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Featured Application: The work presents an image classification algorithm for rock-type recog-
nition, which can provide reliable guidance for geological surveys.

Abstract: Rock image classification is a fundamental and crucial task in the creation of geological
surveys. Traditional rock image classification methods mainly rely on manual operation, resulting
in high costs and unstable accuracy. While existing methods based on deep learning models have
overcome the limitations of traditional methods and achieved intelligent image classification, they
still suffer from low accuracy due to suboptimal network structures. In this study, a rock image
classification model based on EfficientNet and a triplet attention mechanism is proposed to achieve
accurate end-to-end classification. The model was built on EfficientNet, which boasts an efficient
network structure thanks to NAS technology and a compound model scaling method, thus achiev-
ing high accuracy for rock image classification. Additionally, the triplet attention mechanism was
introduced to address the shortcoming of EfficientNet in feature expression and enable the model
to fully capture the channel and spatial attention information of rock images, further improving
accuracy. During network training, transfer learning was employed by loading pre-trained model
parameters into the classification model, which accelerated convergence and reduced training time.
The results show that the classification model with transfer learning achieved 92.6% accuracy in the
training set and 93.2% Top-1 accuracy in the test set, outperforming other mainstream models and
demonstrating strong robustness and generalization ability.

Keywords: rock image; EfficientNet; image classification; transfer learning

1. Introduction

Rock classification is an essential and critical task in various fields, such as geology,
resource exploration, geotechnical investigation, rock mechanics, mineral resource pro-
specting [1], and constructional engineering [2]. It plays a vital role in supporting mineral
and petroleum resource exploration, and in guiding design scheme optimization, safety
assessment, and risk assessment in geotechnical engineering. Traditional methods of rock
classification can be broadly categorized into physical tests and numerical statistical anal-
ysis. Physical tests analyze rock samples using techniques such as X-ray powder diffrac-
tion, scanning electron microscopy, and infrared spectroscopy [3], while numerical statis-
tical analysis employs mathematical methods like the nearest-neighbor algorithm [4] and
principal component analysis [5] to extract rock classification features. These traditional
methods heavily rely on the expertise of professionals and specific equipment to extract
useful information from rocks [6]. Therefore, the accuracy of rock classification can be
greatly affected by poor experimental conditions or low-quality personnel, resulting in
significant fluctuations. In addition, traditional methods are cumbersome and time-con-
suming, and they are incompatible with the trend of the widespread use of remote explo-
ration devices such as drones in geological surveys [7] since they cannot meet the needs
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of geological survey personnel to classify rocks directly from images collected by the
equipment.

With the advancement of computer technology, computer vision methods based on
machine learning and deep learning have begun to show excellent performance in image
classification and have been applied in the field of rock classification. Researchers initially
applied traditional machine learning methods, which train classifiers using artificially ex-
tracted rock image features for automatic classification. For example, Marmo et al. [8] ex-
tracted image feature values from more than 1000 carbonate slices using image processing
and input them into a multi-layer perceptron neural network model to achieve the intel-
ligent classification of carbonate rocks, with an accuracy of 93.3%. Similarly, Singh et al.
[9] extracted 27 features from thin-section images of basalt rock and were able to recognize
and classify 140 thin-section images of rock samples with an accuracy of 92.22%. Although
these traditional machine learning methods can produce satisfactory results, they cannot
automatically extract features directly from unprocessed images due to the limited capac-
ity of the shallow models. [10] Therefore, before training the classification model, manual
pre-processing of images is necessary to extract features such as color, shape, and texture.
This significantly reduces the level of automation in type classification.

In recent years, deep learning has been applied in rock-type classification to over-
come the limitations of traditional machine learning methods in image feature extraction
[11]. Researchers have utilized various deep learning models to automatically extract im-
age features, which leads to more intelligent image classification. Xu et al. [12] designed a
U-net convolutional neural network for ore mineral recognition under the microscope
with a test set success rate of above 90%. Zhang et al. [13] developed a rock image recog-
nition model based on the Inception-V3 deep convolutional neural network for various
rock types, achieving a classification accuracy of over 85%. Cheng et al. [14] used the Res-
Net50 and ResNet101 models for automatic feature extraction and classification of rock
slice images, with an accuracy of 90.24% and 91.63% in the test set, respectively. Chen et
al. [15] proposed a deep residual neural network model with transfer learning to establish
an automatic rock classification model with over 90% accuracy. Koeshidayatullah et al.
[16] proposed a transformer-based model for automatic core-face classification, eliminat-
ing the need for pre-processing and manual feature extraction. The deep learning method
offers the advantage of automatically extracting image features, which eliminates the in-
fluence of subjective factors on experimental results and greatly reduces the workload of
rock classification. In addition, deep learning models can extract more abstract and com-
plex image features to classify a wider range of rock types. [17] However, the existing
deep learning models have typically been built by manually designing a network module
and stacking it [18-20], resulting in an irrational network structure and redundant param-
eters. Moreover, for objects like rock images with strong interference and cluttered infor-
mation, the existing models without attention mechanisms suffer from dispersed atten-
tion during image processing, which makes it challenging to effectively capture useful
features. These factors ultimately contribute to the limited accuracy of current models in
rock image classification.

Current methods for rock image classification each have their limitations. Traditional
methods can achieve acceptable accuracy under specific conditions but are heavily de-
pendent on manual effort and lack stability in their accuracy. Although machine learning
methods have made initial strides towards intelligent rock image classification, they still
require manual feature extraction, limiting the degree of automation in image recognition.
Existing deep learning methods have realized end-to-end automatic image recognition
but still suffer from issues related to redundant network parameters and scattered atten-
tion, resulting in limited accuracy in rock image classification. To overcome the limitations
of current methods and achieve accurate end-to-end classification of rock images, a rock
image classification model based on EfficientNet and a triplet attention mechanism is pro-
posed. The contributions of this study can be summarized as follows:
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e  Deep learning methods were introduced to eliminate the dependence of traditional
methods and machine learning methods on human intervention, so as to realize end-
to-end automatic identification of rock images without requiring additional manual
operations.

e A rock image classification model was constructed based on EfficientNet, which
overcomes the issue of parameter redundancy and scattered attention in previous
deep learning models, as well as achieving an efficient and attention-focused net-
work structure through Neural Architecture Search, resulting in higher model accu-
racy compared to its predecessors.

e Inview of the problem that EfficientNet neglects spatial attention information of rock
images, the triplet attention mechanism [21] was introduced to improve EfficientNet
and enhance its ability to extract effective rock features, further improving the accu-
racy of the rock classification model.

e  The transfer learning method was utilized in the training process to accelerate the
model convergence and significantly enhance its training performance, so as to ob-
tain a classification model with higher accuracy using fewer rock images and less
training time.

2. Materials

The rock image dataset was provided by Guangdong TipDM Intelligent Technology
Co., Ltd. and includes 315 rock images. These rock images were high-resolution photo-
graphs of rock fragments taken by geological staff using an industrial camera under white
light conditions at the well logging site. The images were captured using a fixed-height
lens. In addition, most of the images had an initial size of 4096 x 3000 pixels, while a small
number of images with backgrounds had a size of 2448 x 2048 pixels. The rock fragment
image collection process generally involves the following steps:

(1) Collect rock fragments: Geological personnel collect rock fragments at the wellhead
or drilling rig, using manual or mechanical tools for collection.

(2) Prepare samples: After collecting rock fragments, preliminary processing such as
cleaning and sieving is necessary to remove impurities and unwanted parts and ob-
tain a sufficient number of samples of the same rock type.

(3) Captureimages: For each rock fragment sample, capture its image using an industrial
camera or other equipment. During image capture, it is important to keep the sample
in the same position and angle to ensure the comparability and repeatability of the
images.

Rock fragments images are often affected by the diverse physical and chemical prop-
erties of rocks, and typically exhibit small sizes, complex and diverse shapes, and varia-
tions in texture and color. In addition, noise and background interference in rock fragment
images may adversely affect the quality of the images. All of these factors present chal-
lenges for the identification of rock types in this type of image.

The dataset contains rock images of seven types in total, including 21 black coal im-
ages, 30 gray black mudstone images, 46 gray argillaceous siltstone images, 18 gray fine
sandstone images, 85 light gray fine sandstone images, 40 dark gray silty mudstone im-
ages, and 75 dark gray mudstone images. Figure 1 shows seven rock images of different

types.
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(a) Dark gray mudstone (b) Black coal

(e) Dark gray silty mudstone  (f) Gr}; black muétoe

(g) Gray érgillaceous siltstne

Figure 1. Seven rock images of different types in the rock image datasets.

Different rocks possess distinct characteristics such as shape, color, and texture. Table 1
illustrates the key features of the various rock images included in the dataset. The serial
number of each row in the table corresponds to Figure 1. The seven types of rocks in the
table can be classified into four types based on their particle size: sandstone, siltstone,
mudstone, and coal. Sandstone typically features a gray or light gray color, a non-blocky
shape, and a rough surface [22]. Siltstone is mostly gray in color, with a flaky and blocky
shape and a smooth surface [23]. Mudstone can be gray, dark gray, or gray black in color
and tends to have a flaky and blocky shape [24]. Coal is the most identifiable rock type in
the dataset, being black in color.

Table 1. Characteristics of various rocks in rock image dataset.

Serial Particle
Number of Type . Color Shape Characteristics
Size(mm)
Image
Dark i
a Dark gray mudstone <0.005 aray Lamellar, Micrite structure
b Black coal <6 Black  Granular, Asymmetrical
Fine grain structure, Rough
c Gray fine sandstone 0.05-2 Gray surface,
Uneven
d Light gray fine sand- 0.05-2 Light Fine sand structure,
stone ] gray Thin-layered structure
o Dark gray silty mud- <0.005 Dark  Silty argillaceous structure,
stone ' gray Bedding structure
‘ Gray black mudstone  <0.005 Gray Cryptocry.stalhne structure,
black Massive structure
ill ilt- il
. Gray argillaceous silt 0.005-0.05 Gray Si t}./ structure,
stone Massive structure
3. Method

In this study, we propose a rock-type classification method based on EfficientNet and
a triplet attention mechanism. The method focuses on the establishment of a classification
model and integrates various methods, such as transfer learning and data augmentation,
to achieve accurate automatic classification of rock images. Figure 2 is the flow diagram of the
proposed method. The detail of the method is shown as a pseudo-code in Algorithm 1.
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Figure 2. Flowchart of the classification method proposed in this study.

Algorithm 1: A Rock-type Classification Method Based on EfficientNet and Triplet Attention Mechanism

Input: 315 rock images containing seven types of rocks

1:
2:

9:

10:

Perform data pre-processing.

Randomly apply the following nine data augmentation operations to each image: Rotation, Salt-and-pepper
noise addition, Brightening, Darkening, Enlargement, Vertical flip, Horizontal flip, Gaussian noise addition, and
Translation. (The number of rock images is augmented to 6949 after augmentation.)

Divide the augmented images randomly into a training set, a validation set, and a test set with a ratio of 60%,
20%, and 20%. (The number of samples for them is 4169, 1389, and 1389.)

Construct a rock-type classification model based on EfficientNet and a triplet attention mechanism.

Select the EfficientNet-B7 model as the baseline model.

Replace each SE attention module of the EfficientNet-B7 model with the triplet attention module to construct the
Triplet-Efficient model.

Build a classification model based on the Triplet-EfficientNet model as the backbone network.

Add 1 x 1 convolutional layer, pooling layer, fully connected layer, and softmax classifier after Triplet-Efficient-
Net.

Set the number of types for the softmax classifier to 7.

Start model training.

11: Use the transfer learning method: load the parameters of the pre-trained model trained
on ImageNet dataset into an untrained model.
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12:  Set training hyperparameters: set the learning rate to 0.01, the epoch to 60, and the batch size to 16.

13:  Select the Swish function as the activation function, the cross entropy function as the loss function, and Adap-
tive Moment Estimation(Adam) as the optimizer.

14:  Uniformly scale the images in the training set to the size of 600 x 600 x 3 and randomly package them into the
model to start the training.

15: Train all parameters of the transferred model for 60 epochs.

16: Output the final model after training.

17: Start testing: input a randomly selected rock image.

Output: The probabilities of this rock image being classified as each type of rock. (The rock type corresponding to the

maximum probability is the final identification result.)

3.1. EfficientNet Neural Network

Model scaling has been widely used to improve the accuracy of convolutional neural
networks. In previous work, the most common way is to only change the network depth,
width, or input image resolution of the baseline neural networks in a single dimension, as
shown in Figure 3b-d. For example, Huang et al. [25] greatly improved the accuracy of
GPipe on the ImageNet dataset by scaling up the depth of the baseline network. Though
it is possible to scale up the model in multiple dimensions at the same time, multidimen-
sional scaling requires tedious manual tuning. To realize simple yet efficient model scal-
ing, Tan et al. [26] proposed that EfficientNet, which is obtained by a Neural Architecture
Search (NAS) [27] technology and a compound scaling method, is one of the best classifi-
cation performance networks on the ImageNet dataset. They first searched the structure
of the baseline network using NAS technology and then scaled up the baseline network
in multiple dimensions by the compound scaling method. This scaling method allows for
uniform changes in the network depth, width, and input image resolution, as shown in
Figure 3e, resulting in higher classification accuracy without the need for additional fine-

tuning.
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Figure 3. Diagrams of different model scaling methods. (a) a baseline network example; (b—d) model
scaling methods that only change one dimension of network width, depth, or resolution. (e) a com-
pound scaling method that uniformly scales three dimensions.
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The key to the compound scaling method based on EfficientNet is to find a set of
compound coefficients of depth, width, and image resolution to maximize the network’s
performance. This optimization problem is mathematically formulated as in Equation (1).

max,,, , Accuracy(N(d,w,r)) (1)

where, d, w, r are the scaling coefficients of network depth, width, and image resolution
respectively, N(d,w,r) is the classification model, and maxg,,, Accuracy is the maximum
accuracy of the model.

To realize uniform scaling of d, w, r, this method introduces ¢,which is a user-spec-
ified coefficient that controls model scale, as shown in Equation (2). The implementing
steps of this scaling method are as follows: After determining the structure of the baseline
network, this method first fixes the control coefficient ¢ as 1, then uses NAS technology
to search coefficients d, w, r that maximize the classification accuracy, resulting in the
final baseline model called EfficientNet-B0; Finally, this method specifies different ¢ from
2 to 7 and obtains corresponding models of different sizes, referred to as EfficientNet-B1,
EfficientNet-B2, ..., EfficientNet-B7, respectively.

d=a?, w=p%r=y%
2)
az>lp>1y>1

where, o, 3, v are constants that can be determined by NAS technology.

3.2. EfficientNet-B7 Model

EfficientNet-B7 is a high-precision model obtained by scaling up EfficientNet-B0, its
input image resolution is 600 x 600, width multiplier factor (w) is 2.0, and depth multiplier
factor (d) is 3.1. In this study, EfficientNet-B7 was selected as the benchmark model in
order to achieve the best possible classification accuracy in the rock image dataset.

As shown in Figure 4, the EfficientNet-B7 model was built by stacking multiple Mo-
bile Inverted Bottleneck Convolution (MBConv) modules. The structure of the MBConv
module is different from traditional residual modules as its input and output feature maps
are both wider than the middle. As shown in Figure 5, the MBConv module includes a
convolutional layer of kernel size 1 x 1, depth-separable convolution, Squeeze(SE) atten-
tion module, and Dropout layer. The MBConv module applies Batch Normalization (BN)
and Swish activation function after the convolutional layers. BN can normalize the data
and speed up the model convergence during training, while the Swish activation function
can introduce non-linearity to the data and avoid overfitting. In addition, the SE attention
module in the MBConv module incorporates the SE [28] attention mechanism, which en-
hances the model’s feature representation capability by capturing channel attention infor-
mation in the input feature map.

_. Conv ___MBConvl __ MBConvé __ MBConvé _ MBConv6é  MBConvé  MBConvé __ MBConvé
k3x3.32 k3x3.48 k5x5.80 k3x3.160 k5x5.224 k5x5.384 k3x3.640

600x600x3

3x3.64

x4

x7 x7 x10 x10 xia x4 Conv1x1&Pooling&FC

Figure 4. EfficientNet-B7 network structure.

Conv BN Depwise Conv BN Conv BN
X151 Swer kxksl/s2 Swehler Blsly L SPou J|r_>-

Figure 5. MBConv module structure.
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Input Tensor

The SE attention module utilizes the SE attention mechanism to calculate the im-
portance of each channel in the input feature map for the current task, as well as weighting
them. This is achieved through the following three operations:

(1) Squeeze: The input feature map of size C x H x W is globally average pooled into a
feature map of 1 x 1 x C, thus squeezing each two-dimensional feature channel into
a single value to represent the global distribution of responses on each channel.

(2) Excitation: A fully connected neural network is used to nonlinearly transform the
squeezed map, generating activated weights through ReLU and Sigmoid activation
functions.

(3) Scale: The activated weights are used to weight each channel in the input feature map
by performing dot multiplication.

As shown in Figure 6, a rock feature map of size C x H x W is input into the SE atten-
tion module. Through the above three operations, the module assigns weights to each
channel based on their impact on rock image classification accuracy, enhancing effective
rock feature channels and suppressing weak ones. In this figure, the different channels in
the output tensor have different color borders, indicating that different weights have been
assigned to each channel after passing through the SE module.

Output Tensor
Squeeze Cx1xl . Excitation
Pool — Sigmoid
Cx1x1
O
CxHxWwW Scale
CxHxW . CxHxW i
SE Attention Module CXHXW

Figure 6. Structure of SE attention module in EfficientNet.

3.3. Triplet Attention Mechanism

In this study, we aim to classify images of various unpretreated rocks taken under
natural conditions. Although each rock image in the dataset contains only one rock type,
the features of rock morphology, texture, and color may vary slightly at different spatial
positions within the same image, resulting in an uneven distribution of rock features in
rock images. The SE attention module of EfficientNet only pays attention to the im-
portance of different rock feature channels and is unable to calculate the importance of
rock features at different spatial positions, thereby limiting the accuracy of the rock image
classification model based on EfficientNet. To address this, we introduce a triplet attention
module that can capture both spatial and channel attention information to replace the SE
module in EfficientNet, thus proposing an improved EfficientNet model—Triplet-Effi-
cientNet.

As shown in Figure 7, the triplet attention module not only assigns weights to differ-
ent feature channels of the input rock feature tensor, but also assigns weights to different
spatial positions on each channel. The output rock feature tensor in Figure 7 not only has
colored borders representing different weights for each feature channel, but also different
colors at different positions on each channel. The parts of each feature channel that are
closer to blue represent spatial features that have less impact on classification accuracy
and will be assigned smaller weights by the module, while the parts that are closer to red
represent more effective rock spatial features, and thus receive more attention from the
module and are assigned larger weights. Therefore, by incorporating a triple attention
module in the classification model, we can effectively address the issue of imbalanced
spatial feature distribution in rock images, significantly improve the model’s capability to
extract effective features, and ultimately enhance its overall accuracy.
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Figure 7. Structure of Triplet attention module.

The triplet attention module consists of three parallel branches, as shown in Figure 7,
which takes in an input rock feature tensor and outputs a refined tensor of the same shape.
Given an input rock feature tensor X € R&™W, the module first passes it to each attention
branch respectively to capture the cross-dimension interaction information among chan-
nel dimension C, spatial dimension H, and W.

In the first branch, the triplet attention module builds the interactions between the
spatial height (H) dimension and the channel (C) dimension. To achieve so, the input X
is first rotated 90 degrees counterclockwise along the H axis to obtain a rotated tensor
Xy € RYWHC Then Xy would be squeezed into a two-dimensional tensor of size 1 x H x
C through a C-Pool layer, a convolutional layer of kernel size 7 x 7, and a batch normali-
zation layer. Next, the tensor of size 1 x H x C passes through the Sigmoid activation func-
tion to generate the resultant attention weights. Following this, the generated attention
weights are applied to Xy, namely the feature parameters with the same width would be
weighted, generating weighted feature maps. Finally, the weighted feature maps are ro-
tated 90 degrees clockwise along axis H to output Xy, of the same shape as the input X.
The calculation process of this branch can be represented by the following equation:

Xy = R (XH o (ConVBN(C—pool(XH)))) 3)

where, R™ represents clockwise rotation of 90 degrees along the H axis, o represents Sig-
moid activation function, ConvBNrepresents combination operation of convolution and
batch normalization, and C-pool represents compound pooling.

The calculation process of the compound pooling layer is shown in the following
Figure 8. In this layer, the input tensor is processed through both max-pooling and aver-
age-pooling operations along the channel dimension, and the resulting features are com-
bined through concatenation.

\
00
?/

Concat

~s+ 5
OO /10
158

Figure 8. Structure of compound pooling layer.
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Similarly, in the second branch, the inputX is first rotated 90 degrees counterclock-
wise along the W axis to obtain a rotated tensor Xy, € RPCW Then, X is input into the
attention branch to generate the weighted feature maps. Finally, the weighted maps are
rotated 90 degrees clockwise along the W axis. The calculation process of this branch can
be represented by the following equation:

Xy = RV (XW o (cOanN(c-pool(XW)))) @)

where, RV* represents a clockwise rotation of 90 degrees along the W axis.

In the last branch, rotation is not carried out on the input tensorX, but directly
weighting the feature parameters in the same channel and generating weighted feature
maps is performed. The calculation process is shown in Equation (5).

Xc = X - o(ConvBN(C-pool(X))) 5)

After the calculation of each branch, as shown in Equation (6), the triplet attention
module would aggregate the refined tensors generated by each branch using simple av-
eraging, so as to realize the fusion of channel attention and spatial attention information.

1
y= 3 (X Xt Xo) ©)

3.4. Classification Model Based on Triplet-EfficientNet

In this study, we propose Triplet-EfficientNet, a modified version of EfficientNet-B7
that incorporates the triplet attention mechanism, and establish the rock classification
model based on Triplet-EfficientNet. The classification model is shown in Figure 9, and
its backbone is Triplet-EfficientNet, which is similar to EfficientNet-B7. The difference is
that Triplet-EfficientNet consists of Triplet-MBConv, an improved MBConv module with
stronger characterization capability. The Triplet-MBConv module is shown in Figure 10,
it was improved by replacing the SE module in the original MBConv module with the
triplet attention module. The classification model based on Triplet-EfficientNet can not
only capture the long-term dependence between network channels but also retain the pre-
cise location information, so as to further improve the accuracy of rock image classifica-
tion.

The process of rock-type classification using the classification model based on Tri-
plet-EfficientNet is as follows: First, the input rock images are pre-processed using meth-
ods of data enhancement, and converted into images of size 600 x 600 x 3 as the input of
the classification model. Then the first convolution layer of kernel size 3 x 3 will downsam-
ple the input image to achieve space squeeze and channel expansion. Subsequently, the
seven stages of Triplet-MBConv layers containing the triplet attention modules will fur-
ther extract high-dimensional features from the rock images. The high-dimensional fea-
ture maps are then squeezed into a two-dimensional tensor through a convolution layer
of kernel size 1 x 1, a pooling layer, and a fully connected layer. Finally, through the Soft-
max function, the model will output the prediction probabilities, which represent the
probability value of the input rock image belonging to each type. The type corresponding
to the maximum probability is the final classification result.
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Figure 9. Structure of classification model based on Triplet-EfficientNet.
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Figure 10. Structure of Triplet-MBConv module.

3.5. Transfer Learning

Although the classification algorithm based on deep learning models has overcome
the disadvantages of traditional methods based on machine learning in feature extraction,
it needs sufficient images as training input to achieve high accuracy In addition, it will
take a lot of time to build a dataset which contains a large variety of rock images. Even if
the dataset is completed, it will also cost a lot of time and computational resources to train
a high-precision deep learning model from scratch. To solve the above problems, the
transfer learning method was introduced for model training in this study.

This method applies the parameters and weights of the pre-trained model trained on
an existing large-scale annotated image dataset to a specific model oriented to a similar
problem, and then re-trains and fine-tunes the specific model to obtain the final model.
Through this method, we can obtain a classification model with higher accuracy using
fewer rock images and less training time.

In this study, we applied the transfer learning method to model training by training
all model parameters after loading the pre-trained weights, so as to make the final model
have stronger feature-extraction capability. The implementing steps are shown in Figure 11,
we first pre-train the rock classification model on ImageNet [29], which includes 27 types
and more than 20,000 fine-classified images, and the model can learn common image in-
formation on ImageNet. Then we transfer the shared parameters and weights on the pre-
trained model into an untrained model. Finally, by re-training and fine-tuning all weights
and parameters on the transferred model using the rock image dataset, we can obtain the
final model. This method allows us to leverage the knowledge learned from the pre-
trained model to significantly accelerate model convergence and improve overall model
accuracy with fewer data and computational resources.
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Figure 11. Schematic diagram of the transfer learning method.

4. Experiments and Results
4.1. Data Pre-Processing

As the number of samples in the rock image dataset is too small and the quantity
distribution among various types is not balanced, the model trained with such a dataset
has low accuracy and a risk of overfitting [30]. In order to solve the above problems and
make the trained model have higher classification accuracy and stronger generalization
ability, it is necessary to augment the number of samples in the dataset. In addition, in
order to meet the needs of model training, verification, and testing, the augmented dataset
needs to be partitioned into the training set, the verification set, and the test set in a certain
proportion.

4.1.1. Data Augmentation

In this study, we augment the number of samples in the dataset with nine data en-
hancement operations, including Rotation, Salt-and-pepper noise addition, Brightening,
Darkening, Enlargement, Vertical flip, Horizontal flip, Gaussian noise addition, and
Translation. The schematic of the data augmentation is shown in Figure 12a. The final
result is shown in Figure 12b. After data enhancement, the number of samples in the da-
taset is augmented to 6949, and the number of different samples is basically even.

1137 1133 1137

(1)Rotation (2)Salt-and-pepper (3)Brightening
noise addition
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Figure 12. Data augmentation. (a) Data augmentation methods; (b) Data augmentation result.

(9Translation
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Rotation is a transformation that rotates an image by a specified angle around its
center; salt-and-pepper noise is a type of image noise that is characterized by random
white and black pixels. In the process of the noise addition for each pixel in the image, if
the pixel is not randomly selected, its value in the new image will be the same as its value
in the original image. If the pixel is randomly selected, its value in the new image will be
0 or 255, and its color will be black or white. Brightening is a transformation that increases
the brightness of an image. Darkening is a transformation that decreases the brightness of
an image. Enlargement is a transformation that increases the size of an image. Vertical flip
is a transformation that flips an image vertically. Horizontal flip is a transformation that
flips an image horizontally. Translation is a transformation that shifts an image by a spec-
ified amount on the x-axis and y-axis. In addition, Gaussian noise is a type of image noise
that is characterized by random values that follow a Gaussian distribution. The addition
of Gaussian noise increases the complexity of the image and makes it more similar to the
noise present in actual rock images. This allows for better simulation of real-world sce-
narios and improves the robustness of the model to noise. In rock classification, this
method allows the model to adapt better to different environments, thereby improving
recognition accuracy. The formula for adding Gaussian noise to an image is:

I (xy) =1(xy) + N(g,0?) (7)

where, I is the original image, I is the brightened image, N is the function of gaussian
noise, p is the mean, and o is the variance. In this study, p is set as 0 and o7 is set as
0.01.

4.1.2. Dataset Partitioning

In deep learning, datasets are typically partitioned into the training set, the validation
set, and the test set to meet the needs of model training, validation, and testing. The train-
ing set is a collection of data used to train the model. By learning from the training set, the
model can learn the features and patterns of the data, thus improving the accuracy of
predictions. The training set includes input data and corresponding labels, and the model
continuously updates its weights to improve prediction accuracy. The training set is the
foundation of deep learning model training and has a crucial impact on the model’s per-
formance, therefore the training set occupies the largest amount of data. The validation
set is a dataset used to evaluate the model’s performance. The validation set can help us
detect the degree of overfitting of the model and adjust the model’s hyperparameters in a
timely manner. At the same time, it can also help us choose the best model parameters,
such as epoch, learning rate, and batch size. The test set is a dataset used to evaluate the
final performance of the model. After the training and validation process was completed,
we usually use the test set to evaluate the final performance of the model. In this study,
the rock dataset was also randomly divided into the training set, the validation set, and
the test set with a ratio of 60%, 20%, and 20%, respectively. Therefore, the number of sam-
ples for them is 4169, 1389, and 1389, respectively.

4.2. Experiment Details

The model was trained and tested on a high-performance workstation with Windows
10 operating system, which was configured with a 2.10 GHz Intel Xeon Silver 4110 CPU
(16 GB memory) and NVIDIA GeForce RTX 2080 Ti GPU. The software environment is as
follows: Windows 10 operating system based on 64-bit, Pytorch deep learning framework,
CUDA11.0, OpenCV2 library and VS Code integrated development environment.

During network training, the learning rate was set to 0.01, the epoch was set to 60,
and the batch size was set to 16. The Swish function was selected as the activation function,
the cross entropy function was selected as the loss function, and Adaptive Moment Esti-
mation(Adam) was selected as the optimizer.
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Before the model training, the parameters of the pre-trained model were loaded to
the classification model by the transfer learning method. The images in the training set
were then uniformly scaled to the size of 600 x 600 x 3 and randomly packaged into the
model to start the training. In the process of training, we randomly selected 4169 images
for training, and each image would be used several times. The training set and verification
set were evaluated once per iteration, and the process of training accuracy, verification
accuracy, and cross-entropy loss changes in each generation were saved as a log file, and
then uploaded to Tensorboard for review.

4.3. Evaluation Metrics

Accuracy and loss value are the two most common evaluation indexes for image clas-
sification. The accuracy represents the proportion of correctly classified samples in all
samples, which is the evaluation index that most directly reflects the performance of the
classification model. It is formulated by Equation (8):

t

Accuracy = T

where, t is the number of samples correctly classified, and T is the total number of sam-
ples.

In this study, the cross-entropy loss function was used to quantitatively evaluate the
difference between the predicted value and the real value. Through the calculation of the
loss function, the parameters of our model were updated. It is formulated by Equation (9):

Loss = Nz L= ——Z Z Y, Og(ch) 9)

where M is the total number of types. y. is the indicator variable, and if the type is as

(8)

same as the type of the sample i, y, is1, otherwiseitis 0. p, is the prediction probability
of the sample i belonging to the type c.

4.4. Results Analysis
4.4.1. The Effectiveness of Data Augmentation

In this study, we sought to enhance the performance of our classification model by
expanding the original dataset through some methods of data augmentation. To evaluate
the effectiveness of this pre-processing step, we conducted a series of ablation experi-
ments. The classification model based on Triple-EfficientNet was used to conduct experi-
ments on the training set and the test set before and after expansion. As can be seen from
the results in Table 2, the application of data augmentation resulted in a significant in-
crease in classification accuracy for both the training set and the test set. Specifically, the
accuracy of the training set increased by 31.4%, while the accuracy of the test set increased
by 22.4%. These results demonstrate that pre-processing a small sample dataset through
data augmentation can improve the network’s ability to extract more comprehensive rock
features, thereby enhancing the model’s overall generalization capability.

Table 2. The results of the ablation experiments on the data augmentation methods.

Final Accuracy in the

Number of Images . .
training set

Method Top-1 Accuracy in

in the Rock Dataset (Epoch = 60) the Test Set
Trlple.zt—.EfﬁmentNet 315 61.2% 70.8%
+ Original dataset
Triplet-Effici
riplet-EfficientNet 6949 92.6% 93.2%

+ Augmented dataset
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4.4.2. The Effectiveness of Transfer Learning

In order to evaluate the effect of the training strategy with transfer learning on the
convergence of network training, we respectively trained a classification model based on
Triplet-EfficientNet with the transfer learning method and another identical model but
without the transfer learning method. Except for the different training strategies, the set-
tings of the other hyperparameters were the same for these two models.

The changes in accuracy and loss value in the training process are shown in Figure 13a
and Figure 13b, respectively. As can be seen from Figure 13a, the model with the transfer
learning method can obtain an initial accuracy of up to 75.2%, and its final accuracy
reaches 92.6% after 60 epochs. However, the initial accuracy of the model without the
transfer learning method is only one-quarter of the former, and the final accuracy is only
44.2%. As can be seen from Figure 13b, the initial loss value of the model with the transfer
learning method is only 1.225, then it rapidly converges in 60 epochs, and the final loss
value converges to 0.214. However, the overall loss value of the model without the transfer
learning method is higher than one, and its convergence speed is much lower than that of
the former.

By comparing the changes in accuracy and loss value for the same model with differ-
ent training strategies, it can be seen that the transfer learning method greatly speeds up
the convergence process of the classification model and improves the overall accuracy of
the model in the training process. This is because the transfer learning method pre-loaded
the common model parameter information, which is for image feature extraction and ob-
tained in the large-scale image dataset, to the trained model. Thus, the transfer learning
method endows the model with strong image feature-characterization ability at the be-
ginning of training, leading to improved performance and faster training convergence.

= with transfer learning without transfer learning = with transfer learning without transfer learning
il T 25
0z b AT\ NP NS NV 5926 , 1984
g o7 T
§ 0.6 @ 15 ~—— |
B y le) \ 1.225 = 1009
0.4 =1\ T
% 0.442 N\
02 AL 05 e T 062
0 0 i
0 10 20 30 40 50 60 0 10 20 30 40 50 60
EPOCH EPOCH
(a) (b)

Figure 13. Performance comparison of model with transfer learning versus model without transfer
learning. (a) Accuracy; (b) Loss.

4.4.3. Evaluation of Model Training Performance

In order to evaluate the training convergence performance of the classification model
based on Triplet-EfficientNet, we trained five models to do a comparative study. These
models are respectively EfficientNet-B7, VGG16, GoogleNet, AlexNet [31], and Triplet-
EfficientNet. The training strategies and hyperparameters used in the training of each
model were consistent.

The changes in accuracy and loss value in the training process are shown in Figure 14a
and Figure 14b, respectively. As can be seen from Figure 14a, the average accuracy in the
training set of the five models in 60 epochs from high to low is as follows: Triplet-Effi-
cientNet, EfficientNet-B7, VGG16, GoogleNet, and AlexNet. As shown in Figure 14b, the
rank of loss values is reversed. The following Table 3 shows the concrete accuracy and
loss values of each model. As can be seen from the table, the classification model based on
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ACCURACY

0.2

Triplet-EfficientNet proposed in this study shows higher accuracy and lower loss value
in the training set compared with EfficientNet-B7 and other models. The results show that
the compound model scaling method based on EfficientNet obtains better network struc-
ture and more reasonable parameter configuration by NAS technology, and the introduc-
tion of a triplet attention mechanism further improves the overall accuracy and training
convergence performance of the model.

1 IR
05 —~——

= Triplet-EfficientNet

20 30 40 S0 60 0 10 20 30 40 50 60
EPOCH
EPOCH
EfficientNet-B7 —— AlexNet —— GoogleNet — Vgg16 ~—— Triplet-EfficientNet— EfficientNet-B7—— AlexNet—— GoogleNet— Vgg16
(a) (b)

Figure 14. The changes in accuracy and loss value of different model during training. (a) Accuracy;
(b) Loss.

Table 3. Accuracy and loss value of different model in the training set.

ore Final )
Model AICIZ:;:iy Initial Loss  Accuracy (E;r:;lhl':zz)
(Epoch = 60)
AlexNet 32.7% 1.638 65.5% 0.818
GoogleNet 40.9% 2.870 83.3% 0.501
VGG16 35.7% 1.744 84.6% 0.289
BificientNet 57 75.2% 1225 90.4% 0.255
(+SE attention mechanism)
Triplet-EfficientNet
(+Triplet attention mecha- 76.6% 1.215 92.6% 0.214

nism)

4.4.4. Performance Comparison for Different Models

In this study, we aimed to evaluate the robustness and generalization ability of the
classification models based on Triplet-EfficientNet and to demonstrate the superiority of
our proposed method by comparing its performance with other models. We not only in-
troduced mainstream classification models such as AlexNet, GoogleNet, and VGG16, but
also replicated recent similar image classification methods, including a deep residual net-
work model (ResNet34) proposed by Chen et al. [15] and CA-EfficientNet proposed by
Gan et al. [32]. CA-EfficientNet is an improved EfficientNet model by incorporating the
coordinate attention mechanism. Seven models, including the Triplet-EfficientNet model
proposed in this paper, were tested with consistent training sets, training strategy, and
input image size.

In performance testing, we employed seven trained models for image inference in
the test set and used the widely accepted Top-1 accuracy metric for evaluating the infer-
ence results. Top-1 accuracy refers to the accuracy with which the type with the highest
probability of prediction matches the actual result [33]. As shown in Table 4, for input
images of the same size, EfficientNet-B7, CA-EfficientNet, and Triplet-EfficientNet mod-
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els greatly outperform other models in Top-1 accuracy due to the efficient network struc-
ture of EfficientNet. Among them, CA-EfficientNet and Triplet-EfficientNet models ben-
efit from the introduction of the coordinate attention mechanism and triplet attention
mechanism, respectively, and exhibit better performance. Compared with EfficientNet-
B7, they have stronger spatial feature characterization ability and can obtain more effec-
tive feature information in rock images, thus further improving their Top-1 accuracy.
Through further comparison, it was found that the triplet attention mechanism of Triplet-
EfficientNet outperforms the coordinate attention mechanism of CA-EfficientNet in terms
of model performance. This is because the triplet attention mechanism has more attention
branches compared with the coordinate attention mechanism, allowing the model to more
comprehensively extract feature information across image dimensions. Therefore, Triplet-
EfficientNet which incorporates the triplet attention mechanism has the highest Top-1 ac-
curacy.

In addition to testing the performance of the models, we also used two indicators,
Parameters and FLOPs, to calculate the computational complexity of each model. Param-
eters refer to the total number of parameters that need to be trained during model training
and are used to measure the computational space complexity of the model. FLOPs (Float-
ing-point Operations) refer to the number of floating-point operations that need to be per-
formed in a neural network model, which is used to measure the computational time com-
plexity of the model. As shown in Table 4, EfficientNet-B7, CA-EfficientNet, and Triplet-
EfficientNet achieved higher accuracy with moderate parameters and FLOPs, thanks to
the efficiency of the EfficientNet network structure and its parameters. Furthermore, the
triplet attention mechanism of Triplet-EfficientNet is more efficient compared to the coor-
dinate attention mechanism of CA-EfficientNet and the SE attention mechanism of Effi-
cientNet-B7. It not only reduces the computational complexity of the original EfficientNet
model but also further improves the model’s performance.

Table 4. Performance comparison for different network models in the test set.

Input Image Top-1

Model . Parameters FLOPs
Size Accuracy
AlexNet [31] 600 x 600 71.9% 61 MB 5G
GoogleNet [18] 600 x 600 80.6% 13 MB 10G
VGG16 [19] 600 x 600 88.1% 138 MB 110 G
ResNet34 [15] 600 x 600 86.3% 36 MB 26 G
EificientNet-B [26] 600 x 600 92.0% 66 MB 38 G
(+SE attention mechanism)
CA-EfficientNet [32]
(+Coordinate attention mech- 600 x 600 92.6% 67 MB 39 G
anism)
Triplet-EfficientNet
(+Triplet attention mecha- 600 x 600 93.2% 64 MB 36 G
nism)

4.4.5. Reality Testing

In order to evaluate the prediction effect of the classification model based on Triplet-
EfficientNet proposed in this study, seven rock images of various types are randomly se-
lected from the rock dataset for prediction, and the prediction probability of seven rock-
type labels in each image is output, as shown in Figure 15. The rock-type label correspond-
ing to the maximum predicted probability value is the final classification result. The re-
sults show that the classification effect of this model on all kinds of selected images
achieved a high level, with an accuracy of more than 95%, and the prediction probability
of black coal, dark gray silty mudstone, and gray argillaceous siltstone is close to 100%.
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The results show that the classification model proposed in this study has great robustness
and generalization ability.

Typel:
Type2:
Type3:
Type4:
Type5:
Type6:
Type7:

(a) Dark gray mudstone

5.49x10-6 Typel: 1.0(Black coal) Typel: 6.36x10-5 Typel: 4.25x10-
0.967(Dark gray mudstone) Type2: 1.48x1077 Type2: 0.00183 Type2: 0.00259
0.033 Type3: 3.17x10-6 Type3: 0.0397 Type3: 0.0136
3.24x10-5 Type4: 1.87x10~7 Type4: 9.45x10-6 Type4: 0.000542
2.54x10-3 Type5: 1.42x10-8 Type5: 0.000121 [Type5: 0.00132
4.29x10-5 Type6: 2.46x1077 Type6: 0.958(Gray fine sandstone)  [Type6: 0.00125
2.41x10-5

Sl st o
(d) Light gray fine sandstone

(b) Black coal (c) Gray fine sandstone

Typel:
Type2:
Type3:
Type4:
Type5:
Type6:
Type7:

(e) Dark gray silty mudstone

1.39x10° Typel: 7.04x10~7 Typel: 4.22x10 Typeé6: gray fine sandstone
1.08x10-° Type2: 0.00457 Type2: 0.000159 Type7: light gray fine sandstone
1.0(Dark gray silty mudstone) | Type3: 0.000723 Type3: 3.29x10-°

4.78x10-6 Typed: 0.992(Gray black mudstone){Type4: 1.76x10-

8.36x10~7 Type5: 0.00317 Type5: 1.0 (Gray argillaceous siltstone)

4.99x10-7 Type6: 2.35x10-5 Type6: 6.9x10-¢

2.96x10-6 Type7: 1.63x10-5 Type7: 2.79x10-

Type7: 2.64x10~° Type7: 0.000285 [Type7: 0.981(Light gray fine sandstone

Typel: black coal

Type2: dark gray mudstone
Type3: dark gray silty mudstone
Type4: gray black mudstone
Typeb: gray argillaceous siltstone

3750 S - 3 2, W 5 e e ] AN
(f) Gray black mudstone (g) Gray argillaceous siltstone

Figure 15. The prediction probability of the classification model for each rock-type sample.

4.4.6. Comprehensive Analysis and Discussion

In this section, we validated the effectiveness and advancedness of our proposed rock
image classification method based on EfficientNet and a triplet attention mechanism
through a series of experiments.

First, we conducted ablation experiments to verify the effectiveness of data augmen-
tation. This pre-processing method significantly increased the sample size of the dataset
through various image transformations, effectively addressing the problem of insufficient
sample size and uneven distribution among types in the original dataset, allowing the
model to capture enough data patterns, and thus improving and enhancing the recogni-
tion accuracy and generalization ability of the model.

Next, we fully validated the effectiveness of the transfer learning in model training
by training a classification model with transfer learning and another identical model with-
out transfer learning. The transfer learning method loads pre-trained weights into an un-
trained model during the initial training phase, endowing the model with strong image
feature extraction capabilities, and enabling the model to achieve a higher accuracy with
less time and data samples.

We then trained five models, including EfficientNet-B7, VGG16, GoogleNet,
AlexNet, and Triplet-EfficientNet, respectively, to compare their model training perfor-
mance, thus validating the effectiveness of the EfficientNet network structure and Triplet
attention mechanism in improving model training performance.

To further validate the robustness and generalization ability of our proposed model,
as well as its superiority over other mainstream and cutting-edge models, we trained six
models (AlexNet, GoogleNet, VGG16, ResNet34, EfficientNet-B7, CA-EfficientNet) and
our proposed Triplet-EfficientNet. We applied the same training strategy and parameter
settings to all models. After training, we conducted performance testing and computa-
tional complexity testing on these models. The results showed that the high efficiency of
the EfficientNet network structure allowed EfficientNet-B7, CA-EfficientNet, and Triplet-
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EfficientNet to achieve higher model accuracy with moderate Parameters and FLODPs.
Meanwhile, the triplet attention mechanism of Triplet-EfficientNet was more efficient in
image inference compared to the SE attention mechanism of EfficientNet-B7 and the co-
ordinate attention mechanism of CA-EfficientNet, allowing EfficientNet models to further
improve accuracy while reducing Parameters counts and FLOPs.

Finally, we assessed the actual performance of our rock image classification model
on seven images containing various types of rocks. The results demonstrated that the
model achieved accurate classification of all test images with a prediction accuracy of over
95%. These outcomes showcase the exceptional ability of our model in classifying rock
images.

5. Conclusions

In this study, a rock image classification model based on EfficientNet and a triplet
attention mechanism is proposed to achieve accurate end-to-end rock image classification.
To begin, we expanded the rock image dataset through various data augmentation meth-
ods to prevent overfitting of model training and improve model performance. In building
the model, we utilized EfficientNet as the benchmark network, which boasts an efficient
network structure thanks to NAS technology and a compound model scaling method. On
this basis, the triplet attention mechanism was introduced to improve the original Effi-
cientNet and enhance the model’s ability to extract spatial features of rock images. The
experimental results demonstrate that the classification model in this study outperforms
other mainstream models on both the training set and the test set, the accuracy reached
92.6% and 93.2% respectively. In training the model, we employed the transfer learning
method during the training process to accelerate model convergence and significantly en-
hance the model’s training performance. The training accuracy of the model with transfer
learning increased by 48.4% compared with that without transfer learning.

Through further research, it has been revealed that the number of samples and rock
types in the rock dataset have a significant impact on the number of rock types that can
be recognized by the model and the final classification accuracy. With this in mind, our
future research endeavors will concentrate on expanding the variety of rock types and the
quantity of rock images, while ensuring that the classification accuracy is further en-
hanced with the addition of more rock types. Furthermore, given the difficulty of obtain-
ing timely feedback on rock-type recognition results through networks in field explora-
tion, we intend to deploy our model on mobile devices in addition to improving it. This
will allow geological surveyors to conveniently identify rocks using the classification
model under offline conditions.

Author Contributions: Conceptualization, Z.H. and L.S.; methodology, Z.H.; software, Z.H.; vali-
dation, Z.H., JJW. and Y.C,; formal analysis, Z.H.; investigation, Z.H.; resources, Z.H.; data curation,
Z.H.; writing—original draft preparation, Z.H.; writing—review and editing, Z.H.; visualization,
Z.H.; supervision, L.S.; project administration, Z.H.; funding acquisition, L.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61903315, and the Natural Science Foundation of the Department of Science and Technol-
ogy of Fujian Province, grant number 2022]J1011255.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank all reviewers for their comments and Guangdong TipDM Intelligent
Technology Co., Ltd. for the rock images.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 3180 20 of 21

References

1. Fu, G, Yan,],; Zhang, K,; Hu, H.; Luo, F. Current status and progress of lithology identification technology. Prog. Geophys. 2017,
32, 26-40.

2. Zhang, S.; Bogus, S.M.; Lippitt, C.D.; Kamat, V.; Lee, S. Implementing Remote-Sensing Methodologies for Construction Re-
search: An Unoccupied Airborne System Perspective. ]. Constr. Eng. Manag. 2022, 148, 3122005.

3. Guo, Q; Zhou, Y,; Cao, S.; Qiu, Z.; Xu, Z.; Zhang, Y. Study on Mineralogy of Guangning Jade. Acta Sci. Nat. Univ. Sunyatseni
2010, 49, 146-151.

4. Mlynarczuk, M.; Gérszczyk, A,; élipek, B. The application of pattern recognition in the automatic classification of microscopic
rock images. Comput. Geosci. 2013, 60, 126-133.

5. Xiao, F,; Chen, J.; Hou, W.; Wang, Z. Identification and extraction of Ag-Au mineralization associated geochemical anomaly in
Pangxitong district, southern part of the Qinzhou-Hangzhou Metallogenic Belt, China. Acta Petrol. Sin. 2017, 33, 779-790.

6. Xu, Z;Ma, W,; Lin, P,; Shi, H,; Liu, T.; Pan, D. Intelligent Lithology Identification Based on Transfer Learning of Rock Images.
J. Basic Sci. Eng. 2021, 29, 1075-1092.

7. Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual
perspective. Int. ]. Remote Sens. 2018, 39, 4852—-4868.

8. Marmo, R.; Amodio, S.; Tagliaferri, R.; Ferreri, V.; Longo, G. Textural identification of carbonate rocks by image processing and
neural network: Methodology proposal and examples. Comput. Geosci. 2005, 31, 649-659.

9.  Singh, N,; Singh, T.; Tiwary, A.; Sarkar, K.M. Textural identification of basaltic rock mass using image processing and neural
network. Comput. Geosci. 2010, 14, 301-310.

10. Yen, HH.; Tsai, H.Y.; Wang, C.C.; Tsai, M.C.; Tseng, M.H. An Improved Endoscopic Automatic Classification Model for Gas-
troesophageal Reflux Disease Using Deep Learning Integrated Machine Learning. Diagnostics 2022, 12, 2827.

11. Dimitrovski, L; Kitanovski, I.; Kocev, D.; Simidjievski, N. Current trends in deep learning for Earth Observation: An open-
source benchmark arena for image classification. ISPRS ]. Photogramm. Remote Sens. 2023, 197, 18-35.

12. Xu, S.; Zhou, Y. Artificial intelligence identification of ore minerals under microscope based on deep learning algorithm. Acta
Petrol. Sin. 2018, 34, 3244-3252.

13. Zhang, Y.; Li, M,; Han, S. Automatic identification and classification in lithology based on deep learning in rock images. Acta
Petrol. Sin. 2018, 34, 333-342.

14. Cheng, G.; Li, P. Rock thin-section image classification based on residual neural network. In Proceedings of the 2021 6th Inter-
national Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9-11 April 2021; pp. 521-524.

15. Chen, W.; Su, L.; Chen, X.; Huang, Z. Rock image classification using deep residual neural network with transfer learning. Front.
Earth Sci. 2023, 10, 1079447.

16. Koeshidayatullah, A.; Al-Azani, S.; Baraboshkin, E.E.; Alfarraj, M. Faciesvit: Vision transformer for an improved core lithofacies
prediction. Front. Earth Sci. 2022, 10, 992442.

17.  Zhang, W.; Zhang, Q.; Liu, S.; Pan, X.; Lu, X. A Spatial-Spectral Joint Attention Network for Change Detection in Multispectral
Imagery. Remote Sens. 2022, 14, 3394.

18. Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 8-10 June
2015; pp. 1-9.

19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

20. He, K; Zhang, X,; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 770-778.

21. Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings
of the IEEE Winter Conference on Applications of Computer Vision, Online, 5-9 January 2021; pp. 3139-3148.

22. Okada, H. Classification of sandstone: Analysis and proposal. J. Geol. 1971, 79, 509-525.

23. Haimson, B.; Rudnicki, ].W. The effect of the intermediate principal stress on fault formation and fault angle in siltstone. J.
Struct. Geol. 2010, 32, 1701-1711.

24. Vaniman, D.; Bish, D.; Ming, D.; Bristow, T.; Morris, R.; Blake, D.; Chipera, S.; Morrison, S.; Treiman, A.; Rampe, E. Mineralogy
of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 2014, 343, 1243480.

25. Huang, Y.; Cheng, Y.; Bapna, A ; Firat, O.; Chen, D.; Chen, M,; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y. Gpipe: Efficient training of
giant neural networks using pipeline parallelism. Adv. Neural Inf. Process. Syst. 2019, 32, 103-112.

26. Tan, M,; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
conference on machine learning, Long Beach, CA, USA, 10-15 June 2019; pp. 6105-6114.

27. Yao, Q.; Wang, M,; Chen, Y.; Dai, W.; Li, Y.F.; Tu, WW,; Yang, Q.; Yu, Y. Taking human out of learning applications: A survey
on automated machine learning. arXiv 2018, arXiv:1810.13306.

28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018; pp. 7132-7141.

29. Deng, J.; Dong, W.; Socher, R.; Li, L.]J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.

30. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks. In

Proceedings of the International conference on machine learning, New York, NY, USA, 19-24 June 2016; pp. 1842-1850.



Appl. Sci. 2023, 13, 3180 21 of 21

31. Krizhevsky, A.; Sutskever, I; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM
2017, 60, 84-90.

32. Gan, Yu.; Guo, Q.; Wang, C.; Liang, W.; Xiao, D.; Wu, H. Recognizing crop pests using an improved EfficientNet model. Trans.
Chin. Soc. Agric. Eng. 2022, 38, 203-211.

33. Wei, Y.; Wang, Z.; Qiao, X.; Zhao, C. Lightweight rice disease identification method based on attention mechanism and Effi-
cientNet. ]. Chin. Agric. Mech. 2022, 43, 172-181.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



