D, k =3 - 1 12 x 128 x &2 12 x 128 x 82
DSConv2D, k =3 - 2 12 x 128 x 82 12 x 256 x 42
5% DSConv2D, k=5 - 1 12 x 256 x 42 12 x 256 x 42
DSConv2D, k=5 v 2 12 x 256 x 42 12 x 512 x 22
DSConv2D, k =5 v 1 12 x 512 x 22 12 x 512 x 22
View pooling - - 12 x 512 x 22 512 x 22
GAP2D - - 512 x 22 512 x 12
Conv2D, k=1 - 1 512 x 12 1280 x 12
Flatten - - 1280 x 12 1280
Linear - - 1280 24

4. Experimental Results

In order to assess the performance of the proposed semi-supervised learning frame-
work on a small labeled dataset, this section presents extensive experimental results for ma-
chining feature recognition. Furthermore, the lightweight CNN networks FeatureNetLite
and MsvNetLite are compared to other DL-based machining feature recognizers to demon-
strate the advantages of the proposed approaches.

Appl. Sci. 2023,13, 3181

12 of 27

4.1. Experimental Settings

In this experiment, the FeatureNet dataset (see Figure 8), which contains 144,000
(24 classes x 1000 models x 6 orientations) different CAD models stored in stereolithog-
raphy (STL) files, is used as a benchmark. Because the approaches involved in the com-
parisons only accept 3D voxels as input, the STL files must be converted to binvox data
format [14]. In addition, the MSV representation is captured from the voxel grid and also
requires voxel as input [20]. In this study, 3D CAD models are voxelized in a 64 x 64 x 64
grid resolution. For fair comparison, the entire dataset is divided into a training set (80%
of the total dataset), a validation set (10%), and a test set (10%) in accordance with [20].
All the training tasks were conducted on a cloud server with Intel Xeon Gold 6230R CPU,
32 GB memory, and NVIDIA Tesla V100S (32 GB) GPU. For reasonable comparison on
personal computer, all the latency testing tasks were carried out on a consumer laptop with
Intel Core i7-7700 CPU, 16 GB memory, and NVIDIA GeForce GTX 1070 (8 GB) GPU. All
experiments were implemented on PyTorch 1.9.0 [57]. The inference latency values are the
average over 1000 runs.

Accuracy, which is a widely used metric in machine learning, is used to evaluate the
performance of the approaches. It measures the proportion of correctly classified instances
among all instances in the dataset. Its simplicity and ease of interpretation make it a popular
choice, particularly for balanced classification problems. Accuracy is defined as follows:

Number of correctly classified instances
Total number of instances

/
0:0-ring ~ 1:Through 2:Blind 3:Triangular 4:Rectangular 5:Circular 6:Triangular 7:Rectangular
hole hole passage passage through slot through slot through slot

Ny oy Wy N AT RS
8:Rectangular 9: Triangular10:Rectangular 11:Circular 12: Triangular 13:Circular 14:Rectangular 15:Rectangular
blind slot pocket pocket end pocket blind step blind step blind step through step

Y w

16:2-sides ~ 17:Slanted ~ 18:Chamfer —19:Round 20:Vertical 21:Horizontal 22:6-sides 23:6-sides
through step through step circular end circular end passage pocket
blind slot blind slot

Accuracy = (10)

Figure 8. Machining features in the FeatureNet dataset [14].

4.2. Effectiveness of the Proposed Semi-Supervised Learning

We performed ablation experiments of the proposed semi-supervised learning frame-
work over FeatureNetLite and MsvNetLite to demonstrate its improvements. The training
settings and strategies of MsvNet and MsvNetLite were the same as those proposed by [20].
FeatureNet and FeatureNetLite also followed the configuration recommended by [14].
Detailed training settings are as follows:

e MsvNetLite, FeatureNetLite, FeatureNet, Baselinel, Baseline2, and VoxNet underwent
100 epoch training. The MsvNet was trained with 120 epochs. This is because Shi et al.
adopted a two-stage training strategy, initially training the network 20 epochs on the
single view of a voxel model.

* MsvNetLite and FeatureNetLite using semi-supervised learning were trained by
an SGDM optimizer with 1 x 10~® weight decay. MsvNet, FeatureNet, Baselinel,
Baseline2, and VoxNet were trained by an Adam optimizer [58] without weight decay.

Appl. Sci. 2023,13, 3181

13 of 27

¢ The mini-batch size was set to 64. The batch size is limited to the number of training
data if the number of training data is less than the batch size.

* The initial learning values of MsvNetLite and FeatureNetLite using semi-supervised
learning were set to 1 x 1073 for the backbone and 30.0 for the classifier, and a cosine
learning rate decay scheduler was used. MsvNet, FeatureNet, Baselinel, Baseline2,
and VoxNet were trained with an initial learning rate set to 1 x 1073 and no decay
scheduler.

* According to [20], the following data augmentation strategies were also adopted in
our experiments: Random Rotation, Random Scale, and Random PadCrop.

e For fair comparison with [20], the number of sectional views was set to 12 for multi-
view approaches.

¢ FeatureNetLite using semi-supervised learning was trained 50 epochs in the self-supervised
stage, and MsvNetLite using semi-supervised learning was trained 100 epochs in the self-
supervised stage.

To examine the generalization performance of the proposed framework on small
labeled samples, we evaluated several approaches on the different numbers of labeled
data per class for training. For example, when the number of labeled data per class is
set to 1, only 24 labeled samples (24 classes x 1 sample per class) are used to train the
network. Detailed hyper-parameter settings about semi-supervised learning are discussed
in Section 4.5. The comparative results are shown in Table 3: PT denotes initializing the
2D CNN backbone with ImageNet pre-trained weights provided by torchvision and [50],
DA denotes adopting Random Rotation, Random Scale, and Random PadCrop data aug-
mentation during supervised training, and Semi-Sup. denotes applying semi-supervised
learning framework on the approach.

Table 3. The recognition accuracy (%) of several approaches on the FeatureNet test dataset: PT
denotes pre-trained weights, DA denotes data augmentation, and Semi-Sup. denotes semi-
supervised learning. The bold number is the best result in each column.

Data Training Number of
Approach Format Strategy Training Data per Class

PT DA Semi-Sup. 1 2 4 8 16 32 64 128
1342 1785 2288 3544 5293 67.15 87.65 9447
120] v 28.88 4852 60.51 73.03 84.88 9238 96.12 98.03
v 16.77 2672 4772 65.60 8233 9267 96.64 98.65
v v 50.34 7317 86.65 9271 9451 9723 98.54 99.01
Multi-view 603 758 967 1512 2633 4874 6856 8552
v 2581 3510 4752 6758 8232 94.69 9588 98.31
MsvNetLite (ours) v 13.99 1822 3416 5697 7138 86.36 94.06 95.70
v v 4523 57.00 81.03 89.24 9470 97.07 9841 98.76
v v 69.81 76.04 87.74 9395 97.15 97.56 98.03 98.84
[14] 1270 1442 1578 1887 2790 30.58 43.31 5228
v 16.67 18.68 24.08 4242 5924 75.02 90.73 9426
417 563 9.08 1235 1523 2263 3879 69.17
FeatureNetLite (ours) v 878 16.05 23.85 44.53 6792 83.07 90.60 94.65
v v 36.52 56.40 61.00 7442 86.53 91.83 9212 97.10
[38] Voxel 1117 1176 1759 2138 2574 3260 41.65 55.36
v 1547 20.31 2862 4573 6098 76.88 86.79 94.34
[40] 8.05 10.86 14.69 20.81 2728 31.18 3835 54.16
v 1497 1942 2032 35.67 5790 6747 83.78 93.38
[59] 1022 13.44 1697 1770 2232 29.56 38.60 48.90
. v 1522 1897 2484 3124 4583 6125 69.70 77.74

In the result table, the bold font presents the best accuracy for the test set for each
column. It is observed from this table that MsvNetLite has significantly improved accuracy
on small amounts of labeled data (<16) with the application of semi-supervised learning.
In particular, with just one training sample per class, MsvNetLite performed about 24%
better with semi-supervised learning than without semi-supervised learning. Even when
compared to the huge network MsvNet, this represents a 19% improvement. However, we
can observe that MsvNetLite with semi-supervised learning does not improve performance

Appl. Sci. 2023,13, 3181

14 of 27

with a large amount of training data (>64), but rather slightly degrades it. This may be
because the visual representation learned in the self-supervised learning stage is not so
robust. As we can see from Table 3, FeatureNetLite with semi-supervised learning is signif-
icantly improved with the different numbers of training data and also outperforms other
voxel-based approaches. Similar to the experimental results from [20], the classification
performance of the voxel-based approach is not comparable with the MSV-based approach.
Additionally, the results show that data augmentation and ImageNet pre-trained weight
also can improve accuracy on small labeled sample learning. This is because data augmen-
tation introduces variations to the dataset to help the model generalize better. In addition,
pre-trained weights transfer the knowledge gained from other datasets (e.g., ImageNet) to
the task of recognizing machining features.

4.3. Visualization of the Visual Representation

To explore the effectiveness of the proposed semi-supervised learning framework, we
visualized the visual representation produced by the last layer (after the flatten layer) of
the backbone using t-SNE [60]. With 40 test samples per class as input, we first extracted
the deep visual representation. Next, we utilized t-SNE to reduce the dimension of visual
representation from 1280D to 2D. Finally, the 2D representation was plotted on a 2D plane.
All experiments were based on MsvNetLite. In semi-supervised learning, 144,000 unlabeled
samples were used for self-supervised learning and only 192 labeled samples for fine-tuning.
In supervised learning, only 192 labeled samples were used for training. The parameters of
t-SNE were set as follows: perplexity = 100, iterations = 500, and initialization = pca.

The t-SNE visualization results are shown in Figure 9. Different colors and numbers
stand for different class labels corresponding to Figure 8. For intuitive evaluation, we visual-
ized the reduced embeddings of six situations: (a) the backbone output of MsvNetLite after
fine-tuned using the SGDM optimizer in semi-supervised learning, (b) the backbone output
of MsvNetLite initialized with ImageNet pre-trained weights, (c) the backbone output
of MsvNetLite with random initialization, (d) the backbone output of MsvNetLite after
self-supervised stage in semi-supervised learning, (e) the backbone output of MsvNetLite
after supervised learning, and (f) the backbone output of MsvNetLite after fine-tuned using
the Adam optimizer in semi-supervised learning.

In Figure 9a, after semi-supervised learning, the embeddings seem to cluster, and
24 well-separated clusters can be seen. In Figure 9b, the backbone is only trained on the
ImageNet and never sees the FeatureNet dataset. Although the embeddings look indis-
tinguishable and are not clearly separated, some of them appear to cluster together. This
presents an intuitive explanation for knowledge transferring. Figure 9c shows the repre-
sentation from the backbone without training, in which the embeddings look chaotic and
random. In Figure 9d, multiple distinct clusters can be seen after self-supervised learning,
which indicates that self-supervised learning produces meaningful visual representation
even without the use of labeled data. However, we can still observe that some class over-
lapping exists. These results demonstrate that the self-supervised learning helps network
in class separation and learn discriminative visual representation even without labeled
data. Figure 9e depicts the representation from the backbone trained with supervised
learning. We can observe that the embeddings produced by the supervised backbone
are more indistinguishable and not separated well in comparison to Figure 9a. There-
fore, the proposed semi-supervised learning produces high-quality representation and
better class separation, validating its effectiveness in improving recognition performance.
Figure 9f presents a fail case where the Adam optimizer is used for fine-tuning. We can see
that the majority of the embeddings become random and indistinguishable, which may
indicate that the knowledge from self-supervised learning is lost. In Section 4.5.5, there is a
detailed discussion about why the Adam optimizer is unable to fine-tune.

Appl. Sci. 2023,13, 3181

15 of 27

(e) ()
nO-ring ‘Through hole Blind hole ‘Triangular passage n:Rcclangu]ar passage 51 Circular through slot
{Triangular through slot ‘Rectangular through slot H Rectangular blind slot E ‘Triangular pocket :Rectangular pocket Circular end pocket
:Triangu]ar blind step Circular blind step ‘Rectangular blind step ‘Rectangular through step 2-sides through step ‘Slanted blind step
Chamfer :Round :Zs:ilc);:‘dc:g]ar :t{nodriioﬁ:‘\:jalcbi:cular E :6-sides passage :6-sides pocket

Figure 9. The t-SNE visualization of the visual representation on test set: (a) the backbone output
of MsvNetLite after fine-tuning using the SGDM optimizer in semi-supervised learning, (b) the
backbone output of MsvNetLite initialized with ImageNet pre-trained weights, (c) the backbone
output of MsvNetLite with random initialization, (d) the backbone output of MsvNetLite after the self-
supervised stage in semi-supervised learning, (e) the backbone output of MsvNetLite after supervised
learning, (f) the backbone output of MsvNetLite after fine-tuning using the Adam optimizer in semi-
supervised learning.

4.4. Efficiency of the Proposed FeatureNetLite and MsuNetLite

The second experiment was carried out to evaluate the efficiency of the proposed
lightweight neural networks. We compared optimal accuracy, parameters, FLOPs, and infer-
ence latency with other learning-based machining feature recognition approaches. Optimal
accuracy is the highest achievable accuracy attained by a particular approach. In the
context of our study, the optimal accuracy was determined by examining the results pre-
sented in Table 3. For instance, upon analysis of Table 3, it was observed that MsvNetLite
achieved the highest accuracy value of 98.84, therefore, the optimal accuracy of MsvNetLite
is considered to be 98.84. Additionally, we have included confusion matrices and receiver
operating characteristic (ROC) curves for each approach to more thoroughly analyze the
distinctions in classification performance. The confusion matrices and ROC curves are
shown in Appendix A.

In Table 4, FeatureNetLite achieves nearly 18 x reduction in parameters and 89 x reduc-
tion in FLOPs compared to FeatureNet and even outperforms other voxel-based approaches
in classification performance. Similarly, when compared to MsvNet, MsvNetLite has only

Appl. Sci. 2023,13, 3181

16 of 27

1/76 parameters and 1/47 FLOPs, but their classification performances are approximately
equivalent (about —0.3%). Furthermore, this table also shows the results of the inference
latency tested on 17-7700@3.6GHz CPU and GTX1070 GPU. Both on the CPU and GPU,
FeatureNetLite is more than twice as fast as FeatureNet in inference speed. When compared
to MsvNet, the inference speed of MsvNetLite is just 2 ms faster on the GPU but over six
times faster on the CPU. Although the proposed networks are neither the fastest nor the
most accurate, they achieve the best balance between accuracy and inference speed. It has
been noted that the acceleration effects of the two lightweight networks on CPU and GPU
are not consistent, which is caused by the disparate hardware architecture. As GPU is likely
used to render 3D objects in CAD software, inference speed on CPU is more significant.
In general, fewer network parameters and faster inference speed mean lower memory
usage and quicker response of machining feature recognition application, respectively.

Table 4. The comparison of optimal recognition accuracy (%), network size, and average inference
latency with different approaches. The bold number is the best result in each column.

Latency (ms) @ Latency (ms) @

Network Optimal Accuracy (%) T Parameters FLOPs GPU | CPU |

[20] 99.01 128.86 M 746 G 8.83 127.89
MsvNetLite (ours) 98.84 1.70M 0.16 G 6.96 19.27
[14] 94.26 33.94M 1251 G 13.36 137.88
FeatureNetLite (ours) 97.10 1.91 M 014 G 6.90 55.97
[38] 94.34 33.75M 640G 7.60 71.28

[40] 93.38 32.75M 10.70 G 15.43 178.72

[59] 77.74 11.27 M 073G 1.74 20.31

4.5. Discussion about the Hyper-Parameters of the Proposed Semi-Supervised Learning

In this subsection, we further study the hyper-parameter settings of the proposed semi-
supervised learning in order to determine the optimal semi-supervised training settings.
All experiments are based on MsvNetLite.

4.5.1. Different Numbers of Unlabeled Data in Self-Supervised Stage

The impact of different amounts of unlabeled data in self-supervised learning was
examined. In this experiment, the setups of self-supervised training, the predictor, and the
projector were based on [21]. The batch size was set to 32, the base learning rate at
6.25 x 1073 with a cosine decay scheduler (but we fixed the learning rate of the predictor),
the weight decay at 1 x 104, all data augmentations (Random Rotation, Random Scale,
and Random PadCrop) enabled, and the training epoch at 100 with an SGDM optimizer
(momentum = 0.9) for self-supervised training. In the fine-tuning stage, the initial learning
rate of the classifier was set to 30 with a cosine decay scheduler [61], the weight decay
at 1 x 107°, only Random Rotation augmentation enabled, the train batch size at 64 (the
batch size is limited to the number of training data if the number of training data is
smaller than the batch size), and the fine-tuning epoch at 100 using the SGDM optimizer
(momentum = 0.9).

The results are shown in Table 5. This table clearly shows that using more unlabeled
data for self-supervised training increases the accuracy of the fine-tuning stage. More
data for training means being able to learn better visual representation, but it also requires
collecting more data and more training time. Of course, it costs nothing to collect large
amounts of unlabeled data.

Appl. Sci. 2023,13, 3181

17 of 27

Table 5. The test accuracy (%) of the MsvNetLite with different numbers of unlabeled data per class
in the self-supervised stage. The bold number is the best result in each column.

Number of Unlabeled Data per Class Number of Labeled Data per Class for Fine-Tuning
in Self-Supervised Stage 1 2 4 8 16 32 64 128
3600 51.78 6422 7760 86.17 9212 9492 97.04 98.28
6000 69.81 76.04 87.74 9395 9715 97.56 98.03 98.84

4.5.2. Different Batch Size for Self-Supervised Learning

We discussed the effect of different batch size in the self-supervised stage. In this
experiment, according to the linear scaling rule [62], the learning rate changed according to
the batch size. The rule of learning rate change was as follows:

base_Ir x BatchSize
Ir = 256 (11)

where the base_Ir denotes base learning rate, which was set to 5 x 1072, The remaining
experimental settings were the same as the previous experiment.

The results with a batch size for self-supervised learning from 16 to 256 are reported
in Table 6. This result shows that the optimal fine-tuning accuracy is obtained when the
batch size was set to 32 for self-supervised learning. We also observe that there is a serious
performance drop when the batch size increases from 64 to 256. When the batch size
decreases to 16, there is a small performance change within the level of random variations.
It is worth noting that these results are obtained from our training on the FeatureNet
machining feature dataset and do not represent a consistent performance on other datasets.

Table 6. The test accuracy (%) of the MsvNetLite with different batch sizes in the self-supervised stage.
The bold number is the best result in each column. The bold number is the best result in each column.

Batch Size in Self-Supervised Stage

Number of Labeled Data per Class for Fine-Tuning

1 2 4 8 16 32 64 128
16 64.08 74.76 8390 9225 9526 96.82 98.12 98.63
32 69.81 76.04 87.74 9395 9715 97.56 98.03 98.84
64 3140 4895 59.18 7528 84.63 9228 9469 97.14
128 2526 4421 4528 70.67 7279 83.88 9046 95.60
256 53.67 6899 8333 9281 9540 96.83 9794 98.56

4.5.3. Different Training Epochs in Self-Supervised Stage

The effect of different training epochs for self-supervised learning was explored. In this
experiment, the training epochs for self-supervised learning were set to 50, 100, and 200.
The other experimental setups were the same as in the first experiment.

The results are reported in Table 7. The results show that the accuracy increases with
the increase of training epochs when fine-tuning with a very small number of labeled
samples (<2). However, 100 epochs self-supervised training show the best accuracy when
the number of labeled samples is larger than 2. Usually, longer self-supervised training
allows the encoder to learn more distinguishable visual representations. However, this
phenomenon suggests that self-supervised learning may be sensitive to the setting of
some hyper-parameters.

Appl. Sci. 2023,13, 3181

18 of 27

Table 7. The test accuracy (%) of the MsvNetLite with different training epochs for self-
supervised learning. The bold number is the best result in each column.

Training Epoch in Self-Supervised Stage

Number of Labeled Data per Class for Fine-Tuning

1 2 4 8 16 32 64 128
50 5344 6378 66.02 7424 8383 93.81 9728 97.62
100 69.81 76.04 87.74 9395 97.15 97.56 98.03 98.84
200 76.33 8694 8730 9252 9454 96.65 97.25 98.38

4.5.4. Different Data Augmentation Strategies in Self-Supervised Stage

Three widely utilized augmentations were used to systematically study their effects
on self-supervised learning. The data augmentations evaluated in this experiment involved
spatial and geometric transformations of a 3D object, including Random Rotation, Random
Scale, and Random PadCrop. The rest of thr experimental settings were the same as in
Section 4.5.1.

Table 8 reports the accuracy under different compositions of data augmentations.
As can be seen, enabling all data augmentation strategies results in the best accuracy.
With only one data augmentation, the worst performance is attained. Obviously, using
more data augmentation improves recognition performance. We conjecture that more data
augmentation strategies further remove some redundant information to ensure that the
learned representation has better generalization ability. In other words, with more spatial
and geometric transformations, the encoder network is forced to concentrate more on the
important information within the input data.

Table 8. The test accuracy (%) of the MsvNetLite with different data augmentation strategies in the
self-supervised stage. The v'denotes this augmentation method is enabled. The bold number is the
best result in each column.

Data Augmentation Strategies
in Self-Supervised Learning Stage

Number of Labeled Data per Class for Fine-Tuning

Rotation Scale PadCrop 1 2 4 8 16 32 64 128
v 2228 3133 4366 5226 73.06 7435 8431 96.18
v v 3441 4351 6155 7158 8444 9199 9484 96.94
v v v 69.81 76.04 87.74 9395 9715 97.56 98.03 98.84

4.5.5. Different Optimizers for Fine-Tuning

As noted in Section 4.2, the SGDM optimizer is used instead of Adam in the fine-
tuning stage. The following empirical study shows the influence of different optimizers
for fine-tuning. The epochs of self-supervised learning were 100, and the remaining
setups were the same as in Section 4.5.1. In the fine-tuning stage, the batch size was set
to 64. The learning rates of the backbone and the classifier were set to 30 and 1 x 1073,
respectively, with a cosine decay scheduler. Random Rotation, Random Scale, and Random
PadCrop augmentation strategies were used. The optimizers involved in the experiment
included Adam, stochastic gradient descent with momentum (SGDM), stochastic gradient
descent (SGD), and RMSProp without the weight decay. All the training was conducted for
100 epochs.

The results are shown in Table 9. SGDM achieves the best testing accuracy, and the
performance of SGD slightly drops. However, Adam and RMSProp show a significant
reduction in performance and seem to lose the knowledge transferred from self-supervised
learning during fine-tuning. Adam and RMSProp are both adaptive learning rate ap-
proaches that can adjust the learning rate of each learnable parameter dynamically. We
conjecture that their adaptive learning rate property results in the loss of learned represen-
tation. Possible future research is to explore what causes this phenomenon.

Appl. Sci. 2023,13, 3181

19 of 27

Table 9. The recognition accuracy (%) of the MsvNetLite with different optimizers for fine-tuning.
The bold number is the best result in each column.

Optimizer for Fine-Tuning

Number of Labeled Data per Class for Fine-Tuning

1 2 4 8 16 32 64 128

Adam 1539 21.62 1321 24.08 2642 81.99 9493 96.15

SGDM (momentum = 0.9) 69.81 76.04 87.74 9395 9715 97.56 98.03 98.84
SGD 6698 73.85 8208 8370 93.83 9624 9799 9853

RMSProp 7.71 717 9.19 8.17 1024 4497 80.12 89.21

4.6. Critical Analysis and Discussion

In conclusion, the proposed approaches presented in this paper offer a promising
solution to the challenges of DL-based machining feature recognition. There are some
advantages to be highlighted. The proposed semi-supervised learning framework is able
to leverage both labeled and unlabeled data to improve machining feature recognition.
With the help of the framework, the MsvNetLite and the FeatureNetLite obviously sur-
passed the large models such as MsvNet and FeatureNet. The proposed framework can be
a promising approach to improving the recognition performance of user-defined machining
feature while minimizing the need for manual labeling. Moreover, the utilization of model
compression techniques can significantly reduce the model parameters and computing
complexity, making the models CPU-friendly and more suitable for real-world industrial
applications. This can lead to improved software execution efficiency and lower hardware
costs.

However, there are also limitations of the proposed approaches presented in this
paper, which must be taken into consideration when applying them to real-world appli-
cations. First, the evaluation of the proposed approaches was limited to the FeatureNet
dataset, which may not necessarily represent the complexity and diversity of other datasets.
Therefore, further investigation and validation on a wider range of datasets is necessary to
generalize the effectiveness of these approaches. Second, the requirement of a considerable
amount of training time for the current self-supervised stage may incur additional costs
in terms of time and resources. Hence, it is important to assess the training budget for
implementing the approach in real-world CAPP.

5. Conclusions and Future Work

This paper presents a novel and effective approach to the task of machining feature
recognition with limited labeled samples through the use of a semi-supervised learning
framework. The key contribution of this framework is the incorporation of self-supervised
learning, which enables the learning of useful visual representations from large-scale unla-
beled data. Then, the backbone network is fine-tuned with small labeled data, utilizing the
knowledge gained from self-supervised learning. Ablation experiments were performed to
demonstrate the effectiveness of the proposed method. The MsvNetLite outperformed the
MsvNet by approximately 19% with only one training sample per class, whereas the Fea-
tureNetLite outperformed the FeatureNet by about 20% in machining feature classification.
The t-SNE visualization technique was used to provide an intuitive visualization of the
effects of the proposed framework on class separation and visual representation learning.
Additionally, a large number of hyper-parameter search experiments were conducted to
select the optimal semi-supervised learning settings for machining feature recognition.

Moreover, lightweight techniques were applied to the CNNs to reduce memory usage
and increase inference speed. Our study shows that the proposed compressing approaches
have effectively reduced the model parameters and computing complexity of the current
approaches. Specifically, the MsvINetLite demonstrated a 1/76 reduction in parameters
and a 1/47 reduction in FLOPs compared to the MsvNet, whereas the FeatureNetLite
showed a 1/89 reduction in parameters and a 1/18 reduction in FLOPs compared to the
FeatureNet. These results highlight the efficiency of our proposed compressing approaches.

Appl. Sci. 2023,13, 3181

20 of 27

On a common X86 CPU, the MsvNetLite demonstrated 6.68 x improvement in speed over
the MsvNet, and the FeatureNetLite was 2.49x faster than the FeatureNet in terms of
inference speed. The proposed models were proven to be more efficient in comparison to
several other machining feature recognition algorithms, achieving the best balance between
classification performance and inference speed.

However, there are some future research directions as follows:

* Better self-supervised representation learning methods will be explored. In the future,
we will improve the effectiveness of the self-supervised training stage to learn more
stable pre-trained knowledge.

* We will continuously focus on the robustness of semi-supervised hyper-parameters.
We will carry out a series of experiments with different hyper-parameters to under-
stand how the hyper-parameters effect the training process.

® Our further research will consider the application of multiple, intersecting, and in-
complete feature recognition. We will try to use the proposed approach to boost the
performance of the current intersecting feature recognition method.

Therefore, we will carry on improving our framework in future work.

Author Contributions: Conceptualization, HW. and Y.P.; Data curation, H-W.; Formal analysis,
H.W.; Funding acquisition, Y.P; Investigation, H-W.; Methodology, H.W.; Project administration, Y.P;
Resources, R.L.; Software, HW. and R.L.; Supervision, PH. and Y.P; Validation, HW., R.L. and Y.P.;
Visualization, H.W.; Writing—original draft, HW.; Writing—review and editing, HW., R.L., PH. and
Y.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was sponsored by the National Key Research and Development Program of
China (No.2022YFB3304100).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All the related code and data generated during this research are
included in the article, and the code and the data that support the conclusion of this study are openly
available at https:/ /github.com /whjdark/ssl_for_MFR (accessed on 1 February 2023).

Acknowledgments: The computation is completed in the HPC Platform of Huazhong University of
Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Confusion Matrix and ROC Curve for Different Approaches

- i
20

Figure A1. Confusion matrix for FeatureNet [14].

https://github.com/whjdark/ssl_for_MFR

Appl. Sci. 2023,13, 3181

21 of 27

Figure A2. Confusion matrix for FeatureNetLite.

- i
500
0

Figure A3. Confusion matrix for MsvNet [20].

- i
o

s i

Figure A4. Confusion matrix for MsvNetLite.

Appl. Sci. 2023,13, 3181 22 of 27

Figure A6. Confusion matrix for [38].

0
200

Figure A7. Confusion matrix for VoxNet [59].

Appl. Sci. 2023,13, 3181 23 of 27

—— ROC curve (AUC = 1.00) for lass O ing
1C = 1.00) for closs Thoush hle
001 orcos Bin hole
L.00)for clss Trianguir pasoe
ROC curve (AUC = 1.00) for clas Rectangulr pasage.
1.0, for class Cireulr

) for clas 6.3des packet

T T o
fatse Positve ate

Figure A8. ROC curve for FeatureNet [14].

z

H

H - — RO curve AUE = 100 for s iy

H RO curv (A 1.00) o s Tough hle

001 for cass Verial cieulr end bind siot
for ciass Hoizotal crcar end bind st
— RO curve (AU = 100)for ciass -ides passage
(AUC = 1,00 for class 5 ides pockel

Ftseposive Rate

Figure A9. ROC curve for FeatureNetLite.

— RO curve (AUC = 100} for cass O i
ROC curv (ALC = 1.00)

— ROC curve (AUC = 100
— ROC curve (AUC = 100} forcass Circar bind sep
" ROC curve (AUC - 2001 for cass Rctanguiar bind st

001 for cass Moizotal circar and b st
— RO curve AUC = 100)for ciass -ides passage
s

— ROC curve (AUC = 100)for ciass 6 ides pocket

Ftse positve fate

Figure A10. ROC curve for MsvNet [20].

Appl. Sci. 2023,13, 3181

24 of 27

H
H = oG eune WU 1001 s 07
H o v - 01 o o T e

Fatsepostive ate

Figure A11. ROC curve for MsvNetLite.

H

H -

H — R0 e AUC = 100 for o 07
H ROc cure AU 101 o

ROC curv (ALC = 1.00) for las Crclar blnd step
ROC curv (AU = 1.00) for class Rectanguir bl step
ROC curve (AU = 1.00) or cass Rectanguiar hrough sep
ROC curve (AU = 100} o clos 2.sids hrough sep
ROC curve (AUC = 100} orcass Siantes through s
ROC curve (AL = 0.99) or class Chamr

e (AUC = 100)for
(OC cuve (AUC - 1,00 for ciass 6-sdes pasea
e (uc

Ftse posive fate

— RoC e (UC

ROC curve (AUC = 1,00 for clas O 1

00 for class Thoush ole
100)for cise i o
100)for class Tianguiar pasage
0)for class Rectanguar pase:
) for clas Crcular nrough slot

) for clos Rounc
ROC curve (AUC = 1,00 fo clas Vertclcircular end bind siot
ROC curve (AUC = 1,00 for class Horzonalcircular end bind st
ROC curve (AUC = 1.00) fr class &-saes pasage.

100 for class -sides pocket

Figure A13. ROC curve for [38].

e

Appl. Sci. 2023,13, 3181 25 of 27

Figure A14. ROC curve for VoxNet [59].

References

1. Shi, Y; Zhang, Y.; Xia, K; Harik, R. A critical review of feature recognition techniques. Comput.-Aided Des. Appl. 2020, 17, 861-899.
[CrossRef]

2. Babic, B.; Nesic, N.; Miljkovic, Z. A review of automated feature recognition with rule-based pattern recognition. Comput. Ind.
2008, 59, 321-337. [CrossRef]

3. Vandenbrande,].H.; Requicha, A.A. Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE
Trans. Pattern Anal. Mach. Intell. 1993, 15, 1269-1285. [CrossRef]

4. Nau, D.S,; Gupta, SK.; Kramer, T.R.; Regli, W.C.; Zhang, G. Development of machining alternatives, based on MRSEVs. In
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, San Diego, CA, USA, 8-12 August 1993; Volume 97645, pp. 47-57. [CrossRef]

5. Joshi, S.; Chang, T. Graph-based heuristics for recognition of machined features from a 3D solid model. Comput.-Aided Des. 1988,
20, 58-66. [CrossRef]

6. Marefat, M.; Kashyap, R.L. Geometric reasoning for recognition of three-dimensional object features. IEEE Trans. Pattern Anal.
Mach. Intell. 1990, 12, 949-965. [CrossRef]

7. Li, Y; Ding, Y.; Mou, W.; Guo, H. Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency
graph. Proc. Inst. Mech. Eng. Part B |. Eng. Manuf. 2010, 224, 271-278. [CrossRef]

8. Kim, Y.S. Volumetric feature recognition using convex decomposition. In Manufacturing Research and Technology; Elsevier:
Amsterdam, The Netherlands, 1994; Volume 20, pp. 39-63. [CrossRef]

9. Sakurai, H. Volume decomposition and feature recognition: Part 1—polyhedral objects. Comput.-Aided Des. 1995, 27, 833-843.
[CrossRef]

10. Sakurai, H.; Dave, P. Volume decomposition and feature recognition, Part II: Curved objects. Comput.-Aided Des. 1996, 28, 519-537.
[CrossRef]

11. Gao, S.; Shah, J. Automatic recognition of interacting machining features based on minimal condition subgraph. Comput.-Aided
Des. 1998, 30, 727-739. [CrossRef]

12. Zhang, C.; Chan, K,; Chen, Y. A hybrid method for recognizing feature interactions. Integr. Manuf. Syst. 1998, 9, 120-128.
[CrossRef]

13. Henderson, M.R.; Anderson, D.C. Computer recognition and extraction of form features: A CAD/CAM link. Comput. Ind. 1984,
5,329-339. [CrossRef]

14. Zhang, Z; Jaiswal, P,; Rai, R. FeatureNet: Machining feature recognition based on 3D Convolution Neural Network. Comput.-Aided
Des. 2018, 101, 12-22. [CrossRef]

15. Ning, F; Shi, Y.; Cai, M.; Xu, W.; Zhang, X. Manufacturing cost estimation based on the machining process and deep-learning
method. J. Manuf. Syst. 2020, 56, 11-22. [CrossRef]

16. Prabhakar, S.; Henderson, M.R. Automatic form-feature recognition using neural-network-based techniques on boundary
representations of solid models. Comput.-Aided Des. 1992, 24, 381-393. [CrossRef]

17. Ding, L.; Matthews, J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM
integration for die manufacture. Comput. Ind. Eng. 2009, 57, 1457-1471. [CrossRef]

18. Shi, P; Qi, Q.; Qin, Y.; Scott, PJ.; Jiang, X. Highly interacting machining feature recognition via small sample learning. Robot.
Comput.-Integr. Manuf. 2022, 73, 102260. [CrossRef]

19. Zhang, H.; Zhang, S.; Zhang, Y.; Liang, J.; Wang, Z. Machining feature recognition based on a novel multi-task deep learning
network. Robot. Comput.-Integr. Manuf. 2022, 77, 102369. [CrossRef]

20. Shi, P; Qi, Q.; Qin, Y.; Scott, PJ.; Jiang, X. A novel learning-based feature recognition method using multiple sectional view

representation. J. Intell. Manuf. 2020, 31, 1291-1309. [CrossRef]

http://doi.org/10.14733/cadaps.2020.861-899
http://dx.doi.org/10.1016/j.compind.2007.09.001
http://dx.doi.org/10.1109/34.250845
http://dx.doi.org/10.1115/CIE1993-0007
http://dx.doi.org/10.1016/0010-4485(88)90050-4
http://dx.doi.org/10.1109/34.58868
http://dx.doi.org/10.1243/09544054JEM1634
http://dx.doi.org/10.1016/B978-0-444-81600-9.50008-0
http://dx.doi.org/10.1016/0010-4485(95)00007-0
http://dx.doi.org/10.1016/0010-4485(95)00067-4
http://dx.doi.org/10.1016/S0010-4485(98)00033-5
http://dx.doi.org/10.1108/09576069810202078
http://dx.doi.org/10.1016/0166-3615(84)90056-3
http://dx.doi.org/10.1016/j.cad.2018.03.006
http://dx.doi.org/10.1016/j.jmsy.2020.04.011
http://dx.doi.org/10.1016/0010-4485(92)90064-H
http://dx.doi.org/10.1016/j.cie.2009.01.006
http://dx.doi.org/10.1016/j.rcim.2021.102260
http://dx.doi.org/10.1016/j.rcim.2022.102369
http://dx.doi.org/10.1007/s10845-020-01533-w

Appl. Sci. 2023,13, 3181 26 of 27

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021; pp. 15750-15758. [CrossRef]

Zhang, X.; Nassehi, A.; Newman, S.T. Feature recognition from CNC part programs for milling operations. Int. . Adv. Manuf.
Technol. 2014, 70, 397-412. [CrossRef]

Xu, T.; Li, J.; Chen, Z. Automatic machining feature recognition based on MBD and process semantics. Comput. Ind. 2022,
142,103736. [CrossRef]

Ferreira, J.; Hinduja, S. Convex hull-based feature-recognition method for 2.5D components. Comput.-Aided Des. 1990, 22, 41-49.
[CrossRef]

Kim, Y.S.; Wang, E.; Rho, HM. Geometry-based machining precedence reasoning for feature-based process planning. Int. J. Prod.
Res. 2001, 39, 2077-2103. [CrossRef]

Woo, Y.; Sakurai, H. Recognition of maximal features by volume decomposition. Comput.-Aided Des. 2002, 34, 195-207. [CrossRef]
Woo, Y. Fast cell-based decomposition and applications to solid modeling. Comput.-Aided Des. 2003, 35, 969-977. [CrossRef]
Han, J.; Requicha, A.A. Integration of feature based design and feature recognition. Comput.-Aided Des. 1997, 29, 393-403.
[CrossRef]

Rahmani, K.; Arezoo, B. Boundary analysis and geometric completion for recognition of interacting machining features.
Comput.-Aided Des. 2006, 38, 845-856. [CrossRef]

Verma, A.K,; Rajotia, S. A hybrid machining Feature Recognition system. Int. |. Manuf. Res. 2009, 4, 343-361. [CrossRef]

Yao, X.; Wang, D.; Yu, T,; Luan, C.; Fu,]. A machining feature recognition approach based on hierarchical neural network for
multi-feature point cloud models. J. Intell. Manuf. 2022, 1-12. [CrossRef]

Shi, P; Qi, Q.; Qin, Y.; Scott, PJ.; Jiang, X. Intersecting Machining Feature Localization and Recognition via Single Shot Multibox
Detector. IEEE Trans. Ind. Inform. 2021, 17, 3292-3302. [CrossRef]

Wang, J.; Liu, S. Hopfield neural network-based automatic recognition for 3-D features. In Proceedings of the 1993 International
Conference on Neural Networks (IJCNN-93-Nagoya, Japan), Nagoya, Japan, 25-29 October 1993; Volume 3, pp. 2121-2124
Lankalapalli, K.; Chatterjee, S.; Chang, T. Feature recognition using ART2: A self-organizing neural network. J. Intell. Manuf.
1997, 8, 203-214. [CrossRef]

Oztiirk, N.; Oztiirk, F. Hybrid neural network and genetic algorithm based machining feature recognition. J. Intell. Manuf. 2004,
15, 287-298. [CrossRef]

Zhang, Y.; Zhang, S.; Huang, R.; Huang, B.; Yang, L.; Liang,]. A deep learning-based approach for machining process route
generation. Int. . Adv. Manuf. Technol. 2021, 115, 3493-3511. [CrossRef]

Ning, E; Shi, Y.; Cai, M.; Xu, W. Various realization methods of machine-part classification based on deep learning. J. Intell.
Manuf. 2020, 31, 2019-2032. [CrossRef]

Peddireddy, D.; Fu, X.; Shankar, A.; Wang, H.; Joung, B.G.; Aggarwal, V.; Sutherland,].W.; Jun, M.B.G. Identifying manufactura-
bility and machining processes using deep 3D convolutional networks. J. Manuf. Process. 2021, 64, 1336-1348. [CrossRef]
Mohammadi, N.; Nategh, M.]. Development of a deep learning machining feature recognition network for recognition of four
pilot machining features. Int. J. Adv. Manuf. Technol. 2022, 121, 7451-7462. [CrossRef]

Ning, F,; Shi, Y.; Cai, M.; Xu, W. Part machining feature recognition based on a deep learning method. J. Intell. Manuf. 2021, 34,
809-821. [CrossRef]

Fu, X,; Peddireddy, D.; Aggarwal, V.; Jun, M.B.G. Improved Dexel Representation: A 3D CNN Geometry Descriptor for
Manufacturing CAD. IEEE Trans. Ind. Inform. 2021, 9, 5882-5892. [CrossRef]

Cao, W.; Robinson, T.; Hua, Y.; Boussuge, E; Colligan, A.R.; Pan, W. Graph representation of 3d cad models for machining feature
recognition with deep learning. In Proceedings of the International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Boston, MA, USA, 17-19 August 2020; Volume 84003, p. V11AT11A003.

Van Engelen, J.E.; Hoos, HH. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373—440. [CrossRef]

Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations.
In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 12-18 July 2020; Volume 119;
pp. 1597-1607.

Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P; Joulin, A. Unsupervised learning of visual features by contrasting cluster
assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912-9924.

Grill,].B.; Strub, E,; Altché, E; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar,
M.; et al. Bootstrap Your Own Latent—A New Approach to Self-Supervised Learning. In Proceedings of the Advances in Neural
Information Processing Systems, Virtual Event, 6-12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 21271-21284.

Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow Twins: Self-Supervised Learning via Redundancy Reduction. In
Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18-24 July 2021; Volume 139, pp. 12310-12320.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018.
Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October—2
November 2019.

http://dx.doi.org/10.48550/ARXIV.2011.10566
http://dx.doi.org/10.1007/s00170-013-5275-4
http://dx.doi.org/10.1016/j.compind.2022.103736
http://dx.doi.org/10.1016/0010-4485(90)90028-B
http://dx.doi.org/10.1080/00207540110038513
http://dx.doi.org/10.1016/S0010-4485(01)00080-X
http://dx.doi.org/10.1016/S0010-4485(02)00144-6
http://dx.doi.org/10.1016/S0010-4485(96)00079-6
http://dx.doi.org/10.1016/j.cad.2006.04.015
http://dx.doi.org/10.1504/IJMR.2009.026578
http://dx.doi.org/10.1007/s10845-022-01939-8
http://dx.doi.org/10.1109/TII.2020.3030620
http://dx.doi.org/10.1023/A:1018521207901
http://dx.doi.org/10.1023/B:JIMS.0000026567.63397.d5
http://dx.doi.org/10.1007/s00170-021-07412-9
http://dx.doi.org/10.1007/s10845-020-01550-9
http://dx.doi.org/10.1016/j.jmapro.2021.02.034
http://dx.doi.org/10.1007/s00170-022-09839-0
http://dx.doi.org/10.1007/s10845-021-01827-7
http://dx.doi.org/10.1109/TII.2021.3136167
http://dx.doi.org/10.1007/s10994-019-05855-6

Appl. Sci. 2023,13, 3181 27 of 27

50.

51.

52.

53.

54.

55.
56.

57.

58.
59.

60.
61.

62.

Cui, C; Gao, T,; Wei, S.; Du, Y;; Guo, R;; Dong, S.; Lu, B,; Zhou, Y,; Lv, X,; Liu, Q.; et al. PP-LCNet: A Lightweight CPU
Convolutional Neural Network. arXiv 2021, arXiv:2109.15099.

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. CoRR 2017, arXiv:1704.04861.

Ye, R.; Liu, F; Zhang, L. 3D depthwise convolution: Reducing model parameters in 3D vision tasks. In Proceedings of the
Canadian Conference on Artificial Intelligence, Kingston, ON, Canada, 28-31 May 2019; pp. 186-199.

Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6-11 July 2015; pp. 448—-456.

Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018; pp. 7132-7141.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556
Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. arXiv
2015, arXiv:1505.00880.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), Vancouver, Canada, 8-14 December 2019.

Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the
2015 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September-3 October
2015; pp. 922-928. [CrossRef]

van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579-2605.

He, K,; Fan, H.; Wu, Y,; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13-19 June 2020.

Goyal, P; Dollér, P; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A,; Jia, Y.; He, K. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IROS.2015.7353481

	Introduction
	Related Work
	Rule-Based Approach
	ANN-Based Approach
	DNN-Based Approach

	Methodology
	Semi-Supervised Machining Feature Recognition Framework
	Self-Supervised Learning Stage
	Fine-Tuning
	Inference Stage

	Lightweight CNN Models for Machining Feature Recognition
	FeatureNetLite
	MsvNetLite

	Experimental Results
	Experimental Settings
	Effectiveness of the Proposed Semi-Supervised Learning
	Visualization of the Visual Representation
	Efficiency of the Proposed FeatureNetLite and MsvNetLite
	Discussion about the Hyper-Parameters of the Proposed Semi-Supervised Learning
	Different Numbers of Unlabeled Data in Self-Supervised Stage
	Different Batch Size for Self-Supervised Learning
	Different Training Epochs in Self-Supervised Stage
	Different Data Augmentation Strategies in Self-Supervised Stage
	Different Optimizers for Fine-Tuning

	Critical Analysis and Discussion

	Conclusions and Future Work
	Appendix A
	References

