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Abstract: In this paper, we report a sequential-phase fed broadband circularly polarized array
antenna loaded with an artificial magnetic conductor-reflecting surface. Our proposed antenna is
a two-part group. The upper structure is a sequential-phase fed circular wide-slot antenna. The
lower part is an artificial magnetic conductor structured reflective surface. The overall antenna size
is 106 × 106 × 14.9 mm3, both adopting 1.6 mm thick FR4 material. The thickness of the air layer
sandwiched between the antenna and the artificial magnetic conductor reflective surface is 14 mm.
The antenna consists of four circular wide-slot antenna units with a sequential rotation technique. To
broaden the axial ratio bandwidth, three L-shaped branches and four metal plates are attached to
the circular wide-slot antenna unit and around the artificial magnetic conductor-reflecting surface,
respectively. To verify the accuracy of the simulation, we fabricated the sample and then tested it
in an anechoic chamber. The measured results demonstrate that the proposed broadband circularly
polarized array antenna realizes an impedance bandwidth of 77.67% (2.74–6.22 GHz) and an axial
ratio bandwidth of 65.16% (3.00–5.90 GHz) with a peak gain of 11.1 dBi. The design can be used in
space-constrained environments, such as indoor and dense building areas.

Keywords: array antenna; circular polarization; sequential phase; broadband

1. Introduction

With the continuous progress of society, all kinds of electronic products are emerging,
and the communication equipment in the complex electromagnetic environment is facing
significant challenges. The signals are intermingled, especially in limited space or dense
building areas, and the interference phenomenon is grave [1]. At the same time, the
circularly polarized (CP) antenna can reduce the influence of the multipath effect and no
polarization matching is needed, so it can meet the above scenario to achieve the demanding
performance requirements.

Researchers favor microstrip antennas because they are easy to integrate and fabricate [2].
The sequential rotation technique (SRT) [3] has been generally applied in CP microstrip an-
tennas. The array antennas with sequential phase feed networks (SPFN) have significantly
improved bandwidth compared with traditional antennas with series-parallel feeds [4]. The
same antenna units were employed in a number of studies [5–8], using different structures
of SPFN. Including a microstrip line width constant monopole transmission [5], H gap cou-
pling feed [5], sequential phase (SP) feed with circular metal wall [5], and SP feed with 270◦

sector [5], the above antenna axial ratio bandwidth (ARBW) is not more than 16%, or there is
a complex structure of the problem. The use of stacked structures [9], parasitic patches [10],
and defective ground structures [11] is also a class of ways to expand the bandwidth,
achieving 20.6%, 11.8%, and 20.6% of 3 dB ARBW, respectively, while microstrip anten-
nas with square slots [12]—as antenna units using cost-per-wear (CPW) feeds to reduce
cross-polarization—have a CP bandwidth of 31.4%, and produce axisymmetric backward
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radiation. The same backward radiation is produced in a number of studies [13–16], and
this problem can be well solved by using the back cavity structure [17,18]. Bisharat et al. [19]
use an L-shaped antenna and couple it with a vertically fed probe to the SP-fed network,
achieving 55% ARBW, but the vertically fed design is more complex [20]. The SP feed
with non-uniformly bent transmission lines in Maddio’s work [21] minimizes the overall
antenna size, but the bandwidth is only 15.5%.

In recent years, artificial magnetic conductor (AMC), electromagnetic bandgap struc-
ture (EBG), and frequency selective surface (FSS) based on the metasurface structure have
been poured into the field of array antenna design owing to their unique electromag-
netic characters [22,23]. The aspects of metasurface performance enhancement mainly
include improving impedance bandwidth [24], enhancing gain [25], increasing AR band-
width [26,27], suppressing surface waves [28], reducing radar Cross Section (RCS) [29], and
polarization conversion [30]. In two studies [24,25], the operating bandwidth of the CP
antennas loaded with the metasurface structure can reach 41.67% and 23.16%, respectively.
In another study [26], two SP-fed networks are designed to achieve RHCP and LHCP
polarization forms, but the bandwidth still does not meet the operating requirements. The
dipole antenna and wide slot antenna are relatively easy to achieve broadband perfor-
mance, but the above antennas produce bidirectional radiation and low gain. When the
communication equipment is in a restricted environment, it is evident that the backward
radiation is unnecessary, and the antenna loaded with the AMC structure [31,32] can effec-
tively reduce the backward radiation and profile compared with the antenna [33–36] using
a PEC reflector plate. The combination of metasurface and antenna also makes design
optimization more complex and, in recent years, characteristic modal analysis (CMA) has
been increasingly used in antenna design, making the overall design optimization process
more controllable [37–40].

In this paper, an SP-fed broadband circular slot array antenna loaded with an AMC is
proposed. The circular slot serves as an antenna radiation unit, and the L-shaped branches
are introduced into it to improve the bandwidth. The antenna itself has broadband perfor-
mance and comes with bi-directional radiation. The antenna gain is not high; considering
the use of the antenna in the actual scenario, an AMC structure is designed to reduce
the backward radiation to increase the forward radiation by introducing the same phase
reflection property of the AMC structure, avoiding the increase of antenna profile brought
by using PEC plates. Finally, we process and test the sample, and the experimental result
indicates that the design has a more stable gain in the working band and that the maximum
gain is 11.3 dBi. The measured impedance bandwidth and AR bandwidth can realize
77.76% (2.74–6.22 GHz) and 65.16% (3.0–5.9 GHz), respectively. The antenna has certain
application values in space-limited environments.

2. Antenna Design and Analysis
2.1. Antenna Structure

Figure 1 displays the detailed configuration of the designed 2 × 2 broadband CP array
antenna. The structure of the antenna is composed of two parts, of which the top structure
is an SP-fed circular wide-slot antenna, and the lower part is the reflecting surface of the
AMC structure, surrounded by a vertical metal plate. The three-dimensional view of the
design is demonstrated in Figure 1a. The overall antenna size is 106 × 106 × 14.9 mm3,
both employing 1.6 mm thick FR4 material. The thickness of the air layer between the
antenna and the AMC reflective surface is 14 mm. The antenna consists of four circular
wide-slit antenna cells rotated sequentially. Figure 1b,c present the top and side views
of the design, respectively. Three L-shaped branches are added to the circular wide-
slot antenna unit to improve the AR bandwidth. The radiating layer of the antenna
employs a sequential phase-shifted feed network that maintains a 90◦ phase difference at
the four output ports, as shown in Figure 1d. The optimal parameters are L11 = 15.9 mm,
L12 = 92 mm, L13 = 106 mm, L14 = 15.6 mm, R3 = 6.5 mm, w6 = 1.1 mm, w7 = 0.7 mm,
w8 = 0.64 mm, w9 = 0.62 mm, w10 = 0.81 mm, and w11 = 14.9 mm.
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Figure 1. Configuration of the presented antenna. (a) 3D view. (b) Top view and detail. (c) Side view.
(d) Feeding network.

2.2. Design of CP Antenna Unit

Figure 2 gives the evolution process of the antenna design, which can be divided
into four stages. Antenna 1 is a straightforward microstrip line-fed circular wide-slot
antenna, and the simulation results are in Figure 3 show that antenna 1 has good impedance
matching. However, the antenna has only line polarization radiation. As the L-shaped
branch increases, antenna 2 and antenna 3 have CP radiation characteristics. The AR
bandwidth also spreads with the increase of L-shaped branches. However, the impedance
bandwidth decreases instead due to poor impedance matching. The structure proposed in
this paper is shown as antenna 4, which has good impedance matching. The AR bandwidth
and impedance bandwidth of the antenna are better than those of the first three antennas.
The current distribution of antenna 4 is exhibited in Figure 4. The right-hand polarized
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radiation will appear along the +z direction, while the left-hand polarized radiation will
travel in the −z direction.
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2.3. AMC Structure Design and Analysis

The antenna works in the indoor environment, so it is indispensable to increase the
radiation of the antenna in the +z direction to reduce the backward radiation. The AMC
structure is used as the reflector plate to increase the radiation in the +z direction by using
its characteristic of in-phase reflection. Both the PEC plate and the AMC structure can reflect
−z direction radiation and enhance +z direction radiation, while the in-phase reflection
characteristics of the AMC structure can significantly reduce the antenna profile and
miniaturize the antenna. Figure 5a,b describe the corresponding impedance bandwidth
and AR bandwidth with and without the AMC structure loaded. We can understand
intuitively that the introduction of the AMC structure has little influence on the bandwidth,
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as only a certain frequency shift occurs. The reflected phase bandwidth of the AMC unit
can be seen in Figure 5c, and we define the frequency band in the interval [−90◦, 90◦] as
the in-phase bandwidth, centered on the reflected phase at 0 degrees. The air layer height,
H3, has a large effect on the in-phase reflection bandwidth of the AMC structure, and a
red shift occurs with the gradual increase of H3. The in-phase reflection bandwidth of
the AMC covers the working bandwidth of the antenna. The antenna gain is significantly
improved, as depicted in Figure 5d. The antenna has a good broadband performance but
deteriorates in the 3.18–3.76 GHz range. In view of the above situation, four metal plates are
added around the AMC structure. In the actual processing, copper plates are used. Vertical
metal plates have no obvious influence on impedance bandwidth and gain performance.
The surface current distribution of the metal plate is shown in Figure 6. By observing the
current distribution, it can be seen that part of the electromagnetic wave radiated by the
SP-fed wide-slit antenna above is coupled to the edge of the vertical metal plate and the
ground floor, which increases the current path and achieves the purpose of widening the
antenna axis ratio bandwidth.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 10 
 

structure is used as the reflector plate to increase the radiation in the +z direction by using 
its characteristic of in-phase reflection. Both the PEC plate and the AMC structure can 
reflect −z direction radiation and enhance +z direction radiation, while the in-phase 
reflection characteristics of the AMC structure can significantly reduce the antenna profile 
and miniaturize the antenna. Figure 5a,b describe the corresponding impedance 
bandwidth and AR bandwidth with and without the AMC structure loaded. We can 
understand intuitively that the introduction of the AMC structure has little influence on 
the bandwidth, as only a certain frequency shift occurs. The reflected phase bandwidth of 
the AMC unit can be seen in Figure 5c, and we define the frequency band in the interval 
[−90°, 90°] as the in-phase bandwidth, centered on the reflected phase at 0 degrees. The 
air layer height, H3, has a large effect on the in-phase reflection bandwidth of the AMC 
structure, and a red shift occurs with the gradual increase of H3. The in-phase reflection 
bandwidth of the AMC covers the working bandwidth of the antenna. The antenna gain 
is significantly improved, as depicted in Figure 5d. The antenna has a good broadband 
performance but deteriorates in the 3.18–3.76 GHz range. In view of the above situation, 
four metal plates are added around the AMC structure. In the actual processing, copper 
plates are used. Vertical metal plates have no obvious influence on impedance bandwidth 
and gain performance. The surface current distribution of the metal plate is shown in 
Figure 6. By observing the current distribution, it can be seen that part of the 
electromagnetic wave radiated by the SP-fed wide-slit antenna above is coupled to the 
edge of the vertical metal plate and the ground floor, which increases the current path and 
achieves the purpose of widening the antenna axis ratio bandwidth. 

 

 
Figure 5. Influence of AMC structure on antenna performance and parameter scanning of air layer 
height. (a) S11. (b) AR curves. (c) Air layer height H3. (d) Gain curves. 
Figure 5. Influence of AMC structure on antenna performance and parameter scanning of air layer
height. (a) S11. (b) AR curves. (c) Air layer height H3. (d) Gain curves.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 6. Surface current distribution diagram of a metal plate. 

3. Results’ Comparisons 

To verify the rationality of the design, we fabricated and tested the SP-fed broadband 

CP circular slot array antenna loaded with an AMC. The field test environment is shown 

in Figure 7. The fabricated antenna sample is shown in Figure 8. As we can see, the air 

layer between the antenna and the AMC is supported by plastic posts; both are fixed with 

insulating tape and sideloaded with SMA connectors. 

Figure 9 presents the simulated and measured results of the design. Figure 9a depicts 

that the impedance bandwidth of the measurement is 77.7% (2.74–6.22 GHz), while the 

simulation is from 2.74 GHz to 5.91 GHz. The simulated and measured AR bandwidths 

(AR < 3 dB) is in Figure 9b are 2.82–5.82 GHz and 3.00–5.90 GHz, respectively. From the 

simulated results, the CP operating bandwidth has 94.63% coverage for the whole oper-

ating band in our design. Figure 9c displays the in-band gain, where the measured gain 

peak is 11.1 dBi at 4.4 GHz. From the comparison of the above measurement, there is a 

small difference compared with the simulated result; the first reason for the difference is 

the unstable positioning of the antenna air layer; the second reason is the processing error 

and the deviation of the FR4 substrate dielectric constant. Figure 10 displays the radiation 

direction of the antenna at three frequency points. The performance comparisons between 

the designed antenna and others are listed in Table 1. Part of the antennas proposed have 

simple structure and low profile, and obtain good broadband performance at the same 

time [9,18,21]. For backward radiation, most of the designs use the AMC structure or PEC 

as the reflecting surface [31,33,34,36]. In [37-40], CMA was used to design and optimize 

the working mode of the antenna, so that the bandwidth and directivity of the antenna 

were significantly improved, and the antenna sidelobe was extremely suppressed. The 

radiation direction pattern of the designed antenna was very symmetrical. In [39,40] both 

use multiple linear polarization (LP) modes to improve antenna CP bandwidth. Com-

pared with [39], the performance of [40] is further improved. The antenna unit adopts the 

stack structure to obtain up to 5 LP modes. Finally, SRT is used to form the 2*2 array 

antenna, and the circular polarization bandwidth reaches 74%. The antenna bandwidth 

performance designed in this paper is better than in [37-39] and slightly less than in [40]. 

At the same time, compared with the above literature, the antenna design for sidelobe 

suppression and direction pattern optimization need to be improved. CMA needs to be 

used to further analyze the antenna working mode to optimize the antenna structure. 

Figure 6. Surface current distribution diagram of a metal plate.



Appl. Sci. 2023, 13, 3104 6 of 10

3. Results’ Comparisons

To verify the rationality of the design, we fabricated and tested the SP-fed broadband
CP circular slot array antenna loaded with an AMC. The field test environment is shown
in Figure 7. The fabricated antenna sample is shown in Figure 8. As we can see, the air
layer between the antenna and the AMC is supported by plastic posts; both are fixed with
insulating tape and sideloaded with SMA connectors.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

Figure 7. Field test environment. 

  

Figure 7. Field test environment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 8. The fabricated antenna sample. 

  

Figure 8. The fabricated antenna sample.

Figure 9 presents the simulated and measured results of the design. Figure 9a depicts
that the impedance bandwidth of the measurement is 77.7% (2.74–6.22 GHz), while the
simulation is from 2.74 GHz to 5.91 GHz. The simulated and measured AR bandwidths
(AR < 3 dB) is in Figure 9b are 2.82–5.82 GHz and 3.00–5.90 GHz, respectively. From
the simulated results, the CP operating bandwidth has 94.63% coverage for the whole
operating band in our design. Figure 9c displays the in-band gain, where the measured
gain peak is 11.1 dBi at 4.4 GHz. From the comparison of the above measurement, there is
a small difference compared with the simulated result; the first reason for the difference is
the unstable positioning of the antenna air layer; the second reason is the processing error
and the deviation of the FR4 substrate dielectric constant. Figure 10 displays the radiation
direction of the antenna at three frequency points. The performance comparisons between
the designed antenna and others are listed in Table 1. Part of the antennas proposed have
simple structure and low profile, and obtain good broadband performance at the same
time [9,18,21]. For backward radiation, most of the designs use the AMC structure or PEC
as the reflecting surface [31,33,34,36]. In [37–40], CMA was used to design and optimize
the working mode of the antenna, so that the bandwidth and directivity of the antenna
were significantly improved, and the antenna sidelobe was extremely suppressed. The
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radiation direction pattern of the designed antenna was very symmetrical. In [39,40] both
use multiple linear polarization (LP) modes to improve antenna CP bandwidth. Compared
with [39], the performance of [40] is further improved. The antenna unit adopts the stack
structure to obtain up to 5 LP modes. Finally, SRT is used to form the 2 × 2 array antenna,
and the circular polarization bandwidth reaches 74%. The antenna bandwidth performance
designed in this paper is better than in [37–39] and slightly less than in [40]. At the same
time, compared with the above literature, the antenna design for sidelobe suppression and
direction pattern optimization need to be improved. CMA needs to be used to further
analyze the antenna working mode to optimize the antenna structure.
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Table 1. Comparison of the proposed antenna to previous antennas.

Ref. Size (λ0) Substrate IBW (%) ARBW (%) Peak Gain (dBi)

[9] 1.02 × 1.02 × 0.028 at 5.5 GHz Rogers 5880 25.8 20.6 8
[10] 1.45 × 1.45 × 0.028 at 5.4 GHz Rogers 5880 15.9 11.8 12.5
[11] 1.43 × 1.43 × 0.032 at 6.15 GHz FR4 37.4 27.6 10
[12] 1.67 × 1.67 at 5.4 GHz FR4 52 31 7.5
[14] 2.07 × 1.79 × 0.01 at 5.6 GHz FR4 78.5 35.7 14.2
[15] 0.4 × 0.4 at 1.63 GHz Rogers 4003 31.9 21.56 5
[18] 2.02 × 2.33 × 0.18 at 6.16 GHz FR4 64.28 54.28 10.84
[19] 1.72 × 1.72 × 0.22 at 7.55 GHz Rogers 5870 55 54.9 12.1
[21] 0.86 × 0.86 × 0.03 at 5.75 GHz FR408 29 15.5 8.25
[24] 1.26 × 1.26 × 0.046 at 5.9 GHz Rogers 4003 55.6 41.67 12.08
[25] 1.64 × 1.64 × 0.072 at 6.15 GHz F4B, Duriod 62.7 56.7 14.1
[27] 1.6 × 1.6 × 0.065 at 9.6 GHz Rogers 4003 41.45 33.16 13.5
[28] 1.85 × 1 at 5.15 GHz F4B 74 49.5 10.2
[31] 0.12 at 1.78 GHz FR4 66.7 44.7 6
[33] 1.63 × 1.63 × 0.13 at 2.5 GHz FR4 28.4 23.6 13
[34] 0.4 × 0.4 × 0.17 at 1.5 GHz FR4 66.2 47.8 7.1
[36] 1.21 × 1.75 at 6.8 GHz Rogers 4003 34.38 15.17 12.15
[37] 1×1×0.07 at 5.5GHz F4B 28.2 20.9 9.7

This Work 1.31 × 1.31 × 0.21 at 4.5 GHz FR4 77.67 69 11.1

λ0 refers to the wavelength of the corresponding center frequency in free space.
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4. Conclusions

In this work, an SP-fed broadband CP circular slot array antenna loaded with an AMC
structure was presented. The design method of the antenna and the principle of action of
the AMC structure were analyzed and tested in a SATMO microwave anechoic chamber.
First, the AR bandwidth is well widened by the introduction of the radiation unit, and the
SP feed network is used to connect to form the array. Second, the AMC structure is applied
to increase the radiation of the antenna in the +z direction and simultaneously reduce the
antenna profile. The measurements prove that our designed antenna realizes impedance
bandwidth (2.74–6.22 GHz) of 77.67% and AR bandwidth (3.00–5.90 GHz) of 65.16% with
a low profile of 0.11λ0 (about 0.11λ0 at the center frequency of 4.5 GHz). Our designed
SP-fed broadband CP circular slot array antenna with loaded AMC structure can be used
in space-constrained environments such as indoor and dense building areas.
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