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Abstract: The accumulation of biowastes is one of the main concerns of modern society. One of the
most environmentally friendly solutions to convert biowaste into a product is composting. Biowastes
may contain unknown substances that are persistent in the final compost, thus contributing to
soil contamination and salinization. The effectiveness of the composting process depends on the
microbial communities involved, which is the number of investigations’ targets. The present work
studied the bacterial diversity of mesophilic and thermophilic phases of composting developed in
two different sites. The study was conducted through next-generation Illumina HiSeq sequencing
and phylogenetic communities, revealing the dynamics and changes in specific mesophilic and
thermophilic habitats of composting piles. The results showed a higher number of bacterial species
in the mesophilic phase than in the thermophilic one, proved by the Shannon and Chao indices. In
addition, the diversity of bacterial species expressed by the operational taxonomic units was much
higher at the site of Harmanli than at the Yasno pole. Higher abundance was found of the genera
Sphingobacterium, Sphingomonas, Paracoccus, Pseudomonas, and Halomonas in both studied sites. In
the compost of Harmanli genera Streptomyces, Truepera, and Flavobacterium were found to be much
more abundant compared to the compost of the Yasno pole. Finally, we conclude that the two
plots show relatively significant differences in the diversity of bacteria during biowaste composting.
Substantial differences were also observed between the mesophilic and thermophilic phases, with the
first showing a significantly higher degree of species richness.

Keywords: biowaste; composting; bacterial communities; microbial diversity; Illumina sequencing;
metagenomics

1. Introduction

A considerable amount of bio-waste is constantly produced in Bulgaria. Some of
the waste ends up in landfills, contrary to the EC Waste Framework Directive and the
goals set for the member states to reduce the landfill of biodegradable waste [1]. Biowaste
composting is an aerobic process of recycling organic substances and turning them into
valuable products for soil and plants [2,3]. The quality of such end-products depends on
many different factors. The degradation of biopolymers and simpler organic molecules
is carried out by aerobic microorganisms with correctly implemented technology. Until
a decade ago, the study of quantitative and qualitative indicators of this microflora was
carried out by many indirect and less direct techniques. With the development of new
technologies and next-generation sequencing (NGS), it is possible to reveal the participating
microorganisms, prokaryotes and eukaryotes, and their quantity, abundance, metabolic
abilities, etc. [4]. In addition, in-depth research of microbial diversity would allow for better
control over how composting proceeds.

According to different authors [5,6], the temperature of composting is essential to esti-
mate the final quality and applicability of compost. High temperatures can kill pathogens
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in compost and promote the degradation of organic matter [7]. Generally, the composting
process could be separated into different phases or stages depending on temperature [8].
Bernal and co-authors [9] determined four composting stages based on the temperature—
mesophilic, thermophilic, cooling, and maturing. Various scientists analyzed the dynamics
and composition of the microbial population during the composting of various types of
organic wastes [10–12]. Diverse traditional methods (culture-dependent) have been used
for decades to study bacterial diversity in composting [13]. Recently, researchers have
developed various molecular biological techniques to build detailed information linked
to microbial community composition during composting time. Some methods are clone
library, DNA fingerprinting, qPCR or investigative microarrays [14–16]. The 16S rRNA
sequence-based molecular technique has become a valuable method to identify the specific
microorganisms in compost and soil samples [17,18].

Investigations related to microbial diversity of composting are often very detailed and
are related to a specific group of prokaryotes, for example, to the nitrogen cycle, nitrifying
and denitrifying bacterial communities [3]. Other researchers are studying changes in
the dynamics of bacterial communities in compost and their metabolic functions [19].
In addition, Meng and collaborators [20] investigated the diversity of prokaryotes and
eukaryotes and the relationship of community structure to physicochemical parameters
of habitats. The recovery of biowaste through composting depends on many factors, and
the comparison between research papers is sometimes indirect due to the different factors
in different studies. These differences are related to both waste types and environmental
factors. These are some reasons that research on the structure and functions of microbial
communities in composting is extremely limited, insufficient and not diverse. We know
that different microclimatic conditions create opportunities for the development of different
prokaryotic communities with a similar metabolic profile occupying the same ecological
niche. Since high throughput sequencing technology has been applied to composting,
the investigations are now based on both qualitative and quantitative determination of
microorganisms and reveal their numbers and metabolic abilities. In this sense, the main
objective of the present study was to reveal the existing difference in prokaryotic diversity
of composting of biowastes in thermophilic and mesophilic phases of two sites in South
Bulgaria using the metagenomic approach.

2. Materials and Methods
2.1. Experimental Design and Sampling

Biodegradable wastes were studied with their valorization potential. The waste
materials, which included leaves, cut grass, trimmed brushes, and chips of tree branches,
were collected from gardens and parks in the towns of Harmanli and Yasno pole in South
Bulgaria. Both municipalities are situated at a distance of 95 km apart from each other. The
composting was performed in piles covered by a semipermeable membrane. The aeration
in the Harmanli site was performed by turning/mixing the pile on-site once per week or
ten days.

In contrast, the aeration in Yasno pole village was made through the forced injection
of air from nozzles at the base of the piles covered by a geosynthetic membrane. The
composting piles of Harmanli were 5 m wide and 2.40 m high, while those of Yasno pole
were 7 m wide and 3 m high. The ratio of brown (carbon rich) and green (nitrogen rich)
wastes was set at 28:1 for both studied sites. During the whole composting process, the
water content of the piles was maintained at about 55–60%.

The sampling was made in the corresponding temperature time for mesophilic and
thermophilic phases. Five sub-samples were taken at the same time and temperature from
different habitats of the composting pile and were mixed to form the master sample. At the
Harmanli site, thermophilic temperatures were reached from day 29, while the sample for
analysis was taken on day 53 (sample A1). (67 ◦C). In contrast, the thermophilic phase was
reached on the 3rd day at the Yasno pole site, but the sample was taken at day 16 (75 ◦C,
sample B2). The mesophilic stage for both composting sites was reached at the end of the
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process. At the Harmanli site, this point was on day 73 at 39 ◦C (sample A2), while for the
case of the Yasno pole compost, it was at the very end of composting—day 51 and 36 ◦C
(sample B1).

2.2. Physicochemical and Microbiological Parameters

Pile temperatures were measured using a digital thermometer with a probe at 1 m
depth or sensors for measuring temperature and oxygen availability at Harmanli and Yasno
pole sites, respectively. Samples were dissolved in water (1:10, w/v) and shaken, followed
by sedimentation and measurement of compost pH and EC. Total nitrogen was measured
through the Kjeldahl method. The ammonia (NH4-N) and nitrate (NO3-N) nitrogen were
extracted using 2 M KCl (1:10, w/v). After centrifugation and filtration, the ammonia was
determined by NaOH distillation and titration with H2SO4. NO3-N concentration was
calculated as the difference between the values of Zn-FeSO4 and NH4-N [21]. The organic
C was measured and calculated after the carbonization of the sample in a muffle furnace at
550 ◦C for 6 h [22]. In addition, compost respiration was studied using the method of Alef
and Nannipieri [23].

2.3. DNA Extraction

Total genomic DNA was extracted from one gram of the compost samples following
the manufacturer’s instructions. The quality of gDNA was checked on 1% agarose gel
(loaded 5 µL) for the single intact band. The gel was run at 70 V for 60 min. PCR amplified
targeted regions using specific primers connecting with barcodes (Table S1). V4 region of
the 16S rRNA gene was amplified with polymerase chain reaction (PCR) using primers V3
(5′-CCTACGGGNGGCWGCAG-3′) and V4 (5′-GACTACHVGGGTATCTAATCC-3′) [4,24].
The PCR products with proper size were selected by 2% agarose gel electrophoresis. The
exact amount of PCR products from each sample was pooled, end-repaired, A-tailed and
further ligated with Illumina adapters. Libraries were sequenced on a paired-end Illumina
platform to generate 450 bp paired-end raw reads (Figure S1).

The amplicon was sequenced on Illumina paired-end platform to generate 450 bp
paired-end raw reads (Raw PE) and then merged and pretreated to obtain clean tags.
The chimeric sequences in clean tags were checked to obtain effective tags, which were
used for subsequent analysis [25–27]. The OTUs were selected at 97% similarity. The
estimation of richness (ACE and Chao) and diversity indices (Shannon and Simpson) were
calculated using the Mothur program [28]. Alpha diversity is applied in analyzing the
complexity of biodiversity for a sample through six indices, including Observed-species,
ACE, Shannon, Simpson, Chao1, and Good-coverage. All these indices in our samples
were calculated using QIIME (Version 1.7.0, http://qiime.org/1.7.0/) and displayed with R
software (Version 2.15.3) [24,29]. According to Zhang and collaborators, OTU comparisons
were performed using the Venn diagram package [29]. Boxplots were used for comparison
of microbial diversity of diverse groups. A neighbor-joining phylogenetic tree technique
was applied to investigate the similarity of species abundance using the unweighted pair
group with arithmetic mean (UPGMA) clustering [28]. Using a relative abundance matrix,
LEfSe (the linear discriminant analysis coupled with effect size measurements method)
analysis was performed using the Kruskal–Wallis rank sum test to detect the microbial
taxa with significantly different abundances between the three sea areas and using LDA
to estimate the effect size of each taxon [30,31]. All significance tests were two-sided, and
p values < 0.05 were considered statistically significant.

2.4. Beta Diversity

Beta diversity analysis is often used for evaluation of existing differences between
samples on weighted and unweighted Unifrac, and in our study, it was calculated by
QIIME software (Version 1.7.0) [32]. Cluster analysis was preceded by principal compo-
nent analysis (PCA) using the FactoMineR package and ggplot2 package in R software
(Version 2.15.3) [33]. Principal coordinate analysis (PCoA) was applied to obtain principal
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coordinates and visualize complex multidimensional data. A distance matrix of weighted
or unweighted Unifrac among samples obtained before was transformed to a new set of or-
thogonal axes. The maximum variation factor is demonstrated by first principal coordinate,
the second maximum by the second principal coordinate, and so on. PCoA analysis was
displayed by WGCNA package, stat packages and ggplot2 package in R software (Version
2.15.3) [34]. Unweighted pair-group method with arithmetic means (UPGMA) clustering
was applied to interpret the distance matrix using average linkage and was conducted by
QIIME software (Version 1.7.0) [24,35].

3. Results
3.1. Physicochemical Properties of Compost

The course of temperature during the composting of biowaste at the investigated sites
is shown in Figure 1. There are some differences in the process itself regarding this indicator.
They are related to the slower temperature rise in the Yasno Pole compost (1 A) and the
faster one in Harmanli (1 B). Thus, while the initial mesophilic phase is about 20 days
in the first case, it is only three days in the second. At the same time, exposure to high
temperatures is associated with the degradation of smaller-molecule organic substances.
It is favorable for the destruction of available pathogenic microorganisms that would
eventually develop [36]. How composting should be carried out is regulated in Bulgaria by
the ordinance on the separate collection of biowaste and treatment of biodegradable waste
from 2017 [37]. In accordance with this and to ensure decontamination of the composted
biowaste, the temperature in the outdoor piles must be maintained for at least 10 days
above 55 ◦C or at least 3 days above 65 ◦C. In the Harmanli trial, temperatures were above
55 ◦C for 40 days, with 8 days above 65 ◦C. In Yasno Pole, they were above 55 ◦C twice for
27 days, and above 65 ◦C for 14 days.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19 
 

2.4. Beta Diversity 
Beta diversity analysis is often used for evaluation of existing differences between 

samples on weighted and unweighted Unifrac, and in our study, it was calculated by 
QIIME software (Version 1.7.0) [32]. Cluster analysis was preceded by principal compo-
nent analysis (PCA) using the FactoMineR package and ggplot2 package in R software 
(Version 2.15.3) [33]. Principal coordinate analysis (PCoA) was applied to obtain princi-
pal coordinates and visualize complex multidimensional data. A distance matrix of 
weighted or unweighted Unifrac among samples obtained before was transformed to a 
new set of orthogonal axes. The maximum variation factor is demonstrated by first prin-
cipal coordinate, the second maximum by the second principal coordinate, and so on. 
PCoA analysis was displayed by WGCNA package, stat packages and ggplot2 package in 
R software (Version 2.15.3) [34]. Unweighted pair-group method with arithmetic means 
(UPGMA) clustering was applied to interpret the distance matrix using average linkage 
and was conducted by QIIME software (Version 1.7.0) [24,35]. 

3. Results 
3.1. Physicochemical Properties of Compost 

The course of temperature during the composting of biowaste at the investigated 
sites is shown in Figure 1. There are some differences in the process itself regarding this 
indicator. They are related to the slower temperature rise in the Yasno Pole compost (1 A) 
and the faster one in Harmanli (1 B). Thus, while the initial mesophilic phase is about 20 
days in the first case, it is only three days in the second. At the same time, exposure to 
high temperatures is associated with the degradation of smaller-molecule organic sub-
stances. It is favorable for the destruction of available pathogenic microorganisms that 
would eventually develop [36]. How composting should be carried out is regulated in 
Bulgaria by the ordinance on the separate collection of biowaste and treatment of biode-
gradable waste from 2017 [37]. In accordance with this and to ensure decontamination of 
the composted biowaste, the temperature in the outdoor piles must be maintained for at 
least 10 days above 55 °C or at least 3 days above 65 °C. In the Harmanli trial, tempera-
tures were above 55 °C for 40 days, with 8 days above 65 °C. In Yasno Pole, they were 
above 55 °C twice for 27 days, and above 65 °C for 14 days. 

  
Figure 1. Temperature changes during the composting process at Harmanli (A) and at Yasno pole 
(B) sites. In both figures, the sampling times are indicated—thermophilic and mesophilic. 

The rest of the physicochemical parameters of compost during thermophilic and 
mesophilic stages at both sites are shown in Table 1. Differences exist in the parameters 
between the thermophilic and mesophilic phases at both sites. First, the TOC concentra-
tion is about 28% in both thermophilic samples, with a slight advantage of the one from 
Yasno Pole, while the mesophilic ones are slightly above 22%. As the composting process 
progressed, a loss of N was found at both sites, with that at Harmanli being higher. This 
also led to a different rate of decrease in the C/N ratio during the mesophilic phase. 
Higher values of pH and EC were found at the site in Harmanli and in the mesophilic 
stage, which is natural because as the composting process progresses, maturing of the 
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The rest of the physicochemical parameters of compost during thermophilic and
mesophilic stages at both sites are shown in Table 1. Differences exist in the parameters
between the thermophilic and mesophilic phases at both sites. First, the TOC concentration
is about 28% in both thermophilic samples, with a slight advantage of the one from
Yasno Pole, while the mesophilic ones are slightly above 22%. As the composting process
progressed, a loss of N was found at both sites, with that at Harmanli being higher. This
also led to a different rate of decrease in the C/N ratio during the mesophilic phase. Higher
values of pH and EC were found at the site in Harmanli and in the mesophilic stage,
which is natural because as the composting process progresses, maturing of the compost is
observed [38]. A decrease in ammonium nitrogen and an increase in nitrate concentration
were observed, which is a regular occurrence in proper composting due to microorganisms’
depletion of available ammonium ions. Microbial activity expressed as respiration is also
in this direction. A significant reduction was found in composting at Yasno pole, where
the reduction in respiration intensity from thermophilic to mesophilic phases was 7.7-fold,
while in Harmanli, the reduction was 2-fold. In our opinion, this difference in the reduction
of microbiome activity, expressed as respiration intensity, is related to the still incomplete
maturation process in the compost from the Harmanli site. Not only the different location
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of the site (the specific microclimatic conditions), but also the composting technology
described in Section 2.1, in particular the way of supplying oxygen and mixing the waste
during the composting itself, has an influence here.

Table 1. Physicochemical parameters of the compost during sampling in the thermophilic and
mesophilic phases of both studied sites: Harmanli and Yasno pole.

Harmanli Yasno Pole

Thermophilic Mesophilic Thermophilic Mesophilic

Dry weight (%) 56.35 62.57 70.43 61.01
Total organic carbon (%) 28.01 22.19 28.58 22.85

pH 8.24 8.64 7.8 7.97
EC (mS·cm−1) 1.363 1.516 0.972 1.02

Total nitrogen (%) 1.53 1.33 1.34 1.27
N-NH4 (mg·kg−1) 210.32 120.85 199.76 175.36
N-NO3 (mg·kg−1) 62.21 90.94 74.2 94.11

C/N ratio 18.31 16.68 21.33 17.99
Respiration (µg CO2·g−1·h−1) 163.10 79.32 175.73 22.82

3.2. OTU Identification and Taxonomic Annotation

In constructing OTUs, basic information from different samples was collected, such as
effective tags data, low-frequency tags data and tags annotation data. The summarization
is shown in Table 2. A total of 507,350 raw tags were generated from the Illumina Miseq
sequencing of the four samples. After quality control, a total of 375,609 clean tags remained.
Then, after the removal of the chimeras, 426,057 effective tags were obtained, ranging from
100,712 for B1 to 110,822 for B2 for OTU generation. The Q20 values for the four samples
ranged from 97.32 to 97.83, indicating the high quality of the Illumina sequencing.

Table 2. Summarization of the tags and OTUs number of each sample (A1, thermophilic of Harmanli
site; A2, mesophilic of Harmanli site; B1, mesophilic of Yasno pole site; B2, thermophilic of Yasno
pole site).

Sample Name Raw PE Raw Tags Clean Tags Effective Tags Base AvgLent Q20 Q30 GC% Effective%

A1 136,069 111,104 108,467 95,147 39,687,497 417 97.32 91.97 57.85 69.93
A2 121,912 107,885 106,056 89,977 37,469,369 416 97.83 93.21 55.73 73.80
B1 124,308 103,076 100,712 88,021 36,812,995 418 97.44 92.20 56.62 70.81
B2 125,061 112,651 110,822 96,947 40,445,191 417 97.83 93.31 55.82 77.52

Notes: Raw PE represents the original PE reads after sequencing; Raw Tags represents tags merged from PE reads;
Clean Tags represents tags after filtering; Effective Tags represents tags after filtering chimera that can be finally
used for subsequent analysis; Base is the number of bases of the effective tags; AvgLen represents average length
of effective tags; Q20 and Q30 are the percentages of bases whose quality value in effective tags is greater than
20 (sequencing error rate is less than 1%) and 30 (sequencing error rate is less than 0.1%); GC (%) represents GC
content in effective tags; Effective (%) represents the percentage of effective tags in Raw PE.

3.3. Composition of Microbial Community Analysis
3.3.1. Relative Abundance

According to the taxonomic annotation results, the top 10 taxa of each sample or
group at each taxonomic rank are selected to form the distribution histogram of the relative
abundance of taxa, so as to visually see the taxa with a higher relative abundance and their
proportion in different classification levels of each sample [39,40]. The abundance of taxa
in the phylum is illustrated on Figure 2a.
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Actinobacteriota and Proteobacteria were the predominant phyla in all samples. In ther-
mophilic habitats of Harmanli compost, Actinobacteriota abundance was much higher than
Proteobacteria, while in rest of the cases, the Proteobacteria was the predominant species
(Figure 2a). The relative abundance of Actinobacteriota could comprise up to 52% in the
above mentioned, 24% in mesophilic one of Yasno pole, and the abundance decreased
in mesophilic of Harmanli and finally in thermophilic compost of Yasno pole. In the
mesophilic phase of Harmanli and thermophilic of Yasno pole, the quantity of Proteobacteria
was higher than in the rest of the composts. The abundance of Proteobacteria was more
significant in the mesophilic phase than in the thermophilic one. The amount of Acidobac-
teriota was relatively constant in compost (15–16%), except for the thermophilic phase of
Harmanli compost (8%).

At the class level, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, and Ther-
mophilia were dominant in the four compost samples in the mesophilic and thermophilic
phases, while the relative abundance of Acidobacteriae, Bacteriodia and Verrucomicrobiae was
much low (Figure 2b). The number of Alphaproteobacteria was higher in A2, B1 and B2
(23–25%), while in A1, it was 17%. Actinobacteria were most abundant in thermophilic
habitats of Yasno pole compost (around 25%), and the quantity decreased in the rest of the
compost samples (9–11%). The phylum Actinobacteriota is a primary eubacterial phyloge-
netic clade containing diverse Gram-positive bacteria [41] that belong to several classes
such as Acidimicrobiia, Actinobacteriae, and Thermoleophila. Thermoleophila were dominant in
the samples in the thermophilic stages of Harmanli (22%) and Yasno pole (11%) composts.
The largest number of Gammaproteobacteria (23%) was reported in the thermophilic compost
of Yasno pole. The amount of the other three classes of bacteria Acidobacteriae, Bacteriodia,
and Verrucomicrobiae was relatively low (2–4%) and constant in all samples.

Dividing the classes into families, Xanthobacteriaceae was found in all compost samples
ranging from 6 to 10%. The Burkholderiaceae family was enumerated only in compost from
Yasno pole in the thermophilic phase in the abundance of 13% (Figure 2c). This result was in
accordance with Liu et al., who reported that after composting, the dominant families were
Burkholderiaceae [16]. Solirubrobacterales and bacterium 67–14 were found in all compost
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samples, with a relative abundance of 2–7%. Moreover, we must emphasize the presence of
representatives of the family Streptomycetaceae, most abundant in the thermophilic phase of
the Harmanli site at 67 ◦C.

We found a higher abundance of the genera Sphingobacterium, Sphingomonas, Paracoccus,
Pseudomonas, and Halomonas in the four studied sites (Figures 2d and 3). The compost of
Harmanli genera Streptomyces, Truepera, and Flavobacterium were found to be much more
abundant compared to the compost of the Yasno pole. There was a presence of Bacteroidaceae
in all phases, but the quantity was higher in the mesophilic stage of both composts from
Harnamli and Yasno pole.
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3.3.2. The Evolutionary Tree in Genus Level

To further study the phylogenetic relationship of the genus, the top 100 genera were
selected, and the evolutionary tree was drawn using the aligned representative sequences.
GraPhlAn (Graphical Phylogenetic Analysis), a computational tool that produces high-
quality, compact visualizations of microbial genomes and metagenomes, was applied
to the microbial species in the compost from Yasno pole and Harmanli [39] (Figure S2).
We identified 355 microbial species with a relative abundance above 0.5%. In composts,
Burkholderia, Sphingomonas, Pseudomonas and 67–14 were found to be the most abundant
characterized species (Figure S3). The relative abundances of each compost are summarized
along the genera in Figure 3.

The two most abundant phyla were Proteobacteria (36.0%), Actinobacteria (29.2–53%), and
Acidobacteria (13.1–16%) followed by Firmicutes (1.4%), and others (0.3%) (Figures S3 and 3).
Within the Proteobacteria, the three top abundant classes were the members of Alphaproteobacte-
ria with 17–22% and Gammaproteobacteria with the abundance of 6–23%. Within the Firmicutes,
the largest class was Bacilli, with an average of 0.9%, followed by Clostridia (0.2%). The
phylum Bacteroidetes primarily consisted of Chitinophagales (74%), Cytophagales (14%), and
Sphingobacteriales (8%).
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3.3.3. Taxonomic Abundance Cluster Heatmap

According to the abundance information of the top 35 genera of all samples, the
heatmap was drawn to check whether the samples with similar processing are clustered
or not, and the similarity and difference of samples can also be observed (Figure 4). The
proceeding of composting relies primarily on microbial activities and interactions within
highly diverse communities [42]. The results showed that Proteobacteria, Actinobacteria,
and Bacteroidetes were the dominant phyla in mesophilic phases in both compost sites at
two stages. In the thermophilic stage of Harmanli compost (A1), Thermoaerobaculia, Chlo-
roflexia, Actinobacteria, Rubrobacteria, and Thermoleophillia were found as the most abandoned
phyla, while in the mesophilic stage, Bacilli, Phycisphaerae, Anaerolineae, Alphaproteobacteria,
Polyngia, and Bactreroida were observed. In the mesophilic stage of Yasno pole compost plot
(B1), Blastocatellia, Vicinamibacteria, Latescibacterrota, Nitrosprira, and Methylomirabilia were
the predominant species. In contrast, in the thermophilic stage, Gammaproteobacteria, Aci-
dobacteriae, Clostridia, and Campylobacteria were the most abundant at higher temperatures.
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3.3.4. Ternary Plot

A ternary plot was utilized to reflect the influence of bacterial OTUs on degradation.
Pooled results of metagenomic analyses from the thermophilic and mesophilic phases of
both Harmanli and Yasno Pole composts were compared with raw compost. To find the
differences in dominant taxa among the three groups of samples at each taxonomic rank
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(phylum, class, order, family, genus, species), the top ten taxa with the average abundance
of the three groups of samples at each taxonomic rank were selected to generate a ternary
plot [43]. The ternary plot for phylum is shown in Figure 5. As a result, the most dominant
species in the Harmanli compost were from taxa Actinobacteriota and Gemmatimonadota. The
most significant OTUs in Yana pole compost were Proteobacteria and Acidobacteriota. In the
row compost, Proteobacteria and Verrucomicrobiota played the most significant roles.
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sizes are proportional to the relative abundance. The taxa from the circled group have a higher
abundance of the same type.

3.3.5. Biodiversity Curves

Rarefaction curves and rank abundance curves are widely used for indicating the
biodiversity of the samples (Figure 6A,B). A rarefaction curve is created by randomly
selecting a certain amount of sequencing data from the samples and then by counting the
number of the species they represent (i.e., the number of OTUs) [44]. The rarefaction curve
indicates that the sequencing data were sufficient for each sample to represent the bacterial
communities (Figure 6A). The rarefaction curves also show the different abundance of
bacterial samples in the four compost species. The mesophilic stage of Yasno pole compost
had the highest abundance of bacterial species, while compost from the Yasno pole in the
thermophilic stage had the lowest (Figure 6B). The results in Figure 4 showed that the
rarefaction curves could directly reflect the rationality of the summary of sequencing data
from both compost sites and indirectly reflect the richness of the microbial community in
the samples. Generally, compost for Harmanli had the highest bacterial species abundance
compared to compost from Yasno pole (Figure 6C). The thermophilic stage of Harmanli
and mesophilic of Yasno pole had a similar abundance of bacterial species. In contrast,
mesophilic habitats of Harmanli compost demonstrated distinguished abundance from the
other phases. The lowest number of observed species was detected in the compost in the
thermophilic stage from Yasno pole (Figure 4C).
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Figure 6. Biodiversity curves. (A) Rarefaction curves, indicating the biodiversity of the samples
according to the results from alpha-diversity. (B) Rank abundance curves. (C) Biodiversity by
composting groups A, compost from Harmanli; B, compost from Yasno pole. (D) Box plot of
difference of observed species in A, thermophilic of Harmanli site; B, mesophilic of Harmanli site;
C, mesophilic of Yasno pole site; D, thermophilic of Yasno pole site.

3.4. Alpha Diversity Analysis

Alpha diversity is applied to the analysis of microbial community diversity within the
sample, analyzing if the diversity of the sample can reflect the richness and diversity of mi-
crobial communities in the composts, including species accumulation boxplot, biodiversity
curves and a series of statistical analyses [45]. OTUs generated at 97% sequence identity
are generally considered homologous in species. Statistical indices of alpha diversity in
clusters are summarized in Table 3. The higher and the lowest Shannon diversity index
were found in the composts of Yasno pole, the mesophilic (9.337) and the thermophilic
one (8.322), respectively. Microbial diversity during the mesophilic phase of composting
of Yasno pole site expressed as Shannon index was significantly higher than those of the
Harmanli site (p < 0.05).
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Table 3. Alpha diversity indices (A1 TH, thermophilic of Harmanli site; A2 MH, mesophilic of
Harmanli site; B1 M_YP, mesophilic of Yasno pole site; B2 T_YP, thermophilic of Yasno pole site).

Sample Name Observed Species Shannon Simpson Chao1 ACE Goods
Coverage PD Whole Tree

A1 2086 8.929 0.995 2184.821 2198.988 0.997 162.643
A2 2237 9.130 0.994 2340.704 2348.650 0.997 173.377
B1 2249 9.337 0.995 2355.469 2321.428 0.998 166.408
B2 2018 8.322 0.998 2160.692 2171.487 0.996 153.686

Conversely, thermophilic composting habitats of Harmanli had an increasing trend
compared to those of Yasno pole site. A whole tree index of the highest observed species
in mesophilic stages was more significant in Yasno pole compost than in Harmanli,
173.377 and 166.408, respectively. The highest Simpson index occurred in the thermophilic
compost of Yasno pole at 0.998, while the lowest was found in the mesophilic compost of
Harmanli at 0.994, in the end of the process. Both final composts (mesophilic stage) showed
very similar alpha diversity expressed as Chao1 index at 2340.704 and 2355.469, but higher
than those of thermophilic compost of the same site (2,184,821 and 2,160,692, respectively).
The Good’s coverage values for the four samples ranged from 0.996% to 0.998% (Table 3),
indicating that the sequencing depth was great enough to capture most bacteria species in
each sample. As seen from the first column, the number of species is relatively higher at
lower (mesophilic stage) than at high temperatures (thermophilic stage).

3.5. Venn Diagram

A total of 3095 OTUs were obtained from the high-throughput sequencing. The OTU
distribution in the four samples is shown in the Venn diagram (Figure 7). A total of
1244 OTUs were shared by all four composts, and the unique OTUs for A, B, C and D were
168, 179, 170, and 126, respectively. That is, the fewest regionally characteristic species
are observed in the thermophilic phase of Yasno Pole, while in the mesophilic phase, the
values are 35% higher. Comparing the regionally specific OTUs between both thermophilic
composts, those of Harmanli present a 33.33% higher number than the Yasno pole.
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Figure 7. Venn diagram. Each circle represents one sample or group. Values in overlapping parts
represent common OTUs. The others are specific OTUs in each sample (A, thermophilic of Harmanli
site; B, mesophilic of Harmanli site; C, mesophilic of Yasno pole site; D, thermophilic of Yasno pole site).

3.6. Beta Diversity Analysis

Beta diversity represents the comparison of microbial communities based on their
structure. Thus, beta-diversity metrics assess the differences between these microbial
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communities. Based on the Weighted Unifrac distance matrix, both thermophilic composts
had the highest dissimilarity between each other (0.353), while the mesophilic composts
had the lowest dissimilarity (0.316) (Figure 8).
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of Harmanli site; B1, mesophilic of Yasno pole site; B2, thermophilic of Yasno pole site).

3.7. Principal Coordinates Analysis (PCoA)

Principal coordinates analysis (PCoA) is an ordination technique that picks up the
main elements and structures from reduced multidimensional data series of eigenvalues
and eigenvectors. The method has the advantage over PCA in that each ecological distance
can be investigated. Weighted Unifrac and Unweighted Unifrac are calculated to assist the
PCoA analysis (Figure 9). Based on the unweighted UniFrac distance, mesophilic compost
of Harmanli was significantly greater (p < 0.05) than the thermophilic one (Figure 9A).
The cluster dendrogram of the relative abundance in phylum level showed that both
mesophilic composts possess a certain similarity. Based on the weighted UniFrac distance,
the mesophilic compost of Harmanli site was significantly greater (p < 0.05) than the other
composts. The cluster dendrogram showed a similarity between both stages of the Yasno
pole site. In contrast, the stages of Harmanli were reasonably distinguished during the
composting (Figure 9B).
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3.8. Principal Component Analysis (PCA)

The principal component analysis is a statistical procedure to extract principle com-
ponents and structures in data by using orthogonal transformation and by reducing di-
mensionalities of data, according to Avershina and collaborators [33]. It extracts the first
two axes reflecting the variety of samples to the most extent and thus can reflect high-
dimensional data variation in a two-dimensional graph, which reveals the simple principle
embedding in complex data. The results of PCA analysis based on OTUs are shown in
Figure 10. The more similar the community composition among the samples are, the closer
the distance of their corresponding data points on the PCA graph. Thus, the thermophilic
composts were quite similar, while the mesophilic composts were substantially different.
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Figure 10. Unweighted pair-group method with arithmetic mean (UPGMA) (A, thermophilic of
Harmanli site; B, mesophilic of Harmanli site; C, mesophilic of Yasno pole site; D, thermophilic of
Yasno pole site).

Clustering analysis was used to construct a cluster tree to study the similarity among
different samples. The unweighted pair-group method with arithmetic mean (UPGMA)
is a hierarchical clustering method widely used in ecology to classify the samples. First,
samples with the closest distance are clustered to form a new sample. Then, the average
distance between the newly created sample and other samples is calculated, and the two
closest samples can be found again to repeat the above steps. With time, the A1 relative
abundance of the Actinobacteria phylum decreased, whereas that of Proteobacteria increased.
In contrast, in all other composts, the opposite trend is observed (Figure 11).
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based on Unweighted Unifrac distance, which is plotted with UPGMA tree on the left and relative
abundance in phylum map on the right (A1, thermophilic of Harmanli site; A2, mesophilic of
Harmanli site; B1, mesophilic of Yasno pole site; B2, thermophilic of Yasno pole site).
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The Weighted Unifrac distance matrix and Unweighted Unifrac distance matrix were
calculated before using for UPGMA cluster analysis. They were displayed with the inte-
gration of clustering results and the relative abundance of each sample by phylum in the
figure, based on Unweighted Unifrac distance. The UPGMA tree is on the left and the
relative abundance in phylum map showed that in the thermophilic compost of Harmanli,
Proteobacteria decreased, while Actinobacteria and Acidobacteria increased. In the rest of the
compost stages, Proteobacteria are the dominant species, and Actinobacteria lower their abun-
dance due to the PCoA (Figure 10A). Moreover, a correlation between the environmental
factors and the bacteria at the class level was conducted (Figure 11A). Actinobacteria and
Proteobacteria possessed a highly significant positive correlation with the processes in the
thermophilic phase of Harmanli compost. In contrast, Proteobacteria were mostly significant
in the rest of the compost stages (Figure 11B).

4. Discussion

Temperature is an important environmental factor affecting the degradation of organic
matter in biowaste, as well as in the composting process, including biological activity and
the final product quality [46]. Composting technology also has a significant impact since,
in open composting, the process is affected by the temperature of the environment, which
in most cases is significantly lower than that of the pile. The temperature of the Yasno Pole
composting piles increased significantly as early as the third and fourth day and entered
the thermophilic stage, unlike the other in Harmanli, in which the thermophilic phase was
reached by the twenty-fifth day. This happened due to differences in ambient temperatures
and composting technology at the two sites. It is likely that unique microbial communities
also play an important role. These results are in line with the results obtained by Wei and
collaborators [28]. At the same time, pile turning leads to a change in these conditions in
the habitats, which is in line with what other scientists have found [47,48].

Our research is aimed at answering questions related to the taxonomic diversity
of prokaryotes in the phases of composting, but under different climatic conditions at
the two sites at Yasno Pole and Harmanli. The main question we pose in the study is
related to the selection of taxonomic groups of bacteria performing the same function in
the respective microbial communities. This issue also has a practical aspect related to
the optimal conversion of organic substances under different conditions, which is not the
subject of the present study. We found that Actinobacteriota and Proteobacteria were the
major phyla in all samples. These results were in accordance with Zhang and his research
team [49], who found that the abundance of Proteobacteria declined in the thermophilic phase
of composting, which indicated that the high-temperature environment was unconducive
to its growth. Similar to the results of de Gannes et al. [50], the abundance of Proteobacteria
was significantly greater in the mesophilic phase than in the thermophilic phase, concerning
the Yasno pole compost. The above results are often reported in the scientific literature
concerning the most abundant phyla found in composting processes [46,47].

We found that Thermoleofila are dominant class of prokaryotes in thermophilic habitats
of compost in Harmanli (together with Actinobacteria), but in the rest of the samples, they
were significantly represented (Figure 1B). According to Goodfellow and Williams, [51]
and Steger and collaborators [52], this is essential for the cycling of major elements in
the soil. As saprophytes, they produce a range of extracellular hydrolytic enzymes that
can degrade animal and plant polymers, including lignin, cellulose, chitin, and other
organic compounds [29,53]. The temperature fluctuations are significant for developing
microbial activity and biomass during composting [50]. Those findings have also been
highlighted by previous studies [54,55]. Actinobacteria commonly proliferate during periods
with comparatively low temperatures [52]. Contrarily, Buzón-Durán et al. reported in
their review that Streptomyces are found in a wide variety of composts, such as from solid
waste, agricultural waste or in the soil after compost application, which is in line with
our findings [56]. Ramírez and Coha isolated more than 140 cellulolytic thermophilic
actinomycete strains from medium-like composts, or soils, among others [57]. There were
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even strains with a high yield of endo- and exoglucanase, and β-glucosidase. Revealing the
diversity of prokaryotes at the genus level, we may say that the most abundant genera in
both studied sites (Sphingobacterium, Sphingomonas, Paracoccus, Pseudomonas, and Halomonas)
are found in other recent studies [19,58].

Previous researchers reported that Actinobacteria, Proteobacteria, Acidobacteria play a
considerable role in organic matter mineralization, sulfur, nitrogen and carbon cycling [59].
In general, the role of Gemmatimonadetes is not clear in the literature. However, our findings
confirmed that it is present in composting and probably is an essential actor in cellulolysis
and proteolysis, as reported for different types of organic waste composting. [60–62].
In addition, taxonomic abundance clusters of the heatmap showed close relationships
between the most abundant genera of the mesophilic stage of both composts. In contrast,
the representative thermophilic stages are more separated (Figure 4).

The compost from Harmanli had the highest bacterial species abundance compared
to the compost from Yasno pole site. At the same time, it is seen that mesophilic microor-
ganisms are significantly more diverse than thermophilic ones. It seems that the specific
ecological conditions and those of the habitats have a significant influence on the selection
of species, both in terms of qualitative and quantitative composition.

5. Conclusions

The taxonomic characteristics of composts are highly dependent on temperature and
organic matter. In the composts and at both stages, Actinobacteriota and Proteobacteria
were the predominant phyla in all samples. The abundance of Proteobacteria was more
significant in the mesophilic phase than in the thermophilic phase. In our study, a higher
abundance of Sphingobacterium, Sphingomonas, Paracoccus, Pseudomonas, and Halomonas
was found at the genus level. More specifically, in the compost of Harmanli, the genera
Streptomyces, Truepera, and Flavobacterium were found to be much more abundant compared
to the compost of the Yasno pole. Generally, compost for Harmanli had the highest bacterial
species abundance, compared to compost from Yasno pole. In contrast, the lowest number
of observed species was detected in the compost in the thermophilic stage from Yasno
pole. Moreover, the diversity in the mesophilic stage of composting of Yasno pole site
was significantly higher than those of the Harmanli site. Contrarily, the thermophilic
composting habitats of Harmanli had an increasing trend compared to the others from
the Yasno pole site. Thus, we can conclude that the present study adds new comparative
information for NGS studies in Bulgaria, as well as comparative data on bacterial diversity
for composting at different site locations. Additional research should be performed to
illuminate the intimate features of metabolic function profiles of bacterial communities.
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