
Citation: Bansal, N.; Aljrees, T.;

Yadav, D.P.; Singh, K.U.; Kumar, A.;

Verma, G.K.; Singh, T. Real-Time

Advanced Computational

Intelligence for Deep Fake Video

Detection. Appl. Sci. 2023, 13, 3095.

https://doi.org/10.3390/

app13053095

Academic Editors: Omneya Attallah

and Kadir Sabancı

Received: 31 January 2023

Revised: 17 February 2023

Accepted: 18 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Real-Time Advanced Computational Intelligence for Deep Fake
Video Detection
Nency Bansal 1 , Turki Aljrees 2,* , Dhirendra Prasad Yadav 3, Kamred Udham Singh 4 , Ankit Kumar 3 ,
Gyanendra Kumar Verma 1 and Teekam Singh 5

1 Department of Computer Engineering, National Institute of Technology, Kurukshetra 136119, India
2 Department College of Computer Science and Engineering, University of Hafr Al-Batin,

Hafar Al-Batin 39524, Saudi Arabia
3 Department of Computer Engineering & Applications, GLA University, Mathura 281406, India
4 Department School of Computing, Graphic Era Hill University, Dehradun 248002, India
5 Department of Computer Science and Engineering, Graphic Era Deemed to be University Dehradun,

Uttarakhand 248002, India
* Correspondence: tajrees@uhb.edu.sa

Abstract: As digitization is increasing, threats to our data are also increasing at a faster pace. Gen-
erating fake videos does not require any particular type of knowledge, hardware, memory, or any
computational device; however, its detection is challenging. Several methods in the past have solved
the issue, but computation costs are still high and a highly efficient model has yet to be developed.
Therefore, we proposed a new model architecture known as DFN (Deep Fake Network), which has
the basic blocks of mobNet, a linear stack of separable convolution, max-pooling layers with Swish as
an activation function, and XGBoost as a classifier to detect deepfake videos. The proposed model
is more accurate compared to Xception, Efficient Net, and other state-of-the-art models. The DFN
performance was tested on a DFDC (Deep Fake Detection Challenge) dataset. The proposed method
achieved an accuracy of 93.28% and a precision of 91.03% with this dataset. In addition, training
and validation loss was 0.14 and 0.17, respectively. Furthermore, we have taken care of all types of
facial manipulations, making the model more robust, generalized, and lightweight, with the ability
to detect all types of facial manipulations in videos.

Keywords: fake news; XGBoost; mobNet; Efficient Net; deep fake network; deep fake detection challenge

1. Introduction

Deep learning techniques are nowadays being exploited to create fake videos. These
fake videos are often created with malicious intent, like defaming a famous political leader,
fake pornography of famous actors/actresses, tampering with evidence related to forensics
and courts, and creating scams and frauds for identity manipulation. Deep learning
techniques are used for these purposes, as the fake videos generated from these techniques
look very similar to the original videos. It is not even possible for humans to differentiate
between real and fake images/videos. The deep learning technique used to generate such
videos is known as a Generative Adversarial Network (GAN) [1].

DeepFake is made up of two words, “Deep” and “Fake”. It means creating a fake
image or video using deep learning techniques. Deep learning techniques were designed
to create videos that appear similar to the original videos using facial manipulation or
face swap techniques. Such videos are designed for various gaming purposes and are
commonly used in graphic design and animation. Facial manipulation has a broad scope
in the movie industry for creating animations, etc. Sometimes, fake images/videos are also
created for recreational purposes. These techniques have been used and implemented for
many years, generally only for legal purposes. Other than deep learning techniques, there
are various mobile apps such as FaceApp, Zao, FaceSwap [2], Reface, etc., easily available

Appl. Sci. 2023, 13, 3095. https://doi.org/10.3390/app13053095 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13053095
https://doi.org/10.3390/app13053095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7360-4225
https://orcid.org/0000-0002-7473-7115
https://orcid.org/0000-0002-7201-6381
https://orcid.org/0000-0002-7945-4616
https://orcid.org/0000-0001-8050-5639
https://doi.org/10.3390/app13053095
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13053095?type=check_update&version=2

Appl. Sci. 2023, 13, 3095 2 of 23

on the Play Store, which allows creating such fake videos in a free-of-cost and easy way, as
mentioned in [3]. A sample of fake images created from such apps is shown in Figure 1.
If shown randomly, it is difficult to differentiate between the real and fake images. The
fake images can be easily generated by anyone, irrespective of age or knowledge. deepfake
detection has become an emerging area of research due to the above reasons. Moreover, it
is a challenging and unsolved problem to date.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 24

in the movie industry for creating animations, etc. Sometimes, fake images/videos are also

created for recreational purposes. These techniques have been used and implemented for

many years, generally only for legal purposes. Other than deep learning techniques, there

are various mobile apps such as FaceApp, Zao, FaceSwap [2], Reface, etc., easily available

on the Play Store, which allows creating such fake videos in a free-of-cost and easy way,

as mentioned in [3]. A sample of fake images created from such apps is shown in Figure

1. If shown randomly, it is difficult to differentiate between the real and fake images. The

fake images can be easily generated by anyone, irrespective of age or knowledge. deep-

fake detection has become an emerging area of research due to the above reasons. More-

over, it is a challenging and unsolved problem to date.

Figure 1. High Level view of deepfake creation and detection model.

Deepfake allows for the creation of fake videos similar to realistic videos by swap-

ping the complete face of one person with another, or sometimes just by manipulating the

eye movement, lip movement, and expression to simulate some other context. In 2018, a

fake video of Barack Obama (former president of the US) was released by BuzzFeed in

which he was talking about some subject [4]. That deepfake video was created using Fake-

App [5] software. It raised many concerns about spreading the wrong information on so-

cial media, impersonation, identity theft, etc. It is becoming more threatening when fake

videos of our leaders are created to spread rumors, to spread violence, and other falsifica-

tion purposes [6,7]. It can also be used to create fake satellite images of Earth, to create

objects which are not at all present in reality, which can be used by attackers to mislead

whole troops of military and analysts, etc., to misguide them to a place where they can be

easily attacked or killed [8].

The number of deepfake videos doubles every eight months, according to available

statistics. Detecting and removing fake data on the internet can prevent misinformation,

rumors, and fake pornography from spreading if we cannot prevent its creation [9]. To

achieve this, our detection methods must be robust, generalized, fast, and accurate enough

to detect fake data and punish those who are generating and misusing such data. The

ResNet 152 [10] and Xception [11] models are performing well in the field of object recog-

nition, as reported in the literature. In addition, several deep learning methods have been

successfully applied in several other domains [12–15]. The proposed model was trained

on a large DFDC dataset [16] with a motive to create a robust, generalized, and more ac-

curate model. The DFDC dataset has no data leaks, and our results are not dependent on

a particular feature of a face like teeth, smile, eye, lip, etc. We considered all the features

Figure 1. High Level view of deepfake creation and detection model.

Deepfake allows for the creation of fake videos similar to realistic videos by swapping
the complete face of one person with another, or sometimes just by manipulating the
eye movement, lip movement, and expression to simulate some other context. In 2018,
a fake video of Barack Obama (former president of the US) was released by BuzzFeed
in which he was talking about some subject [4]. That deepfake video was created using
FakeApp [5] software. It raised many concerns about spreading the wrong information
on social media, impersonation, identity theft, etc. It is becoming more threatening when
fake videos of our leaders are created to spread rumors, to spread violence, and other
falsification purposes [6,7]. It can also be used to create fake satellite images of Earth, to
create objects which are not at all present in reality, which can be used by attackers to
mislead whole troops of military and analysts, etc., to misguide them to a place where they
can be easily attacked or killed [8].

The number of deepfake videos doubles every eight months, according to available
statistics. Detecting and removing fake data on the internet can prevent misinformation,
rumors, and fake pornography from spreading if we cannot prevent its creation [9]. To
achieve this, our detection methods must be robust, generalized, fast, and accurate enough
to detect fake data and punish those who are generating and misusing such data. The
ResNet 152 [10] and Xception [11] models are performing well in the field of object recogni-
tion, as reported in the literature. In addition, several deep learning methods have been
successfully applied in several other domains [12–15]. The proposed model was trained
on a large DFDC dataset [16] with a motive to create a robust, generalized, and more
accurate model. The DFDC dataset has no data leaks, and our results are not dependent on
a particular feature of a face like teeth, smile, eye, lip, etc. We considered all the features of
a face, including a complete face swap. We also implemented various image augmentation
techniques while training our model to improve the performance gains.

Figure 1 shows the abstract view of the deepfake creation and detection model. The
first block shows the creation of fake images, manipulated using various techniques. The
second block shows the set of real and fake images. It can be considered a dataset, which
contains both real as well as fake images. The last block shows the compact view of the

Appl. Sci. 2023, 13, 3095 3 of 23

detection process. Frames are extracted from videos, and each face is detected from the
frames. Then these faces are provided as input to the detection model, where predictions
of real and fake videos are made. The main contributions of this work are as follows.

i. We propose a new model architecture, which consists of a linear stack of separable
convolution 2D, max-pooling layers with XGBoost as the classifier and modification
Swish as an activation function.

ii. Rather than focusing on any single facial manipulation technique, we focused on
generating a robust, scalable, and generalizable model for deepfake video detection
by training the model on an augmented and generalized dataset.

iii. The proposed model outperforms on deep fake dataset with less training and
validation loss.

The rest of this paper is organized as follows. Sections 2 and 3 detail related work and
preliminaries of CNN (Convolution Neural Network). Section 4 introduces the proposed
model. Section 5 presents experimental details and results of the proposed architecture on
the DFDC dataset. Finally, Section 6 gives the conclusions and future scope.

2. Literature Review

This section provides a literature study based on the merit and demerit of the methods
used by various researchers. Aya et al. [17] used YOLO-CNN-XGBOOST, where YOLO
(you only look once) is the face detector used to extract the faces from the video frames,
InceptionResNetV2 CNN is used to extract the features from the detected faces, and
XGBoost is used as the classifier on the top of the CNN network to classify the video as fake
or real. They used the CelebDF-FaceForencics++ merged dataset for training and testing
their model and attained an accuracy of 90.73%. Their dataset consists of 2848 training and
518 testing data selected from CelebDF and FaceForensics++. Their dataset is not large
enough to test and train a deep neural network. Hsu et al. [18] implemented a two-phase
deep learning technique for the detection of deepfake images. In the first phase, they
extracted features based on the popular CFFN (Common Fake Feature Network). They
used the Siamese network architecture presented in [19]. CFFN uses multiple units in
which each unit has multiple blocks that are used to increase the representative capability
of the fake images. Discriminative features between the real image and fake images are
extracted as part of the learning process of the model. Then, the features are fed as inputs
to the second phase, which is CNN combined with the last layer of CFFN. The accuracy
claimed by the researchers is 90.04%.

Tolosana et al. [20] mainly focused on four types of face manipulation techniques.
(i) Entire Face Synthesis: In this method, the complete face of the target image replaces the
complete face of the source image. (ii) Attribute Manipulation: In this technique, some
attributes like hairs, specs, ageing, etc., are replaced in the source image by that of the target
image. (iii) Expression Swap: in this technique, expressions of the image like a smile or eye
features are manipulated to match with those of the target image. (iv) Identity Swap: In this
technique, the identity of the source image is replaced with that of the target image. They
experimented on already existing models, which worked well on the seen data; however, a
model was not generalized for complex data. They also mentioned that although the models
perform well on specific datasets, like UADFV and FaceForensics++ [21], their accuracy
suffers with much error when applied to a generalized dataset like the DFDC dataset.

Mirsky et al. [22] defined deepfake as “Believable media that is created by a branch
of machine learning (Deep Neural Network)”. They have categorized human visuals into
Reenactment and Replacement categories. In Reenactment, a few attributes are manipu-
lated, like the pose of a person, head position, mouth position for facial expression, gaze of
a person that includes eye position, eyelid position, etc. In Replacement, the complete face
is swapped or transposed from the source image to the target image. They also focused on
various technology drawbacks related to deepfake, and the current status of attacker and
defender games, to give a deep insight to the readers and guide them in future research.

Appl. Sci. 2023, 13, 3095 4 of 23

Güera and Delp [23] used a RNN (Recurrent Neural Network) model for deepfake
video detection. According to the researchers, a simple pipeline architecture can work
well and can achieve competitive results. They used LSTM for this purpose. As LSTM is
designed for sequential data, this model does not work well on unseen data. Moreover,
this model also takes much time to converge for high-resolution images, and thus a long
time to predict the results.

In [4], Suwajanakorn et al. described the procedure for creating a fake video. They
proved that after training a model for a large dataset, the model maps the lip shape and lip
movement as per the change in audio. They showed lip-sync merged with the new audio
with such perfection that it was difficult for the human eye to recognize that it is a fake
video. They created a fake video of Barack Obama (former President of the USA). All the
lip shapes, lip movement, mouth shapes, texture, and emotional changes were taken care
of to maintain sync with the audio. Their pipeline consisted of a manual step to select and
mask a teeth proxy as per the target video, which can be automated in future work. The
method that they used relies mostly on MFCC audio features. Most people have conducted
research based on various facial features to detect whether the video is fake.

Jung et al. [24] developed a method to analyze a spontaneous, unconscious, and
natural human function, that is, eye blinking. According to them, by analyzing the eye
blinking pattern, we can detect whether a video is real or fake, as eye blinking is natural, and
it is very difficult to make it fake. This is a type of data leak, and this model does not give
good accuracy in a generalized dataset. This model performs well on a particular dataset
which has input related to eye blinking and hence does not works well on generalized data.
They proved their accuracy only on a particular dataset. They classified a video as fake if
blinking eyes were not found in consecutive frames of a video.

In thepaper [25], proposed methods for deepfake detection which do not require
much training data, hence saving resources and time. In the researchers explained various
techniques used to create deepfakes and the techniques used to detect them. Creating
fake videos and images has become a very easy task nowadays. No special knowledge or
experience is required to create such images or videos. Much software is available free of
cost to create such videos and images. Detection of such images and videos has become a
challenge. They surveyed many detection techniques in which deep learning techniques
perform well on the generalized dataset.

Sergey et al. [26] proposed an optical flow-based technique for deepfake video de-
tection. Instead of finding features in a single frame, they tried to exploit dissimilarities
between the frames. For that, they used the optical flow technique. This technique was
then used as a feature to be learned by various CNN classifiers. This technique can be
used with other state-of-the-art models to further improve the results. After analyzing
this technique, we found that it will only be able to detect some types of fake videos. This
technique performs well on the training data set and only those types of manipulations on
which the model is trained. Thus, this technique does not fit in a real-time environment.

Recently, Vamsi et al. [25] applied CNN and Long Short-Term Memory (LSTM) for fake
video detection and achieved a classification accuracy of 91%. However, the computation
cost of the model is high due to a large number of trainable parameters. They have
also studied several other techniques and models developed for Deepfake detection, and
concluded DeepFake is still a challenge to the social community that should be resolved.
They also provided a path for researchers to develop a generalized and robust model.

A good model must not be dependent on a dataset or a feature to detect the fake
video. To the best of our knowledge and study, we have not found a model which performs
well on unseen data, is able to detect fake videos in a real-time environment, and is
computationally efficient. Thus, we developed a generalized, robust, and efficient method
to solve the global challenge.

Appl. Sci. 2023, 13, 3095 5 of 23

3. Preliminaries
3.1. Generative Adversarial Network (Gan)

As GAN [27] models are continuously evolving, verifying the integrity and authen-
ticity of deepfakes has become more difficult. Earlier methods used to verify the integrity
have lost their effectiveness due to the rapid evolution of such features and the loop-holes
exploited by the attackers. Therefore, we mainly focused on finding new elements and
features for our study’s integrity verification and deepfake detection. We referred to all
recent surveys to collect the overall background knowledge of the topic, to know what
work has already been done, what accuracy has been achieved, and what could be the new
elements that we can contribute in this area of research to improve the performance and to
create a more generalized model.

3.2. Efficient Net Model

Convolutional Neural Networks (CNNs) work on recurrent learning methods. In the
training phase, a CNN randomly assigns weights to all the features, finds the results, and
matches them with the actual results to calculate the error. Based on the error, it reassigns
or adjusts the weights of all the features. This is continued to obtain good accuracy. Due to
this feature, people have thought of increasing the number of layers in the convolutional
neural network to achieve higher accuracy. Dropout is used at each layer to train different
neurons on different features.

If all the neurons are trained on the same feature, they will all give the same result
for an unseen image. This reduces the accuracy of the model. To avoid this situation, the
dropout is tuned as per the requirement. By increasing the number of layers, accuracy is
improved to a great extent. Many experiments were performed to find the saturation level
of the number of layers of a convolution neural network. It reached a saturation level on
152 layers in the ResNet152 model. By increasing the number of layers, we increase the
depth and, thereby, the complexity of the model. As the complexity increases, the time
taken to train the model also increases. This leads to the requirement of high computational
resources like GPU, memory, SSD, etc.

To reduce the complexity and the need for computational resources, researchers found
a solution in terms of the horizontal scaling of the model. In 2019, Tan and Le proposed a
new model, created by scaling up the convolutional neural network on all three aspects of
width, depth, and resolution. This model was named the Efficient Net Model [28].

They determined that although it is very critical to balance all three aspects (width,
depth, and resolution) in a particular model, if we scale up our model on all three aspects
while maintaining balance among all three aspects, we can achieve high accuracy with less
computational resources. This model is 8.4× smaller and 6.1× faster on inference than the
best existing convolutional neural networks.

They proved their high accuracy against various other existing models. Through
extensive research, they derived an optimal formula with the following coefficients to
maintain a balance among all three aspects: Depth = 1.20, Width = 1.10, Resolution = 1.15.
This means that to scale up the CNN Model, the depth of layers must increase by 20%,
width by 10%, and resolution by 15% to achieve the highest efficiency possible while
expanding the implementation and improving the accuracy of the CNN model. This model
is designed for the segmentation of images (Table 1). The original output layer consists of
1000 outputs. We added a linearly fully connected layer with the ReLu activation function
to get the binary output. Two GPUs were required for training.

Appl. Sci. 2023, 13, 3095 6 of 23

Table 1. Parameters used in the Efficient Net model.

Parameters Used Value

Drop Out 0.65
Learning Rate 0.001

Epochs 15
Batch Size 64
Optimizer Adam

The Efficient Net model uses the method of compound scaling, which uses a compound
coefficient ϕ for scaling all the parameters like network width, depth, and resolution
uniformly in a principled way:

Depth : d = αφ (1)

Width : w = βφ (2)

Resolution : r = γφ (3)

s.t.α ∗ β2 ∗ γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

where α, β, and γ are constants that can be determined by a small grid search. Intuitively, φ
is a user-specified coefficient. They used this in different versions of the Efficient model
from B0 to B7. This has increased the complexity of the model. Hence B7 is the highest
complexity model and B0 is the minimum complexity version of the model.

3.3. Xception Model

The Xception model [29], developed in 2017 by Francois Chollet, is an interpretation
of the Inception model. It is inspired by “Network in Network Architecture”. It is a very
lightweight model. The training time of this model is less compared to other models. It
has used 22 million parameters. Features decrease as we go down the line in this model.
ReLu is used as the activation function and batch normalization in all the layers. There are
24 players in the middle flow of the model architecture for feature extraction, making the
model less complex. The goal of this model was to act as a “Multi-Level Feature Extractor”.
It is also known as “Extreme Inception”.

It has replaced Inception modules with depth-wise separable convolutions, which
has helped improve gains on different datasets. It has shown the difference between the
Inception module and depth-wise separable convolutions. It has 36 layers. These 36 layers
are divided into 14 modules that are linearly connected, except the first and the last module.
It can also be seen as a linear stack of depth-wise separable convolutional layers with
residual connections. We used a pre-trained Xception model [30] for image classification.
We tuned its hyper parameters to improve the performance gains on our dataset. We
experimented with various parameter combinations and concluded that the following
parameters give the best accuracy among all available options shown in Table 2.

Table 2. Parameters Used in the Exception Model.

Parameters Used Value

Drop Out 0.75
Learning Rate 0.001

Epochs 20
Batch Size 128
Optimizer Adam

4. Proposed Methodology

The biggest contribution of this work is to propose a new model architecture for
deepfake video detection, which is a precise and optimized combination of two state-of-

Appl. Sci. 2023, 13, 3095 7 of 23

the-art models: Xception and Efficient Net. As described above, both models have their
strengths and weaknesses in terms of horizontal and vertical computation of the models,
the complexity of the models, the number of layers in both models, etc. We first worked on
each model separately and then optimized both models by making required changes like
parameter values to get the maximum performance gains.

We created our new model architecture by taking into consideration the properties
of both models and combining them in an efficient way to get high performance with a
marginal increase in computational complexity. Apart from creating a new architecture, we
also worked on our dataset for better performance of the model in a real-time environment.
As the quality of the dataset has a large impact on the performance of the model, we worked
to improve the quality of the dataset. We applied various image argumentation techniques
described below while training the model.

4.1. Image Augmentation

Image augmentation is used to improve size of the dataset for the better training of
the CNN model so that overfitting of the model can be avoided. In this study, Shift Scale
Rotate, Horizontal Flip, Normalize, Random Brightness Contrast, Motion Blur, Blur, Gauss
Noise, and JPEG Compression techniques were used for data augmentation. Implementing
these techniques with optimized parameters has led to 0.3% performance gains. Moreover,
these techniques teach the model with various types of inputs, thereby helping in making
the model more robust and accurate.

Figure 2 illustrates various augmentation techniques applied on the images during
training of the model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 24

Batch Size 128

Optimizer Adam

4. Proposed Methodology

The biggest contribution of this work is to propose a new model architecture for

deepfake video detection, which is a precise and optimized combination of two state-of-

the-art models: Xception and Efficient Net. As described above, both models have their

strengths and weaknesses in terms of horizontal and vertical computation of the models,

the complexity of the models, the number of layers in both models, etc. We first worked

on each model separately and then optimized both models by making required changes

like parameter values to get the maximum performance gains.

We created our new model architecture by taking into consideration the properties

of both models and combining them in an efficient way to get high performance with a

marginal increase in computational complexity. Apart from creating a new architecture,

we also worked on our dataset for better performance of the model in a real-time environ-

ment. As the quality of the dataset has a large impact on the performance of the model,

we worked to improve the quality of the dataset. We applied various image argumenta-

tion techniques described below while training the model.

4.1. Image Augmentation

Image augmentation is used to improve size of the dataset for the better training of

the CNN model so that overfitting of the model can be avoided. In this study, Shift Scale

Rotate, Horizontal Flip, Normalize, Random Brightness Contrast, Motion Blur, Blur,

Gauss Noise, and JPEG Compression techniques were used for data augmentation. Im-

plementing these techniques with optimized parameters has led to 0.3% performance

gains. Moreover, these techniques teach the model with various types of inputs, thereby

helping in making the model more robust and accurate.

Figure 2 illustrates various augmentation techniques applied on the images during

training of the model.

Sample Image

Motion Blur Gaussian Noise Horizontal Flip Random Brightness

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 24

Figure 2. Examples of image augmentation.

4.2. Construction of Fully Connected Output Layers

Fully connected layers were applied to the original output of our proposed model.

Fully connected layers include the following components, as shown in Figure 3. First, we

flattened the output using the flatten method of Pytorch. Then dropout was used. After

that, a linear layer for reducing the dimensions of the output was applied. Finally, the

ReLu activation function was used.

Figure 3. Flow chart of fully connected layers of the proposed model.

The ReLu (Rectified Linear Activation Function) can accelerate the training process

on small positive or negative weights. In addition, it reduces the range of the output. The

batch normalization 1D was applied. This makes the deep CNN faster and more stable by

normalizing the input layers for each mini-batch through rescaling and refactoring. Fur-

ther, it reduces the number of epochs required to train the model.

4.3. Architecture of the Proposed DeepFake Detection Model

In our proposed model architecture, we relied on the strength of the Xception model.

While training, we observed that Xception is a swift model, and it gets trained very fast.

When we went through the Efficient Net architecture, we found that the basic block of the

Efficient Net model is the MB convolution block. The original MB convolution block con-

sists of a separable convolution layer 2D with ReLu activation function, followed by a

depth-wise convolution layer 2D with ReLu activation function, followed by a global av-

eraging pooling layer, followed by a convolution 2D layer for squeeze and expansion.

We created the DFN, which consists of 48 layers. These layers are divided into 17

modules. In addition, the architecture is divided into three components: entry flow, mid-

dle flow, and exit flow. In the entry flow, the max-pooling layer plays a vital role. The

basic block of entry flow is repeated thrice, preceded by two standard convolution layers.

Each has a stride of two, which means that the kernel takes the hop of two rows and col-

umns when convolution is performed. In the middle flow, the basic building block is re-

peated eight times. The output of one block is treated as input when the same block is

repeated the next time. In this middle flow, we added three MB convolution blocks which

make our architecture more accurate and help in better feature extraction. Further, we

added three MB Convolutions in the middle flow of our architecture based upon the ex-

periments performed. Our motive is to create a robust and generalized model architecture

without increasing the computational complexity of the model.

Figure 2. Examples of image augmentation.

Appl. Sci. 2023, 13, 3095 8 of 23

4.2. Construction of Fully Connected Output Layers

Fully connected layers were applied to the original output of our proposed model.
Fully connected layers include the following components, as shown in Figure 3. First, we
flattened the output using the flatten method of Pytorch. Then dropout was used. After
that, a linear layer for reducing the dimensions of the output was applied. Finally, the ReLu
activation function was used.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 24

Figure 2. Examples of image augmentation.

4.2. Construction of Fully Connected Output Layers

Fully connected layers were applied to the original output of our proposed model.

Fully connected layers include the following components, as shown in Figure 3. First, we

flattened the output using the flatten method of Pytorch. Then dropout was used. After

that, a linear layer for reducing the dimensions of the output was applied. Finally, the

ReLu activation function was used.

Figure 3. Flow chart of fully connected layers of the proposed model.

The ReLu (Rectified Linear Activation Function) can accelerate the training process

on small positive or negative weights. In addition, it reduces the range of the output. The

batch normalization 1D was applied. This makes the deep CNN faster and more stable by

normalizing the input layers for each mini-batch through rescaling and refactoring. Fur-

ther, it reduces the number of epochs required to train the model.

4.3. Architecture of the Proposed DeepFake Detection Model

In our proposed model architecture, we relied on the strength of the Xception model.

While training, we observed that Xception is a swift model, and it gets trained very fast.

When we went through the Efficient Net architecture, we found that the basic block of the

Efficient Net model is the MB convolution block. The original MB convolution block con-

sists of a separable convolution layer 2D with ReLu activation function, followed by a

depth-wise convolution layer 2D with ReLu activation function, followed by a global av-

eraging pooling layer, followed by a convolution 2D layer for squeeze and expansion.

We created the DFN, which consists of 48 layers. These layers are divided into 17

modules. In addition, the architecture is divided into three components: entry flow, mid-

dle flow, and exit flow. In the entry flow, the max-pooling layer plays a vital role. The

basic block of entry flow is repeated thrice, preceded by two standard convolution layers.

Each has a stride of two, which means that the kernel takes the hop of two rows and col-

umns when convolution is performed. In the middle flow, the basic building block is re-

peated eight times. The output of one block is treated as input when the same block is

repeated the next time. In this middle flow, we added three MB convolution blocks which

make our architecture more accurate and help in better feature extraction. Further, we

added three MB Convolutions in the middle flow of our architecture based upon the ex-

periments performed. Our motive is to create a robust and generalized model architecture

without increasing the computational complexity of the model.

Figure 3. Flow chart of fully connected layers of the proposed model.

The ReLu (Rectified Linear Activation Function) can accelerate the training process
on small positive or negative weights. In addition, it reduces the range of the output. The
batch normalization 1D was applied. This makes the deep CNN faster and more stable by
normalizing the input layers for each mini-batch through rescaling and refactoring. Further,
it reduces the number of epochs required to train the model.

4.3. Architecture of the Proposed DeepFake Detection Model

In our proposed model architecture, we relied on the strength of the Xception model.
While training, we observed that Xception is a swift model, and it gets trained very fast.
When we went through the Efficient Net architecture, we found that the basic block of
the Efficient Net model is the MB convolution block. The original MB convolution block
consists of a separable convolution layer 2D with ReLu activation function, followed by
a depth-wise convolution layer 2D with ReLu activation function, followed by a global
averaging pooling layer, followed by a convolution 2D layer for squeeze and expansion.

We created the DFN, which consists of 48 layers. These layers are divided into
17 modules. In addition, the architecture is divided into three components: entry flow,
middle flow, and exit flow. In the entry flow, the max-pooling layer plays a vital role.
The basic block of entry flow is repeated thrice, preceded by two standard convolution
layers. Each has a stride of two, which means that the kernel takes the hop of two rows
and columns when convolution is performed. In the middle flow, the basic building block
is repeated eight times. The output of one block is treated as input when the same block
is repeated the next time. In this middle flow, we added three MB convolution blocks
which make our architecture more accurate and help in better feature extraction. Further,
we added three MB Convolutions in the middle flow of our architecture based upon the
experiments performed. Our motive is to create a robust and generalized model architecture
without increasing the computational complexity of the model.

In exit flow, the basic building block is followed by a global pooling layer and a fully
connected layer. The main use and advantage of using a fully connected layer are explained
in Section 3.2. Finally, the output of all these layers is passed as an input to the classifier,
which finally classifies the image. We used XGBoost as the classifier to classify the image
into various classes. First, weights of the Image-Net are used as the initial weights in our
proposed model rather than the random weights, which makes our model converge faster
and improves its performance. Our model has depth-wise convolution instead of normal
convolutions to reduce the computation cost. The numbers of multiplication operations
are more in the standard convolution layer; hence it is more computationally expensive

Appl. Sci. 2023, 13, 3095 9 of 23

and time-consuming. In standard convolution, filters across all input channels and the
combination of these values are made in a single step.

In contrast, in depth-wise separable convolution, this step is performed in two steps.
The first step is depth-wise convolution, which it performs in the filtering stage. It applies
convolution to a single input channel, whereas, in standard convolution, convolution
is applied to all the channels simultaneously. The convolution operation is nothing but
element-wise multiplication and adding them all. The second step is point-wise convolution
which performs the combining operation. Point-wise convolution involves the linear
combination of each output of the layers. Depth-wise separable convolution is much
cheaper (in terms of multiplications) and is computationally efficient. The input image is
passed through all the layers, and depth-wise separable convolution operations are applied.
Max pooling and global average pooling layers reduce the dimensions and train the model
in less time. The two-step method has been used to reduce the multiplication operations
and make the model computationally efficient.

MB Convolution block has three components. Each of these blocks has residual
connections from start to finish. Supposing the first layer has found some good features
and there are many more layers ahead of it, all the layers need to enrich those features,
extract new features, and carry already found features. The residual connections are
important from the first layer to the classifier to carry features found in earlier layers. In
the MB Convolution block, 1 × 1 convolution is applied on input. This convolution is
applied to expand the input to a much high dimensional set. Then, on that set, depth-wise
convolution is applied. Then again, 1 × 1 convolution is applied to the output of depth-wise
convolution. This time it is used to convert the data back into its original dimension, the
same as the input. Then all such outputs are added together. This whole process is also
known as the expand and squeeze process.

Feature creation is considered a two-step process. One is feature aggregation, which
is to group similar features, and in step two, each group is processed separately to create
new features. First, 1 × 1 convolution is considered feature aggregation, and depth-wise
convolution is considered a feature creation step. The 1 × 1 convolution is much faster and
cheaper as it saves lots of multiplication operations. Depth-wise convolution is used to
overcome the complexity created by the increasing depth of the model. Each of the MB
convolution blocks enriches the feature set by projecting it to the high-dimensional block
where feature aggregation and creation are performed. Hence, even after adding the layers,
our model is computationally efficient and fast.

Further, we experimented and verified that the Swish activation function performs
better than the ReLu activation function, and we gained 0.7 performance gains by replacing
ReLu with Swish. Thus, we used the Swish activation function after all the layers in our
proposed architecture. Each convolution layer, separable convolution layer, and depth-wise
convolution layer is followed by batch normalization [17].

We used a depth-wise convolution layer as it considers depth dimensions with spatial
dimensions like width and height. An input image has three channels for the interpretation
of redness, greenness, and blueness of the pixels. However, after a few convolutions, the
number of channels increases. Each channel can be interpreted as the interpretation of
an image.

We experimented with a different number of MB convolution blocks. However,
we used three MB convolution blocks to aim at the minimum complexity of the model.
These blocks are added to the middle layer of our architecture for feature extraction.
All convolution layers use a depth multiplier of one for no depth expansion. There are
25 million parameters, which is a bit more than that of the Xception model, but very much
less than the Efficient Net model.

Our proposed model architecture maintains a trade-off between the complexity of
the model, including the training time of the model, prediction time for an input video,
computational complexity, resources required for training our model, etc., and performance
of the model on the DFDC dataset for deepfake video detection. The proposed model

Appl. Sci. 2023, 13, 3095 10 of 23

architecture is still a lightweight model, with less computation complexity and higher
performance gains. In short, the proposed model architecture is a linear stack of depth-
wise convolution layers with residual connection except in the first and the last layer and
the inclusion of MB blocks from Efficient Net architecture. Other parameters, like the
Swish activation function, global average pooling layer, and a fully connected layer at the
output, are added for better performance of the model in terms of both computational time
complexity and accuracy discoed in Algorithm 1.

Algorithm 1: Algorithm for DeepFake Video Detection

Result: Real/Fake Video
Read a video from the dataset.
Divide the video into frames using OpenCV and label all the image frames as fake or real using
one-to-one mapping.
Face is detected from these frames using the BlazeFace [31,32] library.
Apply image augmentation techniques while training the model.
Provide frames with faces as input to our model for classification.
Our model classifies the image as real (1) or fake (0).

If any frame of a video is tagged or labeled as fake, then that video is declared as fake,
and if all the frames of a particular video are labeled as real, then that video is labeled as
real. On this labeling basis, videos are classified as real or fake by our model.

Figure 4 shows the architecture of our proposed model. We divided our architecture
into three parts, namely Entry Flow, Middle Flow, and Exit Flow. Data enters the entry
flow, passes through all the layers of each block, enters the first block of the middle layer
which gets repeated eight times, then enters the second block of the middle layer which
gets repeated three times. The middle layer is also known as the feature extractor layer.
The output of this layer is loaded into Exit Flow, from where we get the final output.

Figure 5 shows the working of our model without many technical details. This shows
how various steps are performed during the training and testing of the model.

4.4. Computational Complexity of Our Model

The computational complexity of a model can be understood as the resources required
by the model for its complete execution. The resources required include the system or
the memory requirements and the needs for time required by the model to converge and
produce the required results. Our model works on video datasets. As a result, it requires
a substantial amount of space. Additionally, the model has 48 layers, which contributes
to its high computational complexity. Despite this, we simplified our model by using
depth-wise separable convolutions rather than regular convolutions. As a result, we are
able to save time and reduce the number of times multiplication is required. Compared to
other state-of-the-art models such as Xception and Efficient Net, our model requires more
training time. The performance of our model is superior to that of other models. Increasing
the marginal complexity of our system allows us to achieve high-performance gains.

Appl. Sci. 2023, 13, 3095 11 of 23
Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 24

Figure 4. Architecture of the proposed model.

Figure 5 shows the working of our model without many technical details. This shows

how various steps are performed during the training and testing of the model.

Figure 4. Architecture of the proposed model.

Appl. Sci. 2023, 13, 3095 12 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 5. Flow chart of deep fake detection with a sample video.

4.4. Computational Complexity of Our Model

The computational complexity of a model can be understood as the resources re-

quired by the model for its complete execution. The resources required include the system

or the memory requirements and the needs for time required by the model to converge

and produce the required results. Our model works on video datasets. As a result, it re-

quires a substantial amount of space. Additionally, the model has 48 layers, which con-

tributes to its high computational complexity. Despite this, we simplified our model by

using depth-wise separable convolutions rather than regular convolutions. As a result, we

are able to save time and reduce the number of times multiplication is required. Compared

to other state-of-the-art models such as Xception and Efficient Net, our model requires

more training time. The performance of our model is superior to that of other models.

Increasing the marginal complexity of our system allows us to achieve high-performance

gains.

5. Experiments

5.1. Dataset

The dataset plays a critical role while developing a deep learning model. Many times,

results are based on the dataset selected. We selected the DFDC (DeepFake Detection

Challenge) dataset [31]. Its size is approximately 470 GB. This dataset is taken from Kaggle

Competition, provided by Google.

It is a generalized dataset but images are not provided for certain events like eye

blinking, swapped face, lip movement, etc. As a result, the model is not able to predict the

desired result. Performing any simulation using this dataset requires us to create and

Figure 5. Flow chart of deep fake detection with a sample video.

5. Experiments
5.1. Dataset

The dataset plays a critical role while developing a deep learning model. Many times,
results are based on the dataset selected. We selected the DFDC (DeepFake Detection
Challenge) dataset [31]. Its size is approximately 470 GB. This dataset is taken from Kaggle
Competition, provided by Google.

It is a generalized dataset but images are not provided for certain events like eye
blinking, swapped face, lip movement, etc. As a result, the model is not able to predict the
desired result. Performing any simulation using this dataset requires us to create and refine
different rules to pre-process the data in order to enhance the performance of trained model.

We divided this dataset into training, validation, and testing sets. This dataset contains
both real and fake videos. Videos are converted into frames and frames having faces
were selected to provide input to the model shown in Figure 6. After converting all the
videos into frames and detecting faces from all the frames, we used 65,234 real images and
68,258 fake images for training our model. For validating, 5876 real images and 5698 fake
images were used. Testing was performed on 9785 real images and 9542 fake images.

Appl. Sci. 2023, 13, 3095 13 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 24

refine different rules to pre-process the data in order to enhance the performance of

trained model.

We divided this dataset into training, validation, and testing sets. This dataset con-

tains both real and fake videos. Videos are converted into frames and frames having faces

were selected to provide input to the model shown in Figure 6. After converting all the

videos into frames and detecting faces from all the frames, we used 65,234 real images and

68,258 fake images for training our model. For validating, 5876 real images and 5698 fake

images were used. Testing was performed on 9785 real images and 9542 fake images.

Figure 6. Sample images from the DFDC dataset.

The statistics of the DFDC dataset that we used for training, validation, and testing

of our model are shown in Table 3, specifically the number of frames having faces. Other

frames (not having faces) extracted from the videos were not used while training or testing

our model. After removing the frames without faces, we found 65,234 real and 68,258 fake

images for validating our model, 5876 real and 5698 fake images for training our model,

and 9785 real and 9542 fake images for testing our model. We kept a large amount of data

for training our model so that it learns maximum features, as well as some unseen data

for testing the performance of our model.

Table 3. Dataset statistics.

Dataset DFDC (DeepFake Detection Challenge)

Size 470 GB

Training
Frames having faces (Real) 65,234

Frames having faces (Fake) 68,258

Validation
Frames having faces (Real) 5876

Frames having faces (Fake) 5698

Testing
Frames having faces (Real) 9785

Frames having faces (Fake) 9542

To visualize the dataset and understand its characteristics, for feature distribution,

we used t-SNE, t-distributed stochastic neighbor embedding plot. It has been used to map

multi-dimensional data (images) in two dimensions. It is a nonlinear algorithm which is

very useful for exploring high dimensional data and dimensional reduction.

Figure 6. Sample images from the DFDC dataset.

The statistics of the DFDC dataset that we used for training, validation, and testing
of our model are shown in Table 3, specifically the number of frames having faces. Other
frames (not having faces) extracted from the videos were not used while training or testing
our model. After removing the frames without faces, we found 65,234 real and 68,258 fake
images for validating our model, 5876 real and 5698 fake images for training our model,
and 9785 real and 9542 fake images for testing our model. We kept a large amount of data
for training our model so that it learns maximum features, as well as some unseen data for
testing the performance of our model.

Table 3. Dataset statistics.

Dataset DFDC (DeepFake Detection Challenge)

Size 470 GB

Training Frames having faces (Real) 65,234
Frames having faces (Fake) 68,258

Validation
Frames having faces (Real) 5876
Frames having faces (Fake) 5698

Testing Frames having faces (Real) 9785
Frames having faces (Fake) 9542

To visualize the dataset and understand its characteristics, for feature distribution, we
used t-SNE, t-distributed stochastic neighbor embedding plot. It has been used to map
multi-dimensional data (images) in two dimensions. It is a nonlinear algorithm which is
very useful for exploring high dimensional data and dimensional reduction.

Figure 7 shows the visualization of our dataset by giving each data point (image) a
location in a two-dimensional map. It shows the real and fake images. The value 0 is used
for fake images and 1 is used to represent real images.

Appl. Sci. 2023, 13, 3095 14 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24

Figure 7 shows the visualization of our dataset by giving each data point (image) a

location in a two-dimensional map. It shows the real and fake images. The value 0 is used

for fake images and 1 is used to represent real images.

Figure 7. Data visualization.

5.2. Experimental Parameters

As the dataset used is very large, it cannot be used to train our model on any system.

To create our model, to train the model, to experiment on various parameters, to select the

best combinations of parameters of both the models, and to test our model, we used a

system with GPU NVIDIA Tesla T4, 4 GPUs, 16 core CPU, 128 GB RAM, 200 GB SSD

persistent disk, and ubuntu18.04 LTS for the operating system. These configurations were

required for the fast and proper functioning of our model. We used the GCP AI notebook

instance for training.

5.3. Experimental Settings

1. Drop Out: This parameter is used to reduce over fitting. To train all nodes equally,

we drop out some neurons for a particular epoch. To do so, we randomly drop neu-

rons in our model during training. This forces the network to share information be-

tween weights, which leads to an increase in its ability to generalize to new data.

Some nodes having more weight may get turned off multiple times, and some nodes

having less weight may not turn off even once. The chance is between 0–1. This de-

termines the fraction of neurons that should be turned off from the previous layer. In

our proposed model, we used a dropout value of 0.45.

2. Learning Rate: This parameter is tuned to control the change in the model after each

time the weights are updated. The learning rate generally decides the time taken by

the model to converge. It is the step that is taken by the model each time to move

close to convergence. If the learning rate is too large, the model takes larger steps,

and it will converge fast; as a result, there is the chance that the model may not con-

verge exactly on the minimum, and the minimum may get missed. If the learning

rate is too small, then the model will take a very large time to converge. The best

learning rate is one that decreases as the model gets closer to the solution. We used

Reduce LR on the plateau learning rate scheduler in Pytorch. It reduces the learning

Figure 7. Data visualization.

5.2. Experimental Parameters

As the dataset used is very large, it cannot be used to train our model on any system.
To create our model, to train the model, to experiment on various parameters, to select
the best combinations of parameters of both the models, and to test our model, we used
a system with GPU NVIDIA Tesla T4, 4 GPUs, 16 core CPU, 128 GB RAM, 200 GB SSD
persistent disk, and ubuntu18.04 LTS for the operating system. These configurations were
required for the fast and proper functioning of our model. We used the GCP AI notebook
instance for training.

5.3. Experimental Settings

1. Drop Out: This parameter is used to reduce over fitting. To train all nodes equally, we
drop out some neurons for a particular epoch. To do so, we randomly drop neurons
in our model during training. This forces the network to share information between
weights, which leads to an increase in its ability to generalize to new data. Some nodes
having more weight may get turned off multiple times, and some nodes having less
weight may not turn off even once. The chance is between 0–1. This determines the
fraction of neurons that should be turned off from the previous layer. In our proposed
model, we used a dropout value of 0.45.

2. Learning Rate: This parameter is tuned to control the change in the model after each
time the weights are updated. The learning rate generally decides the time taken by
the model to converge. It is the step that is taken by the model each time to move
close to convergence. If the learning rate is too large, the model takes larger steps, and
it will converge fast; as a result, there is the chance that the model may not converge
exactly on the minimum, and the minimum may get missed. If the learning rate is
too small, then the model will take a very large time to converge. The best learning
rate is one that decreases as the model gets closer to the solution. We used Reduce LR
on the plateau learning rate scheduler in Pytorch. It reduces the learning by itself if
accuracy does not improve in 2–3 epochs. In our proposed model, we used a learning
rate of 0.001.

3. Epochs: This parameter is the count of iterations. In each iteration, the model is
trained on the full training dataset. A greater number of iterations leads to high-
performance gains of the model to some extent, as in each iteration the weights are
adjusted based on error calculation on the previous iteration. This reduces the error in

Appl. Sci. 2023, 13, 3095 15 of 23

each following iteration. To maintain the trade-off between the time taken in training
the model and performance gains, the number of epochs must be selected wisely. In
our proposed model, we used 30 epochs.

4. Batch Size: This parameter defines the number of input samples that will be sent to
the model at once for training. The complete training dataset is divided into batches,
each with a size equal to that of batch size. The model is trained on one batch at a time.
A large batch size trains the model fast and takes less memory, but the model has less
learning, whereas too small a size may lead to large memory requirements and more
training time for the model. Thus, the batch size must be selected, maintaining the
tradeoff between accuracy and training time of the model. In our proposed model,
we used 128 as the batch size.

5. Optimizer: We used a loss function to calculate the loss or the wrong predictions
made by our model. Then we tried to reduce the loss function by tuning the hyper
parameters. Optimizers tie loss function with the parameters of the model. They
update the model in response to the outcome of the loss function. We used Adam
Optimizer to optimize our model. It is an adaptive optimizer. It is the combination of
AdaGrad and RMSProp, and hence combines the advantages of both.

6. Activation Function: Activation functions are an integral part of the artificial neural
network. They help the model to learn complex patterns, and decide what will be
fired as an input to the next neuron. The Swish activation function is a multiplication
of linear and sigmoid activation functions. It has solved the problem of ReLu where
the negative values are nullified to zero. We found in our model architecture that
Swish performs better than the ReLu activation function.

Swish(x) = x × sigmoid(x) (4)

Table 4 shows various parameters used in our proposed model. We used these
parameters after experimenting with our model on various other values and have concluded
that our model performs best with these parameters.

Table 4. Parameters used in the proposed model.

Parameters Used Value

Drop Out 0.45
Learning Rate 0.001

Epochs 30
Batch Size 128
Optimizer Adam

Activation Function Swish

5.4. Interpretation of Our Model

We used a saliency map for interpreting the predictions of our model. Although it is
the oldest method, it is still the most useful way for interpretation of deep learning models.
The saliency maps of various images extracted from the dataset are shown in Figure 8. It
can be interpreted that our model is making correct predictions and is detecting perfect
facial features. As our model is trained only for facial manipulation techniques, the saliency
maps convey the same thing. If there is no face involved, than our model will directly
ignore it, hence resulting in no saliency map. A red map shows that it is a fake image, and
the area which is red in color tells us the manipulated area in the image. Using the saliency
map, we also came to know that our model does not perform well on blurred images or
under insufficient light conditions; the saliency map is just black for such images.

Appl. Sci. 2023, 13, 3095 16 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 24

the saliency map, we also came to know that our model does not perform well on blurred

images or under insufficient light conditions; the saliency map is just black for such im-

ages.

Figure 8. Saliency map of various images.

5.5. Performance Evaluation

To evaluate our model and compare it with other models, we used various evaluation

metrics like Accuracy, Precision, Recall, and F1 Score. These metrics were calculated using

predefined methods of the sklearn library. Mathematically these parameters can be calcu-

lated using the below equations.

Precision: The ratio of correct positive predictions to that of the total positive predic-

tions. It shows how many correct predications our model has made out of the total posi-

tive predictions. In our case, it gives us the answer of all videos that were predicted as

fake, and how many of them were actually fake, or how many of them were correctly

predicted.

Precision = True Positive / (True Positive + False Positive) (5)

Recall: The ratio of correct positive predictions to that of the total predictions of that

particular class(es). It shows how many of the total positive inputs are correctly predicted

by our model. In our case, it tells us about all the videos that were truly fake, and how

many of them were labeled correctly by our model.

Recall = True Positive / (True Positive + False Negative) (6)

F1 Score: The weighted average of Precision and Recall. It takes into consideration

both False positives and False negatives. It is generally more useful than accuracy; how-

ever, it cannot be intuitively understood as accuracy. It is calculated as:

Figure 8. Saliency map of various images.

5.5. Performance Evaluation

To evaluate our model and compare it with other models, we used various evaluation
metrics like Accuracy, Precision, Recall, and F1 Score. These metrics were calculated
using predefined methods of the sklearn library. Mathematically these parameters can be
calculated using the below equations.

Precision: The ratio of correct positive predictions to that of the total positive predic-
tions. It shows how many correct predications our model has made out of the total positive
predictions. In our case, it gives us the answer of all videos that were predicted as fake,
and how many of them were actually fake, or how many of them were correctly predicted.

Precision = True Positive/(True Positive + False Positive) (5)

Recall: The ratio of correct positive predictions to that of the total predictions of that
particular class(es). It shows how many of the total positive inputs are correctly predicted
by our model. In our case, it tells us about all the videos that were truly fake, and how
many of them were labeled correctly by our model.

Recall = True Positive/(True Positive + False Negative) (6)

F1 Score: The weighted average of Precision and Recall. It takes into consideration
both False positives and False negatives. It is generally more useful than accuracy; however,
it cannot be intuitively understood as accuracy. It is calculated as:

F1 − Score = 2 × (Recall × Precision)/(Recall + Precision) (7)

Appl. Sci. 2023, 13, 3095 17 of 23

Accuracy: The most general and intuitive term to measure performance. It is the ratio
of correct predictions by the model relative to the total inputs provided to the model. It can
be calculated as:

Accuracy = (True Positive + True Negative)/(True Positive + False Positive + True Negative + False Negative) (8)

Log Loss: In our model, the main goal is to minimize the log loss error function, as
shown below. It is the most important classification metric for binary classification models
based on probabilities. The lower the log loss value, the better the predictions will be and
vice versa.

Hp(q) =
−1
N

N

∑
i=1

yi ∗ log(p(yi)) + (1 − yi) ∗ log(1 − p(yi)) (9)

y is the label: 1 for positive and 0 for negative.
N is the number of input observations.
p(y) is the probability of being positive for all N inputs.
H(q) is the binary cross entropy/log loss.
Confusion Matrix: A way of evaluating the performance of a classification model.

It is a N × N matrix where N is the number of target classes. It is used to evaluate how
well our model is performing and the types of errors our model is making. In our model,
we are classifying two classes, Real and Fake. Thus, we have a 2 × 2 confusion matrix.
This matrix shows the exact count of the input values that are predicted by our model for
both classes. It shows the count of observations that are real and predicted-real by our
model, observations that are real but predicted-fake by our model, observations that are
fake and predicted-fake by our model, and observations that are fake but predicted-real by
our model.

Figure 9 shows the graphical representation of the performance of our model with the
increase in number of epochs. This graph shows both training as well as testing accuracy
of the model on the augmented dataset. It is evident from the graph that performance was
better on the training dataset; however, as we can see that the difference in performance is
not large, we can say that our model does not suffers from an overfit problem. Our model
is generalized and performs well on unseen data with an accuracy of 93.28%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24

Figure 9. Testing and training accuracy of our proposed model on the augmented dataset.

Figure 10. Testing loss and training loss of our proposed model on the augmented dataset.

5.6. Performance Evaluation and Comparison of Different Architectures

Figure 9. Testing and training accuracy of our proposed model on the augmented dataset.

Appl. Sci. 2023, 13, 3095 18 of 23

Figure 10 shows the training and testing loss of our model on the augmented dataset.
It can be easily visualized from this graph that the difference between the training loss and
testing loss is small, which results in the conclusion that our model is not remembering the
training data, but learning from it. After executing our model for 30 epochs, testing loss
was 0.1865 whereas training loss dropped to 0.1623.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24

Figure 9. Testing and training accuracy of our proposed model on the augmented dataset.

Figure 10. Testing loss and training loss of our proposed model on the augmented dataset.

5.6. Performance Evaluation and Comparison of Different Architectures

Figure 10. Testing loss and training loss of our proposed model on the augmented dataset.

5.6. Performance Evaluation and Comparison of Different Architectures

We tested the performance of Xception model architecture and Efficient Net model
architecture on the augmented DFDC dataset, and evaluated the performance using a
confusion matrix.

Table 5 shows the confusion matrix of the Efficient Net model. This confusion matrix
was created for the unseen DFDC dataset. This matrix shows us the number of True
Positive, False Positive, True Negative, and False Negative values. It can be determined
from the table that out of all the real images, 8543 images were correctly classified as real
images and 1242 images were misclassified as fake images. Similarly, out of all the fake
images, 8448 images were correctly classified as fake images whereas 1094 images were
misclassified as real images

Table 5. Efficient Net confusion matrix.

N = 19,327 Predicted Real Predicted Fake

Actual Real 8543 1242
Actual Fake 1094 8448

Table 6 shows the confusion matrix of the Xception model. This confusion matrix was
created for the unseen augmented DFDC dataset. This matrix shows us the number of True
Positive, False Positive, True Negative, and False Negative values. It can be determined
from the table that out of all the real images, 8792 images were correctly classified as real
images and 993 images were misclassified as fake images. Similarly, out of all the fake

Appl. Sci. 2023, 13, 3095 19 of 23

images, 8620 images were correctly classified as fake images whereas 922 images were
misclassified as real images.

Table 6. Xception confusion matrix.

N = 19,327 Predicted Real Predicted Fake

Actual Real 8792 993
Actual Fake 922 8620

Table 7 shows the confusion matrix of our proposed model. This confusion matrix was
created for the unseen augmented DFDC dataset. This matrix shows us the number of True
Positive, False Positive, True Negative, and False Negative values. It can be determined
from the table that out of all the real images, 8908 images were correctly classified as real
images and 877 images were misclassified as fake images. Similarly, out of all the fake
images, 8879 images were correctly classified as fake images whereas 663 images were
misclassified as real images

Table 7. Proposed model confusion matrix.

N = 19,327 Predicted Real Predicted Fake

Actual Real 8908 877
Actual Fake 663 8879

We experimented with various face detector methods and various deep learning state
of the art models combined with different classifiers. The different face detector techniques
experimented with were Blaze face, YOLO [33,34], and dlib [35]. Considering that it had
the most accurate and fast detection of the faces, we used Blaze face detection technique
in our proposed model. Various deep learning models were used on the detected faces,
including Xception [36], Efficient Net B5 [37], ResNet152 [38], InceptionResNet152V2 [17],
etc., to evaluate their performance on DFDC dataset. Various classifiers like SVM [39],
Logistic Regression, XGBoost [35], etc. were applied on top of these networks to classify
the video as real or fake.

After evaluating and experimenting with various combinations of face detectors, deep
learning networks, and classifiers, we found that BlazeFace + the Proposed Model + XG-
Boost performed best among all these combinations and attained the highest accuracy [40].
We compared the performance of our proposed model architecture with the Xception model
architecture and Efficient Net model architecture. We proved that our proposed model
architecture had the highest performance among the three. We calculated this performance
using the DFDC datasets [41,42].

We measured the performance through precision, recall, F1 score, and accuracy. In
addition, we considered log loss and proved that the proposed model attains minimum
testing loss and the highest testing accuracy [43]. This shows that the proposed model
outperforms the other models for deepfake video detection on the DFDC dataset. Table 8
shows the comparison of the proposed model with the Efficient Net and Xception models
relative to Precision, Recall, F1-Score, and Accuracy.

From Table 8, it can be seen that results are poor for feature extraction using Effi-
cient Net B5 and classifier performance using SVM. Xception and Efficient Net improved
performance by up to 2%. It can also be observed that classification accuracy is low and
computation time is high in a deeper network like Resnet152 [12,13]. The proposed DFN
along with the YOLO model is better than Efficient Net B5. Moreover, DFN with SVM
and DenseLayer achieved satisfactory performance. The highest classification accuracy of
93.28% was obtained using DFN and XGBoost [14].

Appl. Sci. 2023, 13, 3095 20 of 23

Table 8. Performance Comparison of Proposed Method with Other Methods Using the DFDC Dataset.

Models Precision Recall F1-Score Accuracy

BlazeFace + Efficient Net B5 [43] + SVM [39] 0.7985 0.8094 0.8021 0.8246
YOLO + Xception [36] + SVM [39] 0.8030 0.7902 0.7853 0.8337
MTCNN [31,41,43] + InceptionResNetV2 + XGBoost 0.8265 0.8045 0.8218 0.8445
YOLO + InceptionResNetV2 + XGBoost [YIX] [17] 0.8736 0.8539 0.8636 0.9073
YOLO + ResNet152 [38] + SVM [39] 0.7828 0.8012 0.7878 0.8250
YOLO + ResNet152 [38] + XGBoost 0.8043 0.8129 0.8083 0.8488
BlazeFace + Efficient Net B5 [43] + XGBoost 0.8285 0.8145 0.8012 0.8458
BlazeFace + Xception [36] + XGBoost 0.8728 0.8945 0.8986 0.9037
YOLO + Xception [36] + Log Reg 0.7645 0.7724 0.7954 0.8102
YOLO + Efficient Net B5 [43] + Log Reg 0.7827 0.8152 0.8021 0.8342
BlazeFace + Efficient Net B5 + XGBoost 0.8985 0.9094 0.9021 0.9146
YOLO + DFN+ SVM 0.8503 0.8469 0.8517 0.8528
YOLO + DFN + XGBoost 0.8627 0.8745 0.8468 0.8762
BlazeFace + DFN+ SVM 0.8971 0.9069 0.8823 0.9028
BlazeFace + DFN + DenseLayer [36–38] 0.8192 0.8363 0.8241 0.8152
BlazeFace + DFN + Log Reg 0.9078 0.9186 0.9254 0.9105
Proposed: BlazeFace + DFN+ XGBoost 0.9103 0.9269 0.9217 0.9328

Figure 11 shows the comparison of the performance of our proposed model architec-
ture graphically in terms of precision, recall, and accuracy. These results were obtained
from the testing data of our dataset.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 24

Figure 11. Performance measures comparison Xception and Efficient Net models with the proposed

model [17,39].

Table 9 compares the performance of our proposed model in terms of training and

testing loss and accuracy with the Efficient Net and Xception models [15]. These values

were obtained by training and testing all three models on the augmented data set [44,45].

We found that the Efficient Net model performs better than the Xception model in terms

of both training and testing accuracy, and has less loss. Our model performs best among

these models.

Table 9. Training and testing loss and accuracy.

Parameters Efficient Net Xception Proposed Model

Training Accuracy 0.9562 0.9645 0.9676

Testing Accuracy 0.9086 0.9263 0.9328

Training Loss 0.1624 0.1345 0.1422

Testing Loss 0.2172 0.2062 0.1865

6. Conclusions

The quality of deepfakes is increasing rapidly, so our detection methods must im-

prove faster to catch up. The competition between creators and catchers of deepfakes is

increasing day by day. The motivation behind the proposed model for deepfake detection

is that deep learning techniques themselves can solve the problems created by deep learn-

ing techniques. Several pieces of research on this have been conducted, but they are less

efficient, and computation time is high. In this study, we created a new deep CNN model,

Figure 11. Performance measures comparison Xception and Efficient Net models with the proposed
model [17,39].

Table 9 compares the performance of our proposed model in terms of training and
testing loss and accuracy with the Efficient Net and Xception models [15]. These values

Appl. Sci. 2023, 13, 3095 21 of 23

were obtained by training and testing all three models on the augmented data set [44,45].
We found that the Efficient Net model performs better than the Xception model in terms
of both training and testing accuracy, and has less loss. Our model performs best among
these models.

Table 9. Training and testing loss and accuracy.

Parameters Efficient Net Xception Proposed Model

Training Accuracy 0.9562 0.9645 0.9676
Testing Accuracy 0.9086 0.9263 0.9328

Training Loss 0.1624 0.1345 0.1422
Testing Loss 0.2172 0.2062 0.1865

6. Conclusions

The quality of deepfakes is increasing rapidly, so our detection methods must improve
faster to catch up. The competition between creators and catchers of deepfakes is increasing
day by day. The motivation behind the proposed model for deepfake detection is that deep
learning techniques themselves can solve the problems created by deep learning techniques.
Several pieces of research on this have been conducted, but they are less efficient, and
computation time is high. In this study, we created a new deep CNN model, DFN, that
contains some building blocks of Xception and Efficient Net to reduce complexity and
improve performance gains. The proposed model achieved up to 2% accuracy gain and
1.18% precision improvement compared to Efficient Net B5. In addition, DFN is fast and
converges in low time compared to other state-of-the-art models. This model can also be
used in other forgery detection tools currently used by cyber security experts.

In the future, a different model architecture should be designed which considers both
audio and visual features for better detection of deepfakes. The model developed herein
for deepfake detection can become the baseline model for other researchers in the future.
Audio features were not yet taken into consideration due to noise and various other issues,
and these features can help further improve the accuracy of these detection methods. Other
datasets, including audio forgery, can be used to train models in different aspects. Various
speech alteration methods can be combined with visual alteration methods to better explore
this area of research.

Cybersecurity professionals can also work on various types of adversarial attacks
possible on this model and can suggest different ways to prevent them. Machine learning
models are prone to adversarial attacks, so methods can be implemented to prevent various
types of attacks by taking this model as a baseline.

Author Contributions: N.B. Conceptualization, software, T.A.: methodology, validation, D.P.Y.:
formal analysis, investigation, K.U.S.: data curation, writing—original draft preparation G.K.V.:
writing—review and editing, A.K.: visualization and T.S.: supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. arXiv 2014, arXiv:1406.2661. [CrossRef]
2. Faceswap: Deepfakes Software for All. Available online: https://github.com/deepfakes/faceswap (accessed on 10 November 2020).
3. Jan, K.; Lee, L.W.; McCarthy, I.P.; Kietzmann, T.C. Deepfakes: Trick or treat? Bus. Horiz. 2020, 63, 135–146.
4. Supasorn, S.; Seitz, S.M.; Kemelmacher-Shlizerman, I. Synthesizing obama: Learning lip sync from audio. ACM Trans. Graph.

2017, 36, 1–13.
5. FakeApp 2.2.0. Available online: https://www.malavida.com/en/soft/fakeapp/ (accessed on 28 October 2020).

http://doi.org/10.1145/3422622
https://github.com/deepfakes/faceswap
https://www.malavida.com/en/soft/fakeapp/

Appl. Sci. 2023, 13, 3095 22 of 23

6. Bloomberg (11 September 2018). How Faking Videos Became Easy and Why That’s So Scary. Available online: https://fortune.
com/2018/09/11/deep-fakes-obama-video/ (accessed on 2 October 2020).

7. Robert, C.; Citron, D. Deepfakes and the new disinformation war: The coming age of post-truth geopolitics. Foreign Aff. 2019,
98, 147.

8. Patrick, T. The Newest AI-Enabled Weapon: Deep-Faking Photos of the Earth. Defense One. March 2019. Available online: https:
//www.defenseone.com/technology/2019/03/next-phase-ai-deep-faking-whole-world-and-china-ahead/155944/ (accessed on
3 January 2023).

9. Kumar, A.; Dadheech, P.; Chaudhary, U. Energy conservation in WSN: A review of current techniques. In Proceedings of the 2020
3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things
(ICETCE), Jaipur, India, 7–8 February 2020.

10. Zifeng, W.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit.
2019, 90, 119–133.

11. François, C. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

12. Yadav, D.P.; Jalal, A.S.; Prakash, V. Human burn depth and grafting prognosis using ResNeXt topology based deep learning
network. Multimed. Tools Appl. 2022, 81, 18897–18914. [CrossRef]

13. Rathor, S.; Agrawal, S. Sense understanding of text conversation using temporal convolution neural network. Multimed. Tools
Appl. 2022, 81, 9897–9914. [CrossRef]

14. Singh, L.K.; Garg, H.; Khanna, M. Deep learning system applicability for rapid glaucoma prediction from fundus images across
various data sets. Evol. Syst. 2022, 13, 807–836. [CrossRef]

15. Gupta, N.; Garg, H.; Agarwal, R. A robust framework for glaucoma detection using CLAHE and EfficientNet. Vis. Comput. 2022,
38, 2315–2328. [CrossRef]

16. Ruben, T.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; Ortega-Garcia, J. Deepfakes and beyond: A survey of face manipulation
and fake detection. Inf. Fusion 2020, 64, 131–148.

17. Ismail, A.; Elpeltagy, M.; Zaki, M.S.; Eldahshan, K. A New Deep Learning-Based Methodology for Video Deepfake Detection
Using XGBoost. Sensors 2021, 21, 5413. [CrossRef]

18. Chih-Chung, H.; Zhuang, Y.-X.; Lee, C.-Y. Deep fake image detection based on pairwise learning. Appl. Sci. 2020, 10, 370.
19. Sumit, C.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings

of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–26 June 2005; Volume 1, pp. 539–546.

20. Mingxing, T.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.
21. Li, Y.; Lyu, S. Exposing deepfake videos by detecting face warping artifacts. arXiv 2018, arXiv:1811.00656.
22. Yisroel, M.; Lee, W. The creation and detection of deepfakes: A survey. ACM Comput. Surv. 2021, 54, 1–41.
23. David, G.; Delp, E.J. Deepfake video detection using recurrent neural networks. In Proceedings of the 15th IEEE International

Conference on Advanced Video and Signal-BASED Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6.
24. Tackhyun, J.; Kim, S.; Kim, K. DeepVision: Deepfakes Detection Using Human Eye Blinking Pattern. IEEE Access 2020, 8,

83144–83154.
25. Thi, N.T.; Nguyen, C.M.; Nguyen, D.T.; Nguyen, D.T.; Nahavandi, S. Deep learning for deepfakes creation and detection. arXiv

2019, arXiv:1909.11573.
26. Sergey, I.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
27. Aminollah, K.; Yuan, J.-S. ADD: Attention-Based DeepFake Detection Approach. Big Data Cogn. Comput. 2021, 5, 49.
28. Montserrat, D.M.; Hao, H.; Yarlagadda, S.K.; Baireddy, S.; Shao, R.; Horvath, J.; Bartusiak, E.; Yang, J.; Guera, D.; Zhu, F.; et al.

Deepfakes Detection with Automatic Face Weighting. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2851–2859.

29. Yu, P.; Xia, Z.; Fei, J.; Lu, Y. A Survey on Deepfake Video Detection. IET Biom. 2021, 10, 607–624. [CrossRef]
30. Su, Y.; Xia, H.; Liang, Q.; Nie, W. Exposing DeepFake Videos Using Attention Based Convolutional LSTM Network. Neural

Process. Lett. 2021, 53, 4159–4175. [CrossRef]
31. Wodajo, D.; Atnafu, S. Deep fake video detection using convolutional vision transformer. arXiv 2021, arXiv:2102.11126.
32. Bonettini, N.; Cannas, E.D.; Mandelli, S.; Bondi, L.; Bestagini, P.; Tubaro, S. Video face manipulation detection through ensemble

of CNNs. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January
2021; pp. 5012–5019.

33. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unifified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

34. Chen, W.; Huang, H.; Peng, S.; Zhou, C.; Zhang, C. YOLO-Face: A Real-Time Face Detector. Vis. Comput. 2020, 37, 805–813.
Available online: https://link.springer.com/article/10.1007/s00371-020-01831-7 (accessed on 7 August 2021). [CrossRef]

35. Kumar, R.; Arora, R.; Bansal, V.; Sahayasheela, V.J.; Buckchash, H.; Imran, J.; Narayanan, N.; Pandian, G.N.; Raman, B. Accurate
prediction of COVID-19 using chest X-ray images through deep feature learning model with SMOTE and machine learning
classififiers. MedRxiv 2020.

https://fortune.com/2018/09/11/deep-fakes-obama-video/
https://fortune.com/2018/09/11/deep-fakes-obama-video/
https://www.defenseone.com/technology/2019/03/next-phase-ai-deep-faking-whole-world-and-china-ahead/155944/
https://www.defenseone.com/technology/2019/03/next-phase-ai-deep-faking-whole-world-and-china-ahead/155944/
http://doi.org/10.1007/s11042-022-12555-2
http://doi.org/10.1007/s11042-022-12090-0
http://doi.org/10.1007/s12530-022-09426-4
http://doi.org/10.1007/s00371-021-02114-5
http://doi.org/10.3390/s21165413
http://doi.org/10.1049/bme2.12031
http://doi.org/10.1007/s11063-021-10588-6
https://link.springer.com/article/10.1007/s00371-020-01831-7
http://doi.org/10.1007/s00371-020-01831-7

Appl. Sci. 2023, 13, 3095 23 of 23

36. Kumar, A.; Kumar, A.; Bashir, A.K.; Rashid, M.; Kumar, V.A.; Kharel, R. Distance based pattern driven mining for outlier detection
in high dimensional big dataset. ACM Trans. Manag. Inf. Syst. (TMIS) 2021, 13, 1–17. [CrossRef]

37. Kumar, A.; Dadheech, P.; Singh, V.; Raja, L. Performance modeling for secure migration processes of legacy systems to the cloud
computing. In Data Deduplication Approaches; Academic Press: Cambridge, MA, USA, 2021; pp. 255–279.

38. Afchar, D.; Nozick, V.; Yamagishi, J.; Echizen, I. Mesonet: A compact facial video forgery detection network. In Proceedings of the
2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018;
pp. 1–7.

39. Kumar, A.; Dadheech, P.; Beniwal, M.K.; Agarwal, B.; Patidar, P.K. A fuzzy logic-based control system for detection and mitigation
of blackhole attack in vehicular Ad Hoc network. In Microservices in Big Data Analytics: Proceedings of the Second International,
ICETCE 2019, Rajasthan, India, 1–2 February 2019; Springer: Singapore, 2019; pp. 163–178.

40. Yang, X.; Li, Y.; Lyu, S. Exposing deep fakes using inconsistent head poses. In Proceedings of the ICASSP 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8261–8265.

41. Charitidis, P.; Kordopatis-Zilos, G.; Papadopoulos, S.; Kompatsiaris, I. A face preprocessing approach for improved deepfake
detection. arXiv 2020, arXiv:2006.07084.

42. Kumar, A.; Bhavsar, A.; Verma, R. Detecting deepfakes with metric learning. In Proceedings of the 2020 8th International
Workshop on Biometrics and Forensics (IWBF), Porto, Portugal, 29–30 April 2020; pp. 1–6.

43. Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing ai created fake videos by detecting eye blinking. In Proceedings of the 2018
IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7.

44. Vamsi VV VN, S.; Shet, S.S.; Reddy, S.S.M.; Rose, S.S.; Shetty, S.R.; Sathvika, S.; Supriya, M.S.; Shankar, S.P. Deepfake Detection in
Digital Media Forensics. Glob. Transit. Proc. 2022, 3, 74–79. [CrossRef]

45. Rana, M.S.; Nobi, M.N.; Murali, B.; Sung, A.H. Deepfake Detection: A Systematic Literature Review. IEEE Access 2022, 10,
25494–25513. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3469891
http://doi.org/10.1016/j.gltp.2022.04.017
http://doi.org/10.1109/ACCESS.2022.3154404

	Introduction
	Literature Review
	Preliminaries
	Generative Adversarial Network (Gan)
	Efficient Net Model
	Xception Model

	Proposed Methodology
	Image Augmentation
	Construction of Fully Connected Output Layers
	Architecture of the Proposed DeepFake Detection Model
	Computational Complexity of Our Model

	Experiments
	Dataset
	Experimental Parameters
	Experimental Settings
	Interpretation of Our Model
	Performance Evaluation
	Performance Evaluation and Comparison of Different Architectures

	Conclusions
	References

