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Abstract: Diabetic retinopathy (DR) is a major reason of blindness around the world. The ophthal-
mologist manually analyzes the morphological alterations in veins of retina, and lesions in fundus
images that is a time-taking, costly, and challenging procedure. It can be made easier with the
assistance of computer aided diagnostic system (CADs) that are utilized for the diagnosis of DR
lesions. Artificial intelligence (AI) based machine/deep learning methods performs vital role to
increase the performance of the detection process, especially in the context of analyzing medical
fundus images. In this paper, several current approaches of preprocessing, segmentation, feature
extraction/selection, and classification are discussed for the detection of DR lesions. This survey
paper also includes a detailed description of DR datasets that are accessible by the researcher for
the identification of DR lesions. The existing methods limitations and challenges are also addressed,
which will assist invoice researchers to start their work in this domain.

Keywords: diabetic retinopathy; classification; segmentation; machine learning; review

1. Introduction

Diabetic retinopathy (DR) is a severe eye condition that results in visual loss. Un-
fortunately, this illness remains silent at the initial stages and is detected through routine
eye checkups [1]. DR has become more common as diabetic patients’ life expectancy has
increased. Untreated and serious cases of DR might result in blindness, so regular retina
screening is necessary for DR patients to avoid becoming visually impaired [2]. DR is a
crucial symptom of blindness in those under the age of 50 years. According to some experts,
90% of diabetic people who receive an early diagnosis may be saved from the disease [3]. It
is predicted that about 600-Millions of people would have diabetes by 2040, and one-third
of them will have DR according to WHO [4]. People are becoming more prone to DR daily;
the number has been estimated at 191.0 million by 2030. In the early stage, no symptoms
are shown; hence, the detection of DR is a difficult task [5]. The back thin layer of the eye
is known as the retina; it manages the light-sensing process and converts this light into
signals and sends them to the brain [6]. The optic disc (OD) is a disc-like region on the
retina created by axons of retinal ganglion cells, which transmit messages from the eye’s
photoreceptors toward the optic nerve; it provides assistance for vision.

All layers of the retina are supplied with blood by tiny blood capillaries, which are
vulnerable to damage when blood sugar levels are elevated. When glucose level in blood is
increased, the vessels start to disintegrate because the cells do not receive enough oxygen [7].
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Blockage in retina vessels might cause serious eye injury. Therefore, the metabolic rate
decreases, allowing DR to enter through structural anomalies in vessels [8]. This can lead
to blindness at advanced stages. In all over the world, 2.6% amount of DR is the main
reason for visual deterioration [9]. DR identification is achieved due to the existence of
numerous types of lesions like microaneurysms (MAs), hemorrhages (HMs), hard exudate
(HE), soft exudate (SE), and representations of OD and blood arteries in the retina, as shown
in Figure 1.

• MAs are the initial indication of DR, which appear as microscopic red circular marks
on retina caused by the breakdown in the walls of vessel. Sharped margins with a size
of less than 125 µm define the dots on retinal fundus images [11].

• Hemorrhages (HMs) show large patches on the retina with irregular edges that are
greater than 125 µm. It appears when the leakage of blood from blocked retinal
vessels impairs vision in the eyes. HMs are further classified into two categories, flame
(superficial HMs) and blot (deeper HMs) [12].

• Hard exudate (HE) appears as waxy yellow patches on the retina due to plasma
leakage. HE is caused by the production of lipoproteins, which flow from MAs and
accumulate in the retina.

• Soft exudate (SE) appears as white fluffy patches on the retina with distracted edges
caused by the swelling of nerve fibers [13].
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Figure 1. (a) NPDR lesions, (b) optic disc and blood vessel [10].

Dark red lesions on the retina indicate the presence of MAs and HMs, while bright
lesions on the retina indicate the presence of HE and SE. The DR process comprises two dis-
tinct stages; the first stage is proliferative-DR (PDR) and the second stage is nonproliferative-
DR (NPDR), as mentioned in Table 1. PDR arises when pre-existing micro-blood vessels in
numerous parts of the retina produce new abnormal blood vessels. NPDR develops when
diabetes damages the retina’s blood vessels, which causes blood to seep onto the retina’s
surface. The leakage of blood minimizes the sensitivity of the retina; therefore, the retina
becomes swollen and wet [14]. The different lesions of DR, such as MAs, HMs, HE, and SE,
occur at this stage [14]. Depending upon the presence of these lesions, NPDR is additionally
classified into three phases: NPDR mild (MAs only), NPDR moderate (MAs and HE), and
NPDR severe (intra-retinal HMs and intra-retinal microvascular abnormalities) [15].

DR increases with critically from normal to moderate then from moderate to critical
PDR, which is potentially vision-threatening. Highly skilled ophthalmologists are required
for the manual detection of DR, which is an inefficient and difficult task. As a result,
implementing accurate machine learning methods to detect DR automatically can prevent
such flaws. Automatic techniques and screening systems for DR detection are time-saving,
cost-saving, and efficient as compared to manual diagnosis methods. CADs depend on
machine learning methods and are utilized for DR screening to recognize the retina with
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suspected DR from mild retina [15]. Figure 2 presents the overall framework of the survey
while Table 2 shows a comparison of this study with other, already existing surveys.

Table 1. Levels of DR.

Types of DR Lesions

Normal No DR lesions

Mild NPDR Develop MAs only

Moderate NPDR Increase in the number of MAs, HE, SE, and HMs in the retina.

Severe NPDR The unusual feature is visible in all four retinal quadrants.

PDR Irregular small vessels of blood present in the retina.
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Figure 2. Framework of survey.

Table 2. Comparison between this study and other surveys.

Contents Present Study [16] [17] [18] [19] [20]

Methods for Identification of DR X X

Preprocessing X X

Segmentation X X X X

Hand-Crafted Feature Extraction X X

Automated Classification of DR
Lesions by Using Deep Features X X X X X X

Benchmark Datasets X X X X X

Performance Evaluation X X X

Challenges and Discussion X X X X X

The graph in Figure 3 shows an overview of research strategies in terms of preprocess-
ing, segmentation, and features for the classification of DR lesions.
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Figure 3. Overview of research strategies/methods for DR detection.

2. Methods for Identification of DR

DR identification at an initial stage is crucial, and with the help of early treatment
and diagnosis methods, the disease’s progression can be slowed. Due to two significant
vision-pressuring conditions, PDR and diabetic macular edema (DME), DR develops at
varying rates in different people. As a result, researchers nowadays provide a wide range
of techniques and methods for DR detection. Figure 4 depicts the process of the early
identification of DR.
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3. Preprocessing

Preprocessing methods are utilized to convert the data into meaningful information.
Pre-processing is used for low-contrast illumination, to removing noise, blurriness, and
enhance the image. For better performance of the model, preprocessing techniques are used.
Some pre-processing techniques are applied on Messidor dataset as shown in Figure 5.
CLAHE is applied to increase picture contrast and features by emphasizing anomalies
of Messidor and Kaggle datasets. It is a variant of histogram equalization used for the
reduction of noise distortion in an image. This technique is applied to two benchmark
datasets and achieved 98.50% and 98% accuracy on Messidor and Kaggle datasets respec-
tively [22]. The APTOS dataset contains different sizes and background space images. First,
resize all images into equal sizes then the deformable registration method that depends on
B-Spline is applied to erase the image’s background in a manner that the retina takes up
all the area of images. These preprocessing approach are utilized on APTOS dataset for
the classification of DR lesions and achieved 85.25% accuracy [23]. To balance the highly
imbalanced Kaggle dataset different augmentation operations such as shearing, cropping,
translating, flipping, zooming, rotating, GST, and Krizhevsky augmentation are used then
the gaussian blur filter and the NLMD approach are employed to strengthen the quality of
an image for the detection of NPDR and PDR lesions. The preprocessing technique gives
the best accuracy of 97.10% for the classification of DR lesions [24–37]. The Morphological
gradient (MG) technique is used to sharpen the edges of the image by applying dilation
and erosion functions on it for better detection of DR lesions and obtained with an accuracy
of 99.81% on Kaggle dataset [38]. The grayscale conversion and shade correction tech-
niques are used to discriminate between optimal DR and no DR. The approach is applied
on Drive dataset and gives an accuracy of 95.42% [39,40]. Two preprocessing operations
were performed for OD and retina blood vessels segmentation on DIARETDB0 and DI-
ARETDB1 datasets, first conversion of RGB into grayscale image, and then to minimize
the consequence of noise and maintain the sharp edges in the retinal image is done by
median filter [41]. Data augmentation approaches like flipping, cropping, and rotation are
applied to each image of the Messidor-2 dataset for early DR detection. This technique
improves the classification model accuracy of 99.2% [42]. Bounding box method is used to
eliminate extra background parts from the fundus images. This method is performed on
accessible datasets i.e., Messidor-1 and Kaggle datasets, and obtained 72.33% and 82.18%
of accuracy respectively [43]. CLAHE is used to improve the image’s visual appeal and
enhance its quality by eliminating noise for the detection of mild NPDR [44]. The RGB
image transforms into a greyscale image then adaptive histogram equalization is employed
for changing image contrast and eliminate noise over the image. CLAHE is applied for the
exudate’s detection. These methods are applied on DIARETDB0 and DIARETDB1 datasets.
The applied preprocessing technique improves the model accuracy 87.20% on DIARETDB0
and 85.80% on DIARETDB1 dataset [45]. After eliminating the image background and
resizing the fundus image of the Kaggle dataset, gaussian blur is employed to remove the
noise from fundus images for early detection of NPDR and PDR lesions and obtained an
accuracy of 90% [46]. Gaussian filter is applied for eliminating the noise from digital fundus
images and in the retinal dataset, some part of the images contains no information, so the
process of cropping is applied to crop these type of regions that enhance the DR lesions of
Kaggle and APTOS datasets [47]. To increase image robustness, gaussian filter and CLAHE
is utilized to strengthen the contrast of retina fundus images due to indistinguishable
appearance in color spaces of MAs, HMs and blood vessels [48]. For better contrast of an
image cumulative histogram equalization and CLAHE were used. Cumulative histogram
equalization alters the histogram intensity distribution to improve image contrast and the
appearance of MAs in retinal images is enhanced by CLAHE [11,49]. The retinal capillaries
are eliminated from the image using morphological techniques then perform the CLAHE
operation on it. After applying the preprocessing technique to the IDRiD dataset the model
gives an accuracy of 83.84% [50]. Gabor filters are used to extract textural information
from fundus images to identify MAs [51]. High-pass and top-hat filter is used with the
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morphological operator to create the binary images for blood vessel segmentation [52].
After resizing the image channel splitting approach is implemented on the retinal image to
split image patches into red, blue, and green colors. This technique is applied to IDRiD
dataset for the detection of exudates and to obtain an accuracy of 96.95% [53].
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The result of preprocessing methods is visualized in Figure 5 in which different
preprocessing techniques such as CLAHE, grayscale conversion, gaussian smoothing,
Gabor filter and cumulative histogram equalization are applied on Messidor images [54].
The retinal images is transformed into a lab image then apply histogram equalization
approach on it to improve the brightness of scans. The adaptive filter is employed to
improve the segmentation of blood arteries [55]. The Gaussian blur mask is applied on the
publicly accessible APTOS-2019 datasets for noise reduction. Later average color local filter
is employed to enhance the retinal and obtained 90% accuracy [56]. The transformation
of retinal images into grayscale images was performed after resizing the retinal images;
then, the green channel was utilized for preprocessing. The top-hat-transform operation
was utilized to improve the low-severity regions such as MAs, HMs, and blood vessels.
The applied technique achieved 87% sensitivity on DIARETDB0 and 93% specificity on the
DIARETDB0 dataset. Non-local mean filter (NLFM), CLAHE, 2D gaussian, and top-hat
transform are applied to smooth the image quality that provides help for the recognition
of the dark retinal lesions such as MAs and HMs. These preprocessing techniques are
implemented on three publicly available datasets and give better accuracy of 96.95% on
e-Ophtha, 97.95% on DIARETDB0, and 97.35% on DIARETDB1 dataset [57]. Average
filter is utilized to eliminate the micro blood vessels from retina images. This technique is
applied to the publicly available Kaggle dataset [58]. The wavelet transform approach is
employed to strengthen and enhance the HE image [59]. The overview of the preprocessing
techniques is described in Table 3.
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Table 3. Overview of reported preprocessing techniques for retinal images.

Ref # Year Methodology Preprocessing Methods Datasets Results

[22] 2022 CLAHE, Contrast-Enhanced Canny
Edge Detection (CECED) CLAHE Messidor, Kaggle

Accuracy (ACC) = 98.50%, Sensitivity
(SF) = 98.90%, Specificity (SP) = 98%,

ACC = 98%, SF = 98.70%,
SP = 97.80%

[23] 2022

Deformable Transformation,
B-Spline Registration,

Xception, Inception-V3,
DenseNet-121, ResNet-50

Deformable Registration APTOS ACC = 85.28%

[24] 2022
Gaussian Scale Space (GST), Krizhevsky

Augmentation, Weighted
Gaussian Blur, NLMD

Weighted Gaussian Blur Kaggle ACC = 97.10%

[38] 2022 Morphological Gradient,
Atom Search Optimization Morphological Gradient Kaggle ACC= 99.81%

[39] 2022
MTRO, WGA,

Grayscale Conversion,
Shade Correction

Grayscale Conversion,
Shade Correction DRIVE ACC = 95.42%, SF = 93.10%, SF = 93.20%

[40] 2022
U-Net,

Hybrid Entropy Model,
Gabor Filter, Median Filter

Median Filter DIARETDB0,
DIARETDB1

ACC = 95.90%
ACC = 95.48%

[41] 2022

Adaptive Histogram Equalization Filter,
CLAHE, Gamma Correction,

Morphological Reconstruction,
K-Means Clustering

Adaptive Histogram
Equalization Filter,

CLAHE
Messidor

ACC = 97.60%,
SN = 98.40%,
SP = 90.70%

[42] 2022

Data Augmentation,
Cropping, Flipping, Rotation,

Multi-Inception-V4, Stochastic Gradient
Descent (SGD)

Data Augmentation,
Cropping, Flipping,

Rotation
Messidor-2

ACC = 99.20%,
SF = 92.50%,
SP = 96.10%

[43] 2021
Blurring,

Bounding Box,
Inception-Resnet

Bounding Box Messidor, APTOS ACC = 72.33%,
ACC = 82.18%

[44] 2021 CLAHE, Green Channel, Erosion, Dilation,
Otsu Thresholding CLAHE Messidor, Messidor-2,

DRISHTI-GS

SF = 100%,
SF = 94.44%,
SF = 100%

[45] 2021

Grayscale Conversion, Binarization,
Adaptive histogram Equalization, CLAHE

Canny Edge Detection,
Green Channel, Dilation, Erosion

Adaptive Histogram
Equalization, CLAHE

DIARETDB0,
DIARETDB1

ACC = 87.20%,
ACC = 85.80%

[46] 2021

Gaussian Blur,
Data Augmentation,

Global Average Pooling 2D,
Adam Optimization

Gaussian Blur Kaggle ACC = 90%

[47] 2021

Annotation’s Bounding Box,
Region of Interest,

Gaussian Filter, Cropping,
Contrast Variations

Gaussian Filter, Cropping Kaggle, APTOS ACC = 97.20%

[48] 2021
U-Net, OTSU,

Region of Interest,
Gaussian Filter, CLAHE

Gaussian Filter, CLAHE IDRID SF = 87.55%

[11] 2021

UNet, MResUNet, CLAHE, Cropping,
Patching,

Cumulative Histogram Equalization,
Weighted Cross-Entropy Loss Function,

Mathematical Morphology

CLAHE,
Cumulative Histogram

Equalization,
Mathematical
Morphology

IDRID, DiaretDB1 SF = 61.96%, SF = 85.87%

[50] 2021 Green Channel, CLAHE, Morphological
Operation, Thresholding

CLAHE, Morphological
Operation IDRiD ACC = 83.84%

[51] 2021 Gabor Filter, SVM,
Candidate Region Gabor Filter IDRiD ACC = 80.80%,

SF = 76.75%

[52] 2021
High-Pass Filter,

Morphological Operations, Top-Hat Filter,
Gaussian Mixture Model (GMM)

High-Pass Filter,
Morphological

Operations,
Top-Hat Filter

DIARETDB 0,
DIARETDB 1, IDRiD

ACC = 94.19%,
ACC = 97.43%,
ACC = 93.18%

[53] 2021

Channel Splitting, Blue Channel
Hue Saturation Value (HSV),

Patch Segmentation, Grayscale
Conversion, SVM

Grayscale Conversion,
Hue Saturation

Value (HSV)
IDRiD

ACC = 96.95%,
SF = 89%,
SP = 96%

[55] 2020

Threshold, Contrast-Enhanced, Adaptive
Average Filter, Meta-Heuristic Algorithm

(FP-CSO), Deep CNN, RGB to Lab,
Histogram Equalization, Convert

RGB to Lab, SIFT

RGB to Lab,
Histogram Equalization

High-Resolution
Fundus (HRF) ACC = 93.30%
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Table 3. Cont.

Ref # Year Methodology Preprocessing Methods Datasets Results

[56] 2020

Efficientnet-B5, Batch Normalization,
Rectified Adam Optimizer, Group

Normalization, Gaussian Blur Mask, CLAHE,
Local Average Color Filter

Local Average Color Filter,
Gaussian Blur
Mask, CLAHE

APTOS ACC = 90%

[60] 2020

Grayscale Conversion, Morphological
Operations, Regional Minima (RMIN)
Operator, CLAHE, Marker-Controlled

Watershed Segmentation, Morphological
Gradient (MG), Top-Hat Transform

Top-Hat Transform,
Grayscale Conversion,

Morphological Operations,
CLAHE, Morphological

Gradient (MG)

DIARETDB0,
DIARETDB1 SF = 87%, SP = 93%

[57] 2020
Non-Local Mean Filter (NLFM), CLAHE, 2D

Gaussian Low-Pass Filter, Top-Hat
Transform, Green Channel

Non-Local Mean Filter
(NLFM), CLAHE, 2D

Gaussian Low-Pass Filter

e-Ophtha,
DIARETDB0,
DIARETDB1

ACC = 96.95%,
ACC = 97.95%,
ACC = 97.35%

[58] 2019 Local Average Filter, Clipping, Fractional,
SVM, TLBO, Max-Pooling

Local Average
Filter, Clipping Kaggle ACC = 86.17%

[59] 2018
Image Resize, Wavelet Transform, Maxpool
Operation, Batch Normalization, Drop Out,

Adam Optimizer
Image Resize IDRiD ACC = 98.60%

4. Segmentation

Segmentation is a crucial process used on fundus images because it helps to identify
an area of interest that is frequently difficult to diagnose and greatly aids in DR detection.
The retinal images are divided into several pixel groups or regions that each represent
a different anatomical feature, such as fovea, OD, micro-blood vessels, and multiclass
DR lesions including HMs, MAs, SE, and HE [61,62]. This allows the ophthalmologist to
perform an eye-screening examination designed for the early detection of DR [63]. An
ophthalmologist can manually identify DR by looking at the retinal fundus images and
analyzing the morphological and macula changes in retinal blood vessels, HMs, HE, and
MAs. This is a challenging, expensive, and time taking task. This task can be easily carried
out by an automated system using artificial intelligence technology, particularly when
testing for early DR [19]. Computerized techniques based on DL and other methods have
aided early DR detection. Figure 6 shows the segmentation process of DR, in which images
is taken from IDRiD dataset.
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Retina blood vessels and OD segmentation is done by the U-Net model. The approach
is employed on open-access datasets and obtains an accuracy of 96.60% on EyePACS-1,
93.90% on Messidor-2, and 92.20% on DIARETDB0 [64]. To segment, the OD and retina
blood vessels the morphological operation and 2D discrete wavelet are used. The method-
ologies are evaluated on the DIARETDB1 dataset and obtain 87.56% of specificity [65]. The
U-Net model depends on CNN utilized to segment the HMs. The proposed experiment
obtained an accuracy of 98% [66]. For OD segmentation watershed transform and adaptive
active contour is used. These methodologies are evaluated on the IDRiD dataset and obtain
60% accuracy [67]. The MSRNet model is proposed for the segmentation of MAs. The
model is evaluated on the e_ophtha_MAs dataset and obtains a sensitivity of 71.50% [68].
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The EAD-Net architecture based on CNN has proposed to segment the multiclass DR
lesions like MAs, HMs, HE, and SE. The experiment is tested on e_ophtha_EX, IDRiD,
and local datasets [69]. The fusing U-Net was employed for OD segmentation [70]. The
approach uses thresholding, edge-based and region-based segmentation to segment retina
blood vessels [71]. An approach based on GA and FCM is presented for the segmentation
of DR lesions. The model is tested on 224 retinal images with a sensitivity of 78% [72].
Mathematical morphology operations are utilized to extract blood vessels for the seg-
mentation of OD by using watershed transform. The experiment is tested on 130 fundus
images that are taken from DIARETDB0 and DIARETDB1dataset and perform well with a
sensitivity of 87% and specificity of 93% [60]. The sliding band filter with adaptive thresh-
old and region-growing approach is utilized for MAs segmentation. The experiment is
performed on e_ophtha_MAs and SCREEN-DR datasets with sensitivities of 64% and 81%
respectively [73]. A residual based U-Net model that used ResNet34 pre-trained model as
the encoder is presented to segment the DR lesions like MAs and HE. The network was
tested on e_ophtha_EX and IDRiD datasets and obtain 99.88% accuracy [74]. To segment
the HE, we use k-means clustering based on automatic region-growing segmentation. The
experiment is done on Messidor-2 and RF datasets and obtain 98.83% of accuracy [75]. The
Otsu thresholding and region-growing technique are employed for OD segmentation. The
proposed method improves model accuracy by 99% [76]. The modified deep convolution
neural networks (DCNNs) model based on Segnet is employed on IDRiD dataset [77]. For
the segmentation of DR lesions, the local-global U- Nets model is used. The model has
been tested on the ISBI 2018 dataset [78]. The CNN based residual network is designed for
exudates segmentation. The model performs well on e_ophtha and DIARETDB1 datasets.
The model achieves 98% accuracy [79,80]. To segment DR lesions such HMs, MAs, HE,
and SE, the semantic segmentation model HEDNet is used. The proposed segmented
model achieved a precision rate of 84.05% [81]. The deep CNN model that contains an
encoder-decoder is proposed for the segmentation of OD, MAs, HMs, HE, and SE. The
model is tested on Drishti-GS and IDRiD datasets and obtained with a Jaccard Index (IOU)
of 85.72% [82]. The U-Net architecture is designed to segment the OD region. This model
was employed on freely accessible datasets and achieved 95.80% of the dice coefficient [83].
DL model have been developed for MAs and exudates segmentation by using image
patches. For experiment and performance analysis e-Ophtha is used as a dataset and
achieved 95% of accuracy [84]. The methodology is proposed by using dynamic decision
thresholding techniques for segment the exudates. The proposed segmented approach
improve the model accuracy with 93.46% [85]. The bat algorithm [86] and threshold method
is utilized for OD segmentation [87]. Adaptive-threshold and mathematical morpholog-
ical operations have been utilized for exudates segmentation. The experiment is done
on Messidor, DIARETDB1, E-Ophtha, and local datasets and gives a higher accuracy
of 100% [88]. Circular Hough transform operation with morphological operations is uti-
lized for the segmentation of OD Edge-based and morphological approaches are utilized
for OD segmentation [89]. Region-growing techniques is proposed to segment the light
and dark lesions of DR and assess the effectiveness of model. The methodology was
evaluated on a local dataset and yielded 95% accuracy [90]. Table 4 summarizes the
segmentation techniques.

Table 4. Overview of reported techniques for DR lesion segmentation.

Ref # Year Methodology Segmentation Techniques Datasets Results

[64] 2022 U-Net, VGG-Net, Image Resize,
Green Channel U-Net

EyePACS-1,
Messidor-2,

DIARETDB0

ACC = 96.60%, ACC = 93.95%,
ACC = 92.25%

[65] 2022 Morphological Operation, 2D Discrete
Wavelet, K-Nearest Neighbor

2D Discrete Wavelet,
Morphological Operation DIARETDB1

ACC = 95%,
SP = 87.56%,
SF = 92.60%

[66] 2022 CNN U-Net, AlexNet, VGGNet, Green
Channel, Adam Optimizer CNN U-Net IDRiD, DIARETDB1 ACC = 98.68%, Dice Score = 86.51%
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Table 4. Cont.

Ref # Year Methodology Segmentation Techniques Datasets Results

[67] 2022

Adaptive Active Contour, Otsu
Thresholding, Morphological Operation,
Median Filtering, Open-Close Watershed

Transform, GLCM, ROI, LTP

Adaptive Active Contour,
Watershed Transform,

Otsu Thresholding
IDRiD ACC = 60%

[68] 2021 MSRNet, MS-EfficientNet, U-Net,
Adam Optimizer MSRNet, U-Net e_ophtha_MAs SF = 71.50%

[69] 2021 EAD-Net, U-Net, CAM, PAM EAD-Net, U-Net e_ophtha_EX, IDRiD,
local dataset ACC = 97%, ACC = 78%, ACC = 84.86

[70] 2021
U-Net, Model-Driven Bubble Approach,
Hough Transform, IRHSF Illumination

Correction, Logarithmic Transformation
U-Net Messidor ACC = 91%

[72] 2021 Region Growing, Genetic Algorithm (GA),
FCM, Clustering Method, K-Means Region Growing Local Dataset SF = 78%

[60] 2020
Watershed Transform, Mathematical

Morphology Operation, CLAHE, RBF- NN,
Regional Minima

Watershed Transform DIARETDB0,
DIARETDB1 SF = 87%, SP = 93%

[73] 2020

Local Convergence Filters (LCFs), Sliding
Band Filter, De-Noising Techniques,

Image-Adapted Thresholds, Region Growing,
Non-Maximum Suppression (NMS)

Image-Adapted
Threshold, Region

Growing

e_ophtha_MAs,
SCREEN-DR

SF = 64%,
SF = 81%

[74] 2020 U-Net, ResNet34, Initialized to Convolution
NN Resize (ICNR) U-Net

IDRiD,
e_ophtha_MAs,
e_ophtha_HE

ACC = 99.88%, ACC = 99.98%,
ACC = 99.98%

[75] 2020

Region Growing, Gaussian and Gabor Filters,
Histogram Equalization, Grayscale

Conversion, K-Means, Wavelet (W), COM,
Histogram (H), RLM, LMT, SLg, Multi-Layer

Perceptron (MLP)

K-Means Clustering,
Region Growing

Segmentation
2D RF ACC = 99.73%

[76] 2020
Region Growing, Ellipse Fitting, Green

Channel, Morphological Dilation Operation,
Otsu Thresholding, Morphological Operation

Otsu Thresholding,
Morphological Operation,

Region Growing

Messidor,
DIARETDB1,

ONHSD, DRIONS,
DRISHTI, RIM-ONE

ACC = 99%

[77] 2020 Deep CNN, DeepLabV3, Segnet, Conditional
Random Field (CRF) DeepLabV3, Segnet IDRID ACC = 88%

[78] 2019
U-Nets, LocalNet, GlobalNet, Fusion

Module, Data Augmentation, Concatenate,
Global Supervision, Local Supervision

U-Nets ISBI 2018 ACC = 89%

[79] 2019 CNN, ResNet-50, Discriminative Restricted
Boltzmann Machines, OPF, KNN, SVM CNN DIARETDB1,

e_ophtha ACC = 90.60%, ACC = 89.10%

[80] 2019

Random Forest Classifier, K-Means, Naïve
Bayes, Morphological Operation, Grayscale

Conversion, Gamma Correction,
Region-Based Features

K-Means, Morphological
Operation

DIARETDB0,
DIARETDB1 ACC = 93.58%, ACC = 83.63%

[81] 2019

U-Net, HEDNet, HEDNet+cGAN,
Conditional Generative Adversarial Network

(cGAN), PatchGAN, VGG16 Weighted
Binary Cross-Entropy, Loss, CLAHE,

Bilateral Filter

U-Net, HEDNet,
HEDNet+cGAN IDRiD Precision = 84.05%

[82] 2019 Deep-CNN, Binary Cross Entropy, VGG16 Deep-CNN IDRiD, Drishti-GS Jaccard Index (IOU) = 85.72%

[83] 2018
CNN-Based U-Net, Bootstrapped

Cross-Entropy, Instance Normalization,
Atrous Convolutions

CNN-Based U-Net
Messidor,

DRIONS-DB,
DRISHTI-GS

Dice = 95.70%, Dice = 95.50%,
Dice = 96.40%

[84] 2018 CNN, GoogLeNet, Inception-V3, VGG16,
ResNet, AlexNet, Sliding Windows CNN Kaggle, e_ophtha ACC = 98%, ACC = 95%

[85] 2018

Dynamic Decision Thresholding, Adaptive
Contrast Enhancement, Canny Edge

Detection, Circular Hough Transform,
Morphological Filling

Dynamic Decision
Thresholding

Messidor,
DIARETDB1, STARE,

E_Optha_EX

ACC = 93.40%, ACC = 93.4%,
ACC = 93.4%, ACC = 93.4%

[87] 2018
Bat Meta-Heuristic Algorithm, Optimum

Thresholding, Grayscale Conversion,
Morphological Operations, Ellipse Fitting

Bat Meta-Heuristic
Algorithm, Optimum

Thresholding

Messidor,
DIARETDB1 ACC = 99%, ACC = 97%

[88] 2018

Adaptive Threshold, Local Contrast
Enhancement, Mathematical Morphology,

Grayscale Conversion, Gaussian Smoothing,
Histogram Equalization, ANN, KNN,

Geometric, Tree-Based,
and Probabilistic Classifier

Adaptive Threshold,
Mathematical

Morphology, Gaussian
Smoothing, Histogram

Equalization

DIARETDB1 ACC = 100%
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Table 4. Cont.

Ref # Year Methodology Segmentation Techniques Datasets Results

[91] 2018
Circular Hough Transform, Morphological
Operations, Average Histogram, Contrast

Enhancement, CCA
Circular Hough Transform

Messidor, DRIVE,
DIARETDB1, IDRiD,

Local Dataset
SF = 96.80%

[89] 2015 FSVM, Morphological Operations, Circular
Hough Transform

Morphological
Operations, Circular

Hough Transform
Local Dataset SF = 94.10%,

SP = 90%

[90] 2012 Naïve Bayes, Region Growing, and
Background Correction Adaptive Region Growing Local Dataset ACC = 95%

5. Hand-Crafted Feature Extraction

Feature extraction methods are used for extracting information from an image. it is the
process of reducing a huge amount of raw data into smaller relevant data [92,93]. Both the
trained and handcrafted features are combined to get useful information. Based on charac-
teristics it is distributed into two types such as deep feature extraction and handcrafted
features extraction. For handcrafted features, the methods such as LBP, LTP, SIFT, SURF and
HOG, and several others are utilized for DR classification [94,95]. Three handcrafted textu-
ral features such as GLRLM, GLDM, and GLCM are utilized for the analysis of the statistical
texture of retinal images [27,96–129]. MAs feature extraction is done by GLCM for MAs
diagnosis through fundus images. The method is estimated on the DIARETDB0 dataset
and performs best with 99.90% of accuracy [130]. For the characterization of DR lesions
encoded LBP(ULBPEZ) features are extracted from preprocessed images of Messidor-2
and EyePACS datasets and obtained accuracies of 97.31% and 93.86%, respectively [131].
GLCM features are utilized for the classification of DR on DIARETDB1 dataset obtain with
an accuracy of 77.30% [132]. The FOS, HOG, and HOS features are utilized. In a grey-level
image, HOG features are extricated from OD region. While HOS and FOS features are
extricated from RGB channels to identify DR disease [133]. GLCM, GLRLM, and CRT are
utilized to extract high-level texture feature through retina images for the classification
of DR lesions on DIARETDB1 and Kaggle datasets with an accuracy of 97.05% and 91%
respectively [134,135]. HOG and GLCM texture features are extricating through green
channel images as the classification of glaucoma. This methodology is employed on the
ODIR dataset with a 99.39% of accuracy [136]. For the detection of multiclass DR lesions
HOG descriptive feature is utilized for the representation of each DR image [137]. Four
types of features like LBP, LTP, HOG, and DSIFT are extracted for characterize the extracted
region of interest [138]. SURF and spatial LBP are utilized to effectively represent the DR
lesions for the automated grading of DR [139]. HOG and canny edge detectors are utilized
on Messidor-2 and EyePACS datasets for DR lesions recognition and obtained an accuracy
of 97.88% and 97.01% respectively [140,141]. For the detection of multiclass DR lesion
three different types of handcrafted features like LBP, entropy based, and texture energy
measurement (TEM) are extracted from retinal images. The approach is performed on
DIARETDB1 dataset and achieved an accuracy of 94.30% [135,142]. To capture the informa-
tion on DR lesions such as MAs, HE, and HMs for efficient classification SURF, HOG and
LBP are utilized on Kaggle dataset and obtained 97% of accuracy [143]. The texture, shape,
and transfer learning-based features such as HOG, LBP, GLCM, GLRLM, morphology,
tamura, seven CNN based architectures are utilized for glaucoma classification. The GLCM
with CNN perform best for detection of glaucoma with an accuracy of 93.16% [144]. For
the classification of glaucoma, the texture-based feature extraction is done by HOG, LBP,
GLCM, GLDM and transform domain-based features extraction is done by Wavelet and
Shearlet transform from retinal images. The method is performed on local dataset that
consists of total 60 images, out of 60 images the 30 images have no DR and other 30 images
have glaucoma in nature and obtain an accuracy of 93.61% [145]. Hand crafted features
SURF and LOG are used for the classification of DR lesions. For interest point detection and
localization SURF are utilized on retinal fundus images. The second-order Gaussian kernel
is estimated using LOG and a box filter [146]. For the classification of DR lesions feature
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is extracted from retinal image is done by SURF descriptor. The technique is performed
on Messidor data with an accuracy of 94% [147]. HOG and LBP features are utilized for
extracted feature from gray scale and UWF images are used for the classification of DR
lesions [148]. The summary of handcrafted features is show in Table 5.

Table 5. Hand-crafted feature techniques used for DR detection.

Ref # Year Methodology Hand-Crafted Feature
Extraction Techniques Datasets Results

[95] 2022 RNN, Binary Image Extraction, Histogram
Equalization, Pseudo-Color Preprocessing, GLCM GLCM Messidor

ACC = 97%,
SP = 99%,
SF = 95%

[96] 2022 KNN, SVM, DA, GLCM, GLDM, GLRLM, PSO GLCM, GLDM, GLRLM Drive ACC = 100%

[130] 2022
PBPSO Clustering, GLCM, PSO Algorithm, ANN,

Fuzzy Logic (FL), Neuro-Fuzzy, Fuzzy
Contrast Enhancement

GLCM DIARETDB0 ACC = 99.90%

[131] 2022
SVM, CNN, Histogram Matching, Green Channel,

CLAHE, Unsharp Filter, Median Filter,
Run-Length Encoding, LBF(ULBPEZ)

LBF (ULBPEZ) Messidor-2, EyePACS ACC = 97.31%, ACC = 93.86%

[132] 2022

GMM, K-Means, GLCM, PCA, MAP, Grayscale
Conversion, Morphological Operations, Average

Filter, Adaptive Equalization,
Histogram Equalization

GLCM DIARETDB1 ACC = 77.30%

[133] 2021 FOS, HOS, HOG, Decision Tree (DT), Naive
Bayes, KNN, Genetic Algorithm (GA) FOS, HOS, HOG High-Resolution

Fundus (HRF) ACC = 96.67%

[134] 2021
Sequential Minimal Optimization (SMO), GLCM,

GLRLM, CRT, Image Conversion,
Morphological Operations

GLCM, GLRLM, CRT DIARETDB1, Kaggle ACC = 97.05%, ACC = 91%

[136] 2021
HOG, GLCM, Green Channel, Grayscale

Conversion, Inception-V3, SVM, SqueezeNet,
Xception, DenseNet 201, ResNet50 v2

HOG, GLCM ODIR ACC = 99.39%

[137] 2021 HOG, PCA, KNN, Hadoop DFS HOG DIARETDB0,
Messidor-2

SP = 80.77%,
SP = 96.42%

[138] 2020 LBP, LTP, HOG, DSIFT, SVM, Grayscale
Conversion, PCA, CLAHE LBP, LTP, HOG, DSIFT Local Dataset SF = 96.40%,

SP = 96.90%

[139] 2020 SURF, Spatial LBP, CLAHE, ANN, ELM, KNN SURF, Spatial LBP
Local Dataset, Kaggle,

DIARETDB0,
DIARETDB1

ACC= 89.89%

[140] 2020 ResNet-50, Inception-V3, Canny Edge Detector,
HOG, Stochastic Gradient Descent (SGD) HOG MESSIDOR-2,

EyePACS
ACC = 97.01%,
ACC = 97.88%

[141] 2020
CNN, Median Filter, Adaptive Histogram

Equalization, Otsu Method, Radial Length (RL),
Discrete Fourier Transformation (DFT), HOG

HOG Local Dataset 1, Local
Dataset 2

Precision = 100%,
Precision = 95.16%

[142] 2020
Green Channel, CLAHE, Watershed Transform,
Thresholding Method, Top-Hat Transformation,
Gabor Filtering, LBP, TEM, Entropy, DBN, NN

LBP, TEM, Entropy-Based DIARETDB1 ACC = 94.30%

[143] 2019 SURF, LOG, BoF, Box Filters,
K-Means Clustering, ANN, SVM SURF, LOG Messidor SF = 95.92%,

SP = 98.90%

[144] 2019
CNNVgg-s, CNN-Vgg-m, CNNVgg-f,

CNN-CaffeNet, GLRLM, GLCM, HOG, LBP,
Morphology, SVM, MLP, Random Forest

GLCM, LBP, HOG HRF, JSIEC, ACRIMA
ACC = 95.30%,
ACC = 98.10%,
ACC = 99.10%

[145] 2019
SVM, KNN, Green Channel, CLAHE, Wavelet

Transform, Shearlet Transform, HOG, LBP,
GLCM, GLDM

HOG, LBP, GLCM, GLDM Local Dataset ACC = 93.61%

[147] 2018 Bag-of-Words (BoW), SVM, SURF,
Redial Basis Function (RBF) SURF Messidor

ACC = 94%
SF = 91%
SP = 93%

[148] 2017 HOG, LBP, Decision Tree (DT),
Random Forest (RF), SVM HOG, LBP Local Dataset ACC = 95.31%

[142] 2016
SURF, LBP, HOG, SVM, CNN, Logistic

Regression, Random Forest, Crop and Resize,
Green Channel, CLAHE, Median Filter

SURF, LBP, HOG Kaggle ACC = 97%

6. Automated Classification of DR Lesions by Using Deep Features

Deep learning (DL) models enhanced learning through the extraction of high-level
features that might be missed through hand-crafted methods [149]. The DL-based classi-
fication performed very well and efficiently in terms of early detection of DR [150]. The
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DL-based Densenet-264 with chimp optimization algorithm is utilized for feature extraction
then these features are passes as input from SNN for the classification Of DR stages. This
methodology is applied on Messidor dataset and obtained 99.73% of accuracy [151]. The
DRNet is applied for classification with SVM [152]. For the categorization of DR lesions,
the DAG network based on multi-feature fusion is proposed. The method is evaluated
using the local dataset and DIARETDB1, and it achieves the accuracy of 98.70% and 98.50%,
respectively [153]. The features are retrieved using the firefly Optimization (FFO) tech-
nique and optimization is done by iGWO to classify the DR lesions [154]. The DRNet is
applied for classification with SVM [155]. The EyeNet and DenseNet (E-DenseNet) model
is presented for DR classification [156]. VGGNet is employed to extract deep features
from fundus images, and a transfer learning strategy is applied to increase classification
performance [157]. Faster-RCNN with DenseNet-65 is utilized for the localization and
categorization of multiclass DR lesions [48,158]. For better results of the classification
of DR lesions first, the features are extracted from modified deep networks like Vgg19,
ResNet101, InceptionV3 and selection from these features is done by four filter-based
feature selection methods namely MRMR, ReliefF, and F-test then passes these features
from SVM classifier [159]. DFTSA-Net model is presented for the detection of DR lesions,
in which four pretrained deep-networks like GoogLeNet, SqueezeNet, ResNet-50, and
Inception-v3 are utilized as feature extractors [160]. The ConvNet model are presented for
deep feature extraction from retinal images for DR lesions identification. The proposed
approach has experimented on APTOS 2019 dataset with an accuracy of 97.41% [161–164].
The DL approach name faster-RCNN are employed to retrieve features from fundus scans
and classification of DR lesions is done by Softmax. The methodology is applied on two
publicly datasets like DIARETDB1 and Messidor and get 95% accuracy [165]. The proposed
CNN model utilized three pre-trained models namely VGG-16, SqueezeNet, and AlexNet
as the classifier for classifying DR lesions. The model is assessed on Messidor dataset
and achieved an accuracy of 98.15% [166]. The methodology is proposed that comprises
of five deep CNN models are utilized for the identification of DR lesions [167]. AlexNet
is used as a feature extractor, where feature reduction is done by PCA and Bow. At last,
the classification of featured is done by SVM [168]. The DNN model is presented for the
detection of DR, in which AlexNet is utilized for extracted features from retinal images and
feature selection is done by PCA and LDA then passes these features from SVM classifier.
The model is estimated on Kaggle dataset and accuracy of 97.93% [169]. The Residual
network is applied for retrieving deep features and these extracted features are passed
from the decision tree model to classify multiclass DR lesions [170]. A major goal of feature
selection is to minimize the size of the feature space through dimensionality reduction
while keeping important information preserved by choosing meaningful features. Better
feature selection produces good classification results because DR classification performance
relies on selected features [159]. In literature, much amount of work is done for the selection
of prominent features and eliminate the noisy features using PCA, firefly algorithm [171],
LDA [169], GA [172], PSO [173], wrapper-based methods [174], GWO [175], and FSAE [176].
The overview of deep features techniques is mentioned in Table 6.

Table 6. Reported deep feature and classification techniques used in various reviewed studies.

Ref # Year Methodology Deep Feature
Extraction Method Classifiers Datasets Results

[151] 2022 Kapur’s Entropy, COA-DN, SNN, Image
Rescale, Clipping COA-DN SNN Messidor ACC = 99.73%

[152] 2022
AlexNet, VGG16, ResNet, Inception-V3,

SVM, DRNET, Few-Shot
Learning (FSL), GCAMs

DRNet SVM APTOS2019
ACC = 99.73%,

SF = 99.82%,
SP = 99.63%

[153] 2022
DAG, Softmax, ReLU, Convolution,

Contrast Enhancement, CLAHE,
Binarization Threshold, Fuzzy Clustering

DAG Network Softmax DIARETDB1,
Local Dataset

ACC = 98.70%,
ACC = 98.70%
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Table 6. Cont.

Ref # Year Methodology Deep Feature
Extraction Method Classifiers Datasets Results

[154] 2022
CLAHE, Median Filter, Gaussian Filter,
Min–Max Normalization, RBT, iGWO,

FF0, CNN, IGWO-FFO
IGWO-FFO CNN Softmax APTOS2019 ACC = 94.11%

[155] 2022 KNN, XGBOOT, SVM, PCA, HHO, DT,
DNN-PCA-HHO DNN-PCA-HHO KNN, XGBOOT,

SVM UCI ACC = 97%

[156] 2022 CNN, EyeNet, DenseNet E-DenseNet,
Average Pooling (GAP) E-DenseNet Softmax

IDRiD, Messidor,
EyePACS,

APTOS 2019

ACC = 93%,
ACC = 91.60%,
ACC = 96.80%,

ACC = 84%

[157] 2022 CLAHE, Weighted Gaussian Blur,
Average Pooling, Augmentation, VGGNet VGGNet Average Pooling EyePACS ACC = 97.10%

[48] 2021 Faster-RCNN, DenseNet-65, Gaussian
Filter, VGG, AlexNet, ResNet Faster-RCNN DenseNet-65 Kaggle, APTOS ACC = 97.20%

[158] 2021 Random Forest, ResNet-50, MobileNet,
VGG16, VGG-19, Xception, Inception-V3 ResNet-50 Random Forest Messidor-2,

EyePACS
ACC = 96%,

ACC = 75.09%

[159] 2021 Inception-V3, ResNet101, VGG-19, Naïve
Bayes, KNN, SVM

Inception-V3,
ResNet101, Vgg19 SVM Kaggle,

Messidor-2, IDRiD

ACC = 97.78%,
SF = 97.60%,
SP = 99.30%

[160] 2021 CNN, SqueezeNet, ResNet-50,
Inception-V3, DFTSA-Net, CLAHE DFTSA-Net Softmax IDRiD

ACC = 96.80%,
SF = 97.50%,
SP = 95.50%

[161] 2020 DNN, KNN, SVM, MLP, VGG16,
Xception, ResNetV2, NASNET

VGG16, Xception,
ResNetV2, NASNET

DNN, KNN, SVM,
Naïve Bayes

Classifier, Decision
Tree, Logistic

Regression, MLP

APTOS 2019 ACC = 97.41%

[163] 2020 CNN, Inception-V3, Softmax, GMM, ALR Inception-V3, Softmax e-Ophtha,
DIARETDB1

ACC = 98.43%,
ACC = 98.91%

[164] 2020 CNN, CLAHE, ResNet-50, SVM, KNN,
Random Forest, XGBoost ResNet-50 SVM, KNN, Random

Forest, XGBoost DIARETDB1 ACC = 99%

[165] 2020 RCNN, Morphological Operation, RPN,
Softmax, Bounding Box Faster-RCNN Softmax Messidor ACC = 96.80%

[166] 2019
Cropping, Resizing, Histogram

Equalization, CNN, VGG-16, SqueezeNet,
AlexNet

Convolution Layers VGG-16, SqueezeNet,
AlexNet Messidor ACC = 98.15%

[167] 2019
CNN, Deep CNN, Inception-V3,

Dense-169, ResNet-50,
Xception, Dense-121,

Dense-121,
Inception-V3,

Dense-169, Xception
ResNet-50

Binary Classification,
Multi-Class

Classification
Kaggle SP = 99%

[168] 2018 PCA, Bag of Words (Bow), CNN, AlexNet AlexNet SVM SD-OCT
ACC = 96.80%

SF = 93.75%
SP= 100%

[169] 2018 CNN, AlexNet DNN, SVM, PCA, LDA,
SIFT, Histogram Equalization, GMM AlexNet DNN SVM Kaggle ACC = 97.93%

[170] 2017 Augmentation, Image Transformation,
Contrast Enhancement, Decision Tree Residual Network Decision Tree

Messidor-2,
e-Ophtha,
EyePACS

SP = 87%,
SP = 94%,
SP = 98%

7. Benchmark Datasets

For many years, fundus images are used to diagnose many retinal illnesses, including
DR. The performance of the detection system can be evaluated to a large extent with a
good, varied dataset. The researchers advise to performing experiments using benchmark
datasets to obtain satisfactory outcomes. On some websites, researchers can access publicly
available DR datasets that are essential for DR detection. Since the researchers collect
images of the affected area using scanners, cameras, and other local resources, it is also
possible that they build their own datasets. The researcher utilized these datasets for
training, testing, and validating the system.

Messidor is the publicly accessible dataset including 1200 images. The datasets images
were taking by 3CCD camera. These datasets are utilized for the detection of exudates, MAs,
HMs and blood vessels [55]. Messidor-2 dataset provides 1748 images. The topcon digital
camera takes these images. These datasets are used for the diagnosis of DR lesions [177].
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The openly accessible E_ophtha Ex dataset carries 47 exudate images, and 35 healthy
images. E_ophtha MAs consist of 233 images have no lesions and 148 images with minor
HMs and MAs are included in the E_ophtha MAs dataset [178]. The 400 images in STARE
dataset were taken with a TOP-CON-TRV camera. It is also obtained by the general public
and utilized for the detection of MAs, HMs, and irregular blood vessels [179]. DRIVE
dataset gives 40 color images with a resolution of 786 × 584. 20 of them are utilized for
testing, while another 20 are used for training. These images were taken by 3CCD camera
with 45◦ FoV [180]. Kaggle provides 88702 images with a high resolution of 433 × 289 to
5184 × 3456 pixels. The Kaggle dataset was gathered by EyePACS [181]. The whole count
of color fundus images in DIARETDB0 dataset is 130 in which 20 images have no DR but
the other 110 images containing DR lesions like HE, SE, MAs, HMs, and neovascularization.
Images were taken using an unidentified camera setting on a digital camera with 50◦

FoV [182]. DIARETDB1 consists of total 89 images, in which 84 MAs images and 5 healthy
images. The resolution of images is 1500 × 1152 and was captured by a digital camera
at 45◦ FoV. Researchers utilized this dataset for identification of damage blood vessels,
MAs, HMs, and Ex [10,183]. The two databases such as DR1 & DR2 were introduced by
federal brazil university to assist the researcher for DR detection. DR1 dataset consists
of total 234 images and DR2 dataset consists of total 520 images. Researchers identified
the DR with the help of DR1 and DR2, which were employed for HE detection [184].
CHASE DB1 is the freely accessible database allowed to segment the retina blood vessels.
It has 28 images, each measuring 1280 × 960 pixels and having a 45◦ FoV [185]. There are
100 publicly accessible retinal images in ROC that were shot at a 45◦ FoV. Size variations
include 768 × 576 to 1389 × 1383 pixels. The images were marked up to identify MAs.
This datasets contains only ground truth for training [186]. The segmentation of blood
vessels was made possible by publicly accessible images in HRF dataset. Total 45 images
with measuring 3504 × 2336 pixels in size. In which 15 images contain glaucomatous,
15 normal, and 15 are DR images [187]. The publicly available dataset HEI-MED consists of
54 healthy images and 115 irregular images. The images of datasets were acquired by Zeiss
VISUCAM PRO camera. This dataset are utilized for the detection of exudates [188]. DRiDB
dataset is accumulated by the University of Zagreb to assist the researcher for DR lesions
identification. The dataset consists of 50 retinal images [189]. Table 7 shows a comparison
of the datasets.

Table 7. Description of DR datasets.

Ref # Datasets Image Resolution Image Acquisition Availability No. of Images Use

[177] Messidor-2
1440 × 960,

2240 × 1488,
2304 × 1536

Topcon Digital Camera with
45-Degree Field of View Online/Free 1748 MA, HM, and Retinal

Vessel Detection

[178] E_ophtha Ex and
E_ophtha_MAs 2048 × 1360 Captured by OPHDIAT Online/Free 463 MA and Ex Detection

[179] STARE 605 × 700 Topcon TRV 50 35
Field of View Online/Free 400 Irregular Blood Vessel, HM,

Ex, and MA Detection

[181] Kaggle 433 × 289 to
5184 × 3456 Different Digital Cameras Online/Free 88,702 Exudate, MA, HMs, and

Blood Vessel Detection

[182] DIARETDB0 1500 × 1152 Digital Camera with 50◦ FoV Online/Free 130 HE, SE, MA, HM, and
Neovascularization Detection

[183] DIARETDB1 1500 × 1152 Digital Camera with 45◦ FoV Online/Free 89 Irregular Blood Vessel, MA,
HM, and Ex Detection

[10] IDRiD 4288 × 2848 Digital Camera with 45◦ FoV Online/Free 516 Exudate, MA, HM, and Blood
Vessel Detection

[184] DR1 and DR2 857 × 569 Digital Camera with 50◦ FoV Online/Free 234 DR1 and
520 DR2

HE, SE, MA, HM, and
Neovascularization Detection

[185] CHASE DB1 1280 × 960 Digital Camera with 30◦ FoV Online/Free 28 Segmentation of Retinal
Blood Vessels
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Table 7. Cont.

Ref # Datasets Image Resolution Image Acquisition Availability No. of Images Use

[186] ROC 768 × 576 to
1389 × 1383 Digital Camera with 45◦ FoV Online/Free 100 MA Detection

[187] HRF 3504 × 2336 Canon CR-1 Camera Online/Free 45 Retinal Blood Vessel
Segmentation

[188] HEI-MED 2196 × 1958 Zeiss VISUCAM Camera
with 45◦ FoV Online/Free 169 Exudate Detection

[189] DRiDB 720 × 576 Zeiss VISUCAM Camera
with 45◦ FoV Online/Free 50 Exudate Detection

8. Performance Evaluation

To estimate the performance of the DL algorithm, various performance metrics are
utilized for the diagnosis of DR [190]. The visual examination is not very efficient and there
is no method to prove that the decision is correct. However, nowadays, to reduce the likeli-
hood of errors, automated systems can take the place of visual examinations and are much
more satisfactory, and some parameters can be used to check the system’s performance.
The performance measures commonly used in DL are accuracy (ACC) [191], specificity
(SP) [191], sensitivity (SF) [191], precision [192], true-positive rate (TPR) [193], false-positive
rate (FPR) [194], false-negative rate (FNR) [194], F-score [195], and G-means [196,197].

9. Challenges and Discussion

The analysis of DR diagnosis methods shows that DL has improved DR identification
procedures and advanced methodologies, but it is still an unresolved issue that requires
further study. Table 8 describes the limitations of existing approaches.

Table 8. Limitations in existing methods.

Ref # Year Methods Datasets Results Limitations

[43] 2022 Inception-V4, Image Flipping,
Image Rotation, SGD Messidor-2 96.10% SP

Using high-resolution and high-quality images
at the time of training increases the

performance rate.

[152] 2022 DRNet, ResNeX, GAP, FC, FSL APTOS201 98.18% ACC Imbalanced and small dataset leads to
overfitting and poor approximation problems.

[198] 2021
DRNet, CNN, Regression, Image

Augmentation, Image Resize, Gaussian
Distribution, Euclidean Distance

IDRiD,
DRIVE,

DRISHTI-GS,
RIMONE

84.50% ACC,
92.10% ACC,
93.30% ACC,
90.10% ACC

• In some cases, DRNet fails to produce
accurate outcomes for OD localization
and segmentation.

• Low contrast and blurred edges make
OD segmentation a challenging process.

[199] 2021 CAE, Image Resize, Data Augmentation,
ReLU, Skip Connections

DRISHTI-GS,
RIM-ONE

96.70%
Dice score,

90.20%
Dice score

The availability of a few manually annotated
images limits the reliability of supervised

learning systems.

[200] 2020 CNN, VGG-16, Softmax, FC Layer, ReLU,
Transfer Learning OCTA 90.82% SP, 83.76% SF

Large number of datasets and transfer learning
approaches are utilized for the training of CNN

model to overcome the overfitting problem.

[201] 2019
Vessel Tree Structure, Circular Hough

Transform, Sliding Windows, Weighted
Colour Channels, Image Augmentation

Local Dataset 88.80% ACC

The presence of dust particles, reflection, and
flash, on the lens of the camera in retinal
images, leads to inaccurate results for the

detection of OD.

[202] 2019 Inception-V3, CNN, CLAHE, Image Resize,
Cropping, Padding Messidor-2 93.49% ACC

Multiclass classification is a challenging task if
the patient dataset contains a variety of

retinal disorders.

[190] 2018 CNN, SURF, Encoding, Max-Pooling,
ILT, BLT, SVM

Messidor,
DR1, DR2

90% ACC,
93% ACC, 96% ACC

Constructing DL approaches that rely on CNN
with a deep architecture means the addition of a

great volume of annotated images.
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Table 8. Cont.

Ref # Year Methods Datasets Results Limitations

[46] 2017 DLNN, SLDR, GLOH, DColor-SIFT, DFV DIARETDB1 92.18% SF, 94.50% SP

Speech recognition, 3D object recognition,
dimensionality reduction, and deep color visual
features play a great role in the categorization

of DR.

[125] 2016
SeS CNN, NSeS CNN, Circular Template

Matching, Image Resize, Image
Augmentation, Gaussian Filter

Kaggle, Messidor 89.40% ACC,
97.20% ACC

It is required to develop innovative data
augmentation methods that generate new

samples from current samples that accurately
reflect real samples.

After the complete survey, we observed that imbalance and small datasets lead the
overfitting and poor approximation problem [152]. In several research, data augmentation
has been employed to address the issue of class imbalance. The availability of few manually
annotated images, limited the reliability of supervised learning systems. The solution
of this issue to utilize the Generative Adversarial Networks (GANs) models [199]. The
amount of datasets need to train the DL systems, as deep learning needs huge amount of
data is one of the drawback of its use in medical field [200]. The addition of pre-processing
stage in DL model for the better identification of DR lesions [201]. Transfer learning makes
the procedure of building and designing of new model considerably simpler and faster
than starting from scratch to create a new CNN architecture [190].

10. Future Directions

In medical image processing, a significant amount of research is done for the auto-
mated detection of DR. There are several areas in this field that could be done better such
as the detection of OD boundary which is difficult due to blur edges. The segmentation
of MAs is also a difficult task because these lesions are detected as a normal region. For
DR lesion detection process, color and shape are significant factors due to the identical
appearance of the OD and bright lesions in aspects of color and shape. As a consequence,
no single method can address all of these challenges. The identification of retinal changes
and structure associated with DR detection requires the development of more effective
techniques. Manual diagnosis by ophthalmologists is a difficult process. Therefore, efficient
deep DL approaches that can be trained on tiny retinal datasets are required. Preprocessing
techniques play a crucial role for the better performance of model but still, there is a need to
implement new preprocessing techniques to achieve good accuracy of model. It is necessary
to develop innovative data augmentation methods that generate new samples from current
samples that accurately reflect real samples. Transfer learning approaches are utilized for
the training of CNN model to overcome the overfitting problem.

11. Conclusions

Recent literature has been conducted for the identification of DR, mainly focused
on CADs based on classical/machine learning and deep learning methods. CADs used
fundus imaging for the analysis of DR lesions based on the four major steps like prepro-
cessing, segmentation, features extraction/selection and classification. In scope of the
CADs system, preprocessing methods are used to enhance the sharpness of funds images
that provide help in accurate detection of the DR lesions. In this work recent preprocess-
ing methods are discussed on the benchmark datasets for the detection of MAs, HE, SE,
and HMs DR lesions. The classical segmentation methods such as thresholding, region
growing etc., as well as machine/DL methods based on convolutional neural networks
are discussed with challenges and limitations. For the categorization of DR lesions, the
features extraction/selection approaches are described in terms of hand crafted and DL
strategies. Furthermore publicly/freely available DR detection datasets of fundus imaging
are provided in detail with common performance metrics for the analysis of DR lesions.
At last, the gaps, limitations, advantages, and challenges of the existing methods for DR
detection are discussed. This research provided a thorough overview of existing methods
for DR identification that will assist the researchers for further research in this domain.
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