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Abstract: With the recent expansion of social media in the form of social networks, online portals,
and microblogs, users have generated a vast number of opinions, reviews, ratings, and feedback.
Businesses, governments, and individuals benefit greatly from this information. While this infor-
mation is intended to be informative, a large portion of it necessitates the use of text mining and
sentiment analysis models. It is a matter of concern that reviews on social media lack text context
semantics. A model for sentiment classification for customer reviews based on manifold dimensions
and manifold modeling is presented to fully exploit the sentiment data provided in reviews and
handle the issue of the absence of text context semantics. This paper uses a deep learning framework
to model review texts using two dimensions of language texts and ideogrammatic icons and three
levels of documents, sentences, and words for a text context semantic analysis review that enhances
the precision of the sentiment categorization process. Observations from the experiments show that
the proposed model outperforms the current sentiment categorization techniques by more than 8.86%,
with an average accuracy rate of 97.30%.

Keywords: autoregressive model; customer reviews; deep learning; emotion analysis; optimized
classification

1. Introduction

With easy access to the web, people now interact with brands and products in a
whole new way. Whether with physical products or online services, people can share their
opinions and reviews immediately on various platforms over the Internet. The world has
transformed dramatically as a result of current advancements. Analyzing this large volume
of consumer reviews will be helpful for consumers in making an informed decision about
a product or service. In social network analyses, the sentiment analysis is an effective
method for extracting user thoughts and determining a single user’s sentiments. Social
media, with its rich sentiments, has developed into a valuable resource for businesses and
governments to understand the opinions and sentiments of online users [1]. For instance,
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users of Twitter and other social media platforms routinely send out a lot of quick text
messages with emoticons to communicate their opinions about various subjects. A textual
sentiment analysis (SA) is not just a theoretical approach; it has applications in a variety of
fields, including finance [2], education [3], health [4], and other areas.

Machine learning models have drawn a lot of attention recently. Traditional machine
learning models almost universally use a two-step procedure. First, some manually created
features from the papers are extracted. In a later stage, the features are sent to a classifier
that performs predictions. The hand-crafted elements include the bag of words (BoW).
Support vector machines (SVM), naive Bayes, gradient boosting trees, random forests, and
the hidden Markov model (HMM) are some of the most used classification algorithms.
There are various drawbacks to the two-step procedure. To achieve good performance
relying on hand-crafted features, this necessitates time-consuming feature engineering
and analysis phases. Furthermore, it is challenging to apply the strategy to new positions
because it depends on domain expertise for feature creation.

Regarding mobile applications, the majority of apps can freely downloaded and a wide
range of possibilities are accessible for a given sort of app, meaning sentiment analyses
are made even more challenging. Users usually consult reviews or advice from other
users before making decisions. App store owners can use the reviews to increase in the
search ranks and catch fraud, while developers can use them to extract feedback (such as
features, complaints, and privacy problems) [5]. Manual analyses are quite challenging
due to the rapidly increasing volume of reviews (including false and spam reviews). As a
result, app reviews have been rated in various ways throughout the last few years, from
general exploratory research to categorization, feature extraction, review filtering, and
summarizing. Furthermore, evaluations frequently include user opinions, which can be
viewed as additional useful meta-data.

To alleviate the restrictions caused by the usage of hand-crafted features, neural
techniques have been investigated. These techniques do not require hand-crafted features
since they use a machine learning model that converts text into a low-dimensional vector
of features. An LSA (latent semantic analysis) was proposed by Dumais et al. [6] in 1989
and was one of the earliest embedding models. An LSA is a trained linear model with
200,000 words and fewer than 1 million parameters. The first neural language model was
put forth by Bengio et al. [7] in 2001, and the model worked on a feed-forward neural
network that had been trained using 14 million words. The reason they are rarely used is
that these early embedding models outperform conventional models with hand-crafted
variables. A range of NLP tasks quickly gained popularity for a collection of word2vec
models [8] that Google released in 2013, which were trained on 6 billion words. Using
Google’s Transformer [9], a fresh NN architecture, in 2018, embedding models were pro-
duced by OpenAI. For text-generating projects, their original model, GPT [10], is now
extensively used. The same year, Google created BERT [7], a bidirectional Transformer-
based system. BERT, which includes 340 million parameters and 3.3 billion words of
training data, is currently the most advanced embedding model. It is possible for con-
volutional neural networks (CNN) [8] to learn local responses from spatial or temporal
data, but not sequential correlations. Short-term dependencies in a sequence of data can
be handled by recurrent neural networks (RNNs) [9], but long-term relationships are a
problem for these networks.

To overcome the constraints of the existing systems in evaluating user sentiments for
a certain service or product, a unique methodology based on deep learning utilizing XLNet
has been developed. The existing sentiment categorization systems have two issues with
handling missing context semantics in text:

i. The existing studies primarily use language symbol information in texts to classify
sentiments. Only a few research have looked at sentiment data with punctuation
marks in the dataset. The issue of text context semantics can be resolved with the aid
of punctuation symbols that include sentimental information;
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ii. The majority of the ongoing research is focused on the extraction of emotional charac-
terizations and the modeling of textual material at the document level. On the other
hand, studies rarely take into consideration doing other levels of text content, such
as words or phrases. To overcome the lack of text context semantics in social media
assessments, sentiment information can be efficiently collected from many levels via
the extraction of sentiment features and by modeling texts from various levels.

Given the above issues in existing models for sentiment classification, a model named
the manifold and multi-level sentiment modeling method (MFMLSC) is proposed. There-
fore, the main contributions of this work are as follows:

i. Based on two dimensions, language symbols and emoticon symbols, the manifold
sentiment classification method (MFSC) is proposed. In this approach, the problem
of text context semantics missing in text reviews is tackled using the word, sentence,
and document levels;

ii. The multi-dimensional sentiment classification method (MDSC) uses two symbol
types, i.e., emoticons symbols and linguistic symbols. This approach is used to tackle
the problem of missing context information from texts, which plays a significant role
in obtaining hidden information from sentiments;

iii. Based on the effectiveness of these two models, the final model is proposed as the
multi-fold and multi-level sentiment modeling method (MFMLSC)

iv. The proposed model is implemented on three different datasets of Google Pay, Phonpe,
and Paytm mobile app reviews. Additionally, the proposed model is validated on the
IMDB benchmark dataset.

The rest of the sections are organized as follows. Section 2 discusses the related work.
Section 3 provides details and describes the workings of the proposed model. In Section 4,
various settings and evaluation parameters are discussed. In Section 5, a summary and the
conclusions are presented.

2. Related Work

This section provides a comprehensive review of the recent studies, along with rec-
ommended methodologies for addressing sentiment analysis challenges based on word
embedding and deep learning (DL) techniques. Next, the state-of-the-art literature is
addressed, with a focus on sentiment analyses in different areas.

Over the last two decades, the classification of user sentiments has attracted an
increasing number of scholars and yielded a large number of research findings [10]. The
classical machine learning and deep learning methods for classifying emotions mostly
depend on supervised learning. The challenge is that natural language processing relies
on efficient word embedding. By thoroughly training the global word–word co-occurrence
of statistical data from the corpus, Mikolov et al. [11] and Pennington [12] first revealed
that word vectors are learned through an RNN. As seen in [13], the final global vector
(GloVe) has an intriguing linear substructure in the word vector space. Tang et al. [14]
offered three models that took into account the text’s emotional propensity and learned
word embeddings with the sentiment. Word2Vec embedding was used in [15] to perform
a sentiment analysis on reviews received from the Indonesian website Traveloka. It is
estimated that their model is 91.9% accurate. The authors of [16] presented a monitoring
system based on DL and ontology to aid the traveling process. Fuzzy ontologies and
Word2vec embeddings were utilized to construct the suggested system’s feature extraction
module; the BiLSTM model was then used to classify the input text. According to Facebook,
TripAdvisor, and Twitter data, the proposed technique was tested and found to be 84%
accurate in its predictions.

A multi-layer architecture for customer evaluation approaches (such as word em-
bedding and compositional vector models) was proposed in [17]. A back-propagation
technique was used to train the network and provide weights for the various aspects of the
design once it had been integrated into a neural network. GloVe-DCNN, a brand-new de-
vice featuring a variety of sentimental qualities, was introduced in [18]. Word embedding,
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n-grams, and the polarity score properties of sentiment words were used to create a deep
CNN. The authors of [19–21] developed a document representation system using the fuzzy
bag of words paradigm (FBoW). An enhanced FBoW model that replaces the initial hard
planning module with the Word2vec approach using fuzzy mapping was developed by
replacing the original module with the Word2vec embedding. To determine the degree of
similarity between words and clusters in seven different real-world document datasets, the
researchers used three different approaches.

For the identification and condition analysis of traffic accidents, the authors of another
study proposed a system based on using ontology with LDA (OLDA) and a BiLSTM
network [22]. OLDA was employed in the proposed system to extract data and label texts.
As a result, classifiers such as FastText and BiLSTM are employed. This system was more
accurate than the previous one. In another study, BiLSTMs were used to gather data on
the long-term reliance on word and sentence locations [23]. A CNN and BiLSTM were
combined in the suggested hybrid strategy. LSTM outputs from sentence classification are
applied to the multi-channel CNN to produce n-gram features. To find ADRs (adverse drug
reactions) in electronic medical data, the authors of [24] suggested using a deep learning
approach (EHRs). The proposed approach used the joint AB-LSTM model and embeddings
based on lemmas to locate ADRs. The proposed technique had an F-measure of 73.3%
on the EHR dataset. The combined model, for example, outperformed previous models
that used a stack of CNNs and LSTM deep learning models, as shown in [25]. The dataset
representation of Word2Vec is preferable to Word2Seq. Sentiment-based and dictionary-
based representations of texts are some of the ways that texts are encoded. For extracting
sentence features, the CNN model is paired with three attention methods. They concluded
that the proposed CNN models were the most effective of all the models considered.

According to Hameed and Garcia-Zapirain [26], the accuracy of the BiLSTM ap-
proach was 85.8% on the IMDB Movie Review and SST2 (Stanford Sentiment Treebank)
datasets [27]. The authors demonstrated that the BiLSTM method is both more efficient
and suitable for sentiment analysis problems. Word2Vec, LSTM, RNN, and CNN methods
were utilized by Xu and colleagues [28] to extract emotions from Chinese hotel reviews.
The model with the highest F-score, 92%, was the BiLSTM method.

Some researchers have proposed hybrid deep learning-based models to improve
accuracy, such as the LSTM-CNN grid-search (GS) approach for Amazon and IMDB
reviews [29]. The authors utilized a grid-search technique and compared it to CNN, LSTM,
CNN–LSTM, and other approaches. Their model outperformed several baseline models
with an overall accuracy of 96%. In a similar study, the researchers [30] used Amazon
reviews to model topics before using a CNN to identify views. The authors stated that
their proposed approach improved the accuracy by 6 to 20% in comparison with the
established methods.

Further studies were conducted on the more efficient embedding approach, BERT,
and its derivatives in enhancing the analysis of sentiments for user reviews. The authors
of [31] employed BERTCNN to improve a sentiment analysis for commodities reviews,
with the results stating that the BERT-CNN (F1-score of 84.3%) outperforms the BERT (82%)
and CNN (84.3%) (70.9%) approaches. Similarly, in [32] the SenBERT-CNN (sentiment
BERT-CNN) was proposed for analyzing the feedback for JD.com, a mobile phone supplier,
by merging the BERT and CNN approaches to obtain deep characteristics of the dataset.
When the LSTM, BERT, and CNN approaches were compared, the authors found that
BERT-CNN worked the best, with a score or 95.7%. In [33], on the other hand, a dataset
from Drugs.com was used to develop neural network models for predicting reviews of
drugs. On a scale from 0 to 9, patients’ levels of happiness were given scores between 0
and 9. The authors tested many neural network models, including the BERT-LSTM model,
with the following methods: 10-class and 3-class compressed forms of the dataset. The
results showed that the BERT-LSTM model was the best-suited for the 3-class setup, even
though it took a very long time to train. Others examples include [34], who used BERT to
train different NN models on a dataset of movie reviews. The results showed that BERT
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was the most accurate, while [35] used BERT to analyze Twitter sentiments by turning
jargon into plain text for BERT training.

Additionally, in [36], the authors suggested a deep learning model using BERT for
ADE (adverse drug effect) retrieval and detection to find pharmacological side effects.
As a classifier and retrieval tool, the proposed model utilized sentence structure feature
embeddings and BERT. Furthermore, in [37], the authors developed a method for extracting
medical relations that relied on a pre-trained technique and a mechanism of fine-tuning
rather than manual labeling. For feature extraction, the suggested method combined the
BERT architecture with one-dimensional convolutional neural networks (1D-CNNs). The
suggested method was tested on three datasets: the BioCreative V chemical relation corpus
of illness, a classical Chinese literature dataset, and the i2b2 2012 temporal relation challenge
dataset, and F1 score values of 0.7156, 0.8982, and 0.7085, respectively, were obtained. It was
proposed by Ma et al. [38] that an enhanced version of Sentic LSTM be used for a joint task
that combined the target-dependent detection of aspects and targeted aspect-based polarity
classification. In another study, Sentic LSTM was developed by Ma et al. for the explicit
integration of explicit and implicit information. By refining pre-trained word vectors with
scores of sentiment intensity provided by sentiment lexicons, Gu et al. [39] presented a
word vector refinement method that improved each word vector and performed better
in the sentiment analysis. Hashida et al. [40] created a hybrid paradigm of multi-channel
decentralized representation for textual data.

Various pre-trained language models, such as ELMo [41], BERT [42], and GPT [43],
have recently demonstrated effective performance. Various Transformer-based language
models such as BERT [42], robustly optimized BERT pre-training approach (RoBERTa) [44],
and a lite BERT for self-supervised learning language representations (ALBERT) [45], have
recently obtained the highest performance in many NLP tasks. Transformer’s bidirectional
encoder representation is known as BERT. Position embedding and word embedding are
included in BERT’s inputs. BERT’s feature representation layers, unlike those of 1D-CNN
and LSTM, rely on both left and right context information. A more advanced embedding
technique, known as BERT, was also found to be useful in improving the sentiment anal-
ysis of reviews. Another study [46] examined the sentiment analysis performance of the
SVM, multi-nomial naive Bayes, LSTM, and BERT approaches. Stemming, tokenization,
lemmatization, and punctuation removal were among the preprocessing techniques used.
The dataset includes 1.6 million tweets classified as good or negative. The study deter-
mined that BERT’s performance was the best, with an accuracy rate of 85.4%. Two deep
learning algorithms were created by the authors of [47] for the analysis of sentiments in
multi-lingual social media text. During Pakistan’s 2018 general election, Twitter was used
to gather data. 80% of the dataset was used for training and 20% for testing. The XLM-
RoBERTa and multi-lingual BERT (mBERT) from Transformer approaches were studied for
their performance in this regard (XLM-R). The mBERT learning rate was set to 2 × 10−5,
and the XLM-R learning rate was set to 2 × 10−6 during the hyperparameter tweaking.
Furthermore, mBERT had a precision rate of 69%, while XLM-R had a precision rate of 71%,
according to the results of the trial. Using a deep bidirectional long short-term memory
(DBLSTM) approach, in [48] the sentiments of Tamil tweets were analyzed. The dataset
contains 1500 tweets categorized as either positive, negative, or neutral. The data were
cleaned and pre-trained using the Word2Vec model before being represented using the
DBLSTM word embedding approach. Furthermore, 80% of the dataset was utilized for
training and 20% for testing. The DBLSTM approach was shown to be 86.2% accurate in the
research. In a recent study [49], the authors proposed an adversarial strategy for handling
the domain shift problem. The adversarial meaning stems from the parallel structure
designed between the loss function on training samples and that on test samples. Using a
projector and classifier, they presented a theoretical analysis of several benchmark datasets.
In [50], the researchers performed a survey on an aspect-based sentiment analysis (ASBA).
The authors showed a comparison of several techniques used in the ASBA.
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In recent years, numerous studies have presented deep-learning-based sentiment as-
sessments, each with its own set of characteristics and performance results. The traditional
method for sentiment analyses is suitable for dealing with the categorization of small-scale
texts. In the face of huge amounts of data, the analytical efficiency is low, and locating
sentiment information is challenging. In recent years, deep learning approaches have
demonstrated promising accuracy and efficiency in textual data sentiment classification.
With the advent of Transformer-based pre-trained representations, the accuracy and effi-
cacy have increased dramatically. Consequently, this study investigates and proposes a
unique sentiment classification model based on the deep learning technique and XLNet’s
autoregressive pre-trained model.

3. Proposed Model

The proposed model primarily consists of two major components. Manifold emotion
modeling is a technique that incorporates three different components: words, sentences, and
documents. The second method makes use of language and punctuation marks to model
multi-dimensional sentiments in two dimensions. Each word in the dataset is broken up
into its unique phrase by using emoticons as separators. Through the practice of regarding
emoticons and linguistic markings as unrecognized words, every sentence is segmented
utilizing the word segmentation methodology that is currently in use. A technique for
modeling the emotions associated with textual material is presented with three levels:
word, phrase, and document. A multi-dimensional technique for classifying sentiment is
given for modeling the text content using two dimensions: language-based symbols and
emoji symbols at the word and sentence level.

The multi-fold with multi-level modeling results are inputs into the multi-level per-
ception network using the pre-trained autoregressive word representation model XLNet to
produce the final sentiment classification results (Figure 1). The algorithm of the proposed
model is shown as Algorithm 1.

The proposed model is divided into four modules. The module-wise discussions of
the proposed model are presented below.

Algorithm 1: Multi-Fold Dimensional Modeling Method for Sentiment Classification

1: input: IDocument
2: output: IDocumentDVector
3: initialization of the XLNet and Dual-LSTM models
4: IDocumentSVector = []
5: for each sentence in IDocument:
6: for each W_word, emoji in sentence:
7: WVector = BERT(W_word)
8: L_languageWVector = XLNet (L_language)
9: P_emoticonsWVector = XLNet (P_emoticons)
10: sentence WVector = [WVector, emoticon WVector]
11: SVector = Attention(Dual-LSTM(S WVector))
12: L_languageSVector = L_languageWVector
13: sentence SVector = [SVector, L_languageSVector]
14: IDocumentSVector += sentence SVector
15: IDocumentDVector = Attention(Dual-LSTM(IDocumentSVector))
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Figure 1. The proposed model.

3.1. Pre-Processing

The goal of the pre-processing phase is to remove all extraneous words from the corpus.
The following are the major stages of the pre-processing phase:

i. Using the WordPiece tokenization paradigm, each word in the social input text is
tokenized and can be broken into several sub-words;

ii. The Natural Language Toolkit (NLTK) removes stop words (is, the, a, etc.);
iii. Slang is converted to more formal forms;
iv. By eliminating texts that include indentations or by employing a widely unused set of

suffixes and indentations, such as “-ing” or “pre-,” one can restore extracted words to
the word stem format using a rule-based stemmer technique;

v. Lemmatization removes inflection endings and returns words to the dictionary format.
The proposed approach utilizes the NLTK suffix-dropping algorithm for stemming
and lemmatization to improve the lexical context and analysis;

vi. Uppercase characters are converted to lowercase characters and repeated characters
to their generic form;

vii. Spelling corrections are made using the Levenshtein distance and by selecting mis-
spelled keywords.

Punctuation marks are used to divide cleaned and pre-processed texts into sentences.
Punctuation is a collection of symbols that control and clarify the contents of various texts.
Punctuation serves to clarify the meanings of texts by connecting or separating words,
phrases, and clauses. As a result, punctuation is used to transform words into sentences.
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XLNet

XLNet is a novel NLP pretraining approach that produces cutting-edge outcomes on
several NLP tasks. Autoregressive (AR) language modeling and autoencoding (AE) are
two pretraining aims for pretraining neural networks used in transfer learning NLP that
have been proven effective. While avoiding the limitations of the two types of language
pretraining objectives (AR and AE), XLNet incorporates concepts from both.

3.2. Multi-Fold Sentiment Modeling Method (MFSC)

The majority of the current research focuses on document-level text content model-
ing and sentiment feature extraction, with minimal attention paid to the interaction and
correlation among sentences in the document. Between successive sentences in the text,
there are evident progressive (forward) and adversative (reverse) linkages, as well as clear
correlation and reciprocal influences between terms. As a result, the technique is suggested
here for multi-fold sentiment modeling. The extraction of sentiment features and modeling
content of text at several levels, such as words, phrases, and documents, helps address the
lack of context semantics in dataset texts.

The multi-fold sentiment modeling method has three stages, the (i) word, (ii) sentence,
and (iii) document levels. In the first fold of words, the input is the outcome of the
segmentation ‘of sentences. The outcome of this process is the representation of the word
vector for the given sentences. In the second fold, i.e., the sentence level, the input for
the model is the representation of vectorized words of the given set of sentences, and
the outcome is the representation of vectorized sentences from the set of sentences. The
multi-dimensional sentiment model is described in detail in the next section. The vectorized
collection of several sentences is provided as the input in the document fold, and the result
is the vectorized document.

The specifics at the document level are listed below.

i. Based on the grammatical rules and conjunctions between sentences, two types of
relations are obtained: forward relations and reverse relations;

ii. The attention-based network is provided with prior knowledge of the following two
types of relationships between sentences. Sentences with a reverse connection should
have opposing sentiment polarities as much as is feasible. Sentences with forwarding
relationships should have uniform sentiment polarity as much as is feasible. An
attention-based system at the sentence level that is based on relationship constraints
between sentences is provided here. This mechanism takes into account the two
different sorts of linkages that exist between sentences. In the research, the attention-
based method utilizes the attention formula at the phrase level;

iii. The vectorized text of every phrase is provided as the input for the dual-LSTM
network based on the limitations of the attention-based mechanism, and the vectorized
view of the given document is collected.

An output for sentiment categorization is generated by a multi-layer perception net-
work using the representation of a vectorized document that has been obtained. Equation (1)
provides a definition of the sentiment classification function that is based on multi-fold and
multi-dimensional sentiment modeling:

min
x ∑M

j=1

(
xTyj − zj

)2
+ ∂1x1 + ∂2 ∑M

j=1 ∑k 6=j Sjk
(
ωj −ωk

)2
+ ∂3 ∑M

j=1 ∑k 6=j Pjk
(
µj − µk

)2 (1)

Here, the total number of texts is represented by M, which represents the model of
the sentiment classification; yj is the representation of the vector of the jth text and zj is
the sentimental orientation of the jth text; ωj and ωk is the factor of attention for the word
level; µj and µk is the factor of attention for the sentence level; Sjk is the factor of similarity
of sentiment text j and sentiment phrase k; Pjk is the similarity factor of sentence j and
sentence k; ∂1, ∂2, and ∂3 represent the various hyperparameters.
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3.3. Multi-Dimensional Sentiment Classification Method (MDSC)

The primary actions involved in multi-dimensional sentiment modeling at the level of
individual words are discussed below:

(1) Since emoji and linguistic data provide information about sentiments, the dataset that
contains emoji and linguistic symbols is used as the input to the language model, i.e.,
pre-training XLNet;

(2) Emojis and linguistic symbols are processed in the same way as sentiment words
when a pre-trained model is used to model information available on social networks.
This leads to the creation of the linguistic symbol word vector as well as the emoticons
symbol word vector. This combination produces a multi-dimensional representation
of the text’s emotions.

The following are the primary steps in the multi-dimensional sentiment modeling at
the sentence level:

i. The attention network provides prior knowledge of sentimental words. An approach
based on word-level attention on the dictionary of sentiment restriction is provided,
with the attention coefficients of sentiment-related words being as similar as possible.
The attention formula is based on the attention formula at the word level;

ii. Vectorized words of language symbols and emoji symbols are given as inputs to a
dual-LSTM network integrated with attention; the output is received as the vector of
sentences of language symbols;

iii. The vectorized words of the emoji symbols are taken as outputs as the vectors of
sentences of the emoji symbols directly;

iv. Combining the obtained sentence vectors of language symbols with emoticon symbols
yields the sentence vectors.

The detailed mechanism of sub-modules is discussed below.

3.4. Sentiment Classification Using Multi-Layer Perceptron

The document vector representation is fed into a multi-level perceptron. The following
parameter settings shown in Table 1 are used in obtaining optimized performance during
sentiment classification. These parameters are obtained by performing several experiments
with different parameters.

Table 1. Parameter settings for the MLP.

Parameters Values

Optimization function sgd (Stochastic Gradient Descent)

Batch-Size 64

Learning rate 0.03

Number of iterations 20

Activation Function ReLu

Epochs 50

Using the above parameters in Table 1, the multi-layer perceptron (as shown in
Figure 2) goes through the learning process and the output class labels are obtained using
the below process, the MLP learning Procedure, as shown in Figure 3.

i. Using forward propagation, the data from the input layers are transmitted to the
output layer;

ii. The error is calculated based on the received output (the difference between the
predicted outcome and the achieved outcome);
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iii. The error is back-propagated and its derivatives are obtained concerning all weights
in the network, then the model is updated.

These three steps are repeated over multiple epochs to learn the ideal weights. Finally,
the output is achieved through a threshold function to obtain the predicted class labels.

The error, i.e., the mean square error, is calculated using the following equation:

∆w(t) = − ∈
dE

dw(t)
+ ∝ ∆w(t− 1) (2)

Figure 2. The multi-layer perceptron.

Figure 3. Learning process of the MLP.
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Here, ∆w(t) is the gradient of the current iteration, ∈ is the bias, dE is the error in each
iteration, the weight vector is represented by dw(t), ∝ represents the learning rate, and the
gradient of the previous iteration is denoted by ∆w(t− 1).

This process continues until each input–output pair’s gradient has converged, which
means the freshly computed gradient has not changed more than the set convergence thresh-
old since the previous iteration. Here, the network updates are performed incrementally.

4. Results and Discussion
4.1. Data Acquisition

Using the Google Play Scraper package with Python APIs, the dataset for three popular
UPI mobile payment apps were collected. The three payment apps were GooglePay,
PhonePe, and Paytm. Google Play Scraper offers Python APIs for crawling the Google Play
Store without external dependencies. The details of the dataset obtained are as shown in
Table 2. Here, we considered only positive and negative reviews, while neutral reviews
were not considered.

Table 2. Datasets.

Dataset Total Reviews Positive Negative

GooglePay 45,597 20,975 24,622

PhonePe 43,209 17,715 25,494

PayTM 47,932 33,073 14,859

In this process, the equations are numbered consecutively, with equation numbers
shown in parentheses flush with the right margin of the column, as in (1). First, use the
equation editor to create the equation. Then, select the “Equation” markup style. Press
the tab key and write the equation number in parentheses. To make your equations
more compact, you may use the solidus (/),exp function, or appropriate exponents. Use
parentheses to avoid ambiguities in denominators. Punctuate equations when they are part
of a sentence, as in:

Bp + H2 = 40. (3)

4.2. Data Augmentation

A balanced dataset facilitates the establishment of unambiguous decision limits for
every class and enables models for the classification of data more precisely in any clas-
sification task. Any unbalanced dataset can be converted to a balanced one using data
augmentation techniques, guaranteeing that the dataset is consistent across labels. The
algorithm is named SMOTE [51], and is a commonly used data augmentation approach
that may be used for any dataset without any influence on predictions based on a particular
label. SMOTE samples the class with a minority with the help of a k-nearest neighbours
classifier; it selects samples close to the feature space and generates synthesized data points.
In this study, we use SMOTE to balance the dataset in terms of the labels and performs
an evaluation.

4.3. Performance Measurement

To assess how well the suggested model works, an accuracy matrix is computed. For
positive sentiment classification, true positive and false positive variables are identified. For
negative sentiment classification, the true negative and true positive variables are defined
as shown in Table 3.
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Table 3. The accuracy parameters.

Positive Class Negative Class

Identification of Positive Class X1 = True Positive Y1 = False Positive

Identification of negative Class X2 = False Negative Y2 = True Negative

Using the parameters in Table 3, the following equation is defined to assess the
accuracy of the proposed model:

Accuracy(Z) =
X1 + X2

Y1 + Y2 + X1 + X2
(4)

4.4. Performance Evaluation

For a clear view of and simplicity in the graphical representations, the models are
termed hereafter as shown in Table 4.

Table 4. The models and their aliases.

Models Alias

CNN with Word2Vec MO-01

BiLSTM with Word2Vec MO-02

CNN with BERT MO-03

BILSTM with BERT MO-04

MFSC with CNN and Word2Vec MO-05

MFSCwith CNN and BERT MO-06

MFSC with BiLSTM and Word2Vec MO-07

MFSCwith BiLSTM and BERT MO-08

MFSCwith XLNet MO-09

A hyperparameter is a value for a parameter that is used to influence the learning
process. Different hyperparameters are tuned for optimized performance accuracy. Compre-
hensive experiments are performed using several hyperparameters, such as the embedding
type, activation function, and dropout.

The deep learning methods CNN and BiLSTM with different word embedding meth-
ods, i.e., Word2Vec and BERT, are tested on different hyperparameters. The proposed
model is also tuned with several hyperparameters. The hyperparameter tuning process is
performed with different embedding combinations on 200, 300, and 400 words and with
learning rates ranging from 0.01 to 0.10. The observations of these experiments are shown
in Tables 5 and 6.

The above Table 5 provides the performance accuracy rates of different models with
an embedding size of 200 with dropout from 0.01 to 0.10. All models M01, M02, M03, M04,
M05, M06, M07, M08, and M09 are tested using this combination. It can be observed that
the proposed model achieves the highest classification accuracy rate of 96.62% using a
dropout rate of 0.10 for dataset 1.

For dataset 2, the highest accuracy can be observed for the dropout of 0.04 with
95.95% accuracy. At the same time, 96.36% accuracy is obtained for dataset 3 at a dropout
rate of 0.04. The accuracy rates of the other models vary depending on the different
dropout values. Overall, the proposed model shows the highest performance in terms of
classification accuracy as compared to the other eight models.
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Table 5. The performance accuracy (%) for an embedding size of 200.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 61.66 60.35 62.33 M01 65.36 61.33 64.12 M01 66.19 64.32 62.15

M02 66.36 65.21 66.33 M02 61.32 64.22 62.14 M02 63.20 62.55 61.32

M03 70.66 68.55 68.32 M03 68.55 69.56 68.22 M03 64.32 66.25 65.32

M04 72.33 74.25 70.25 M04 71.42 72.22 70.65 M04 70.62 69.32 71.25

M05 81.65 81.56 83.22 M05 80.62 82.65 81.24 M05 81.55 84.12 83.85

M06 84.11 80.35 81.25 M06 82.15 81.25 83.36 M06 88.85 83.54 84.98

M07 86.32 84.25 83.22 M07 87.65 84.26 84.11 M07 91.65 89.55 89.99

M08 88.35 87.15 85.25 M08 89.22 88.95 88.01 M08 85.95 86.32 84.62

M09 93.28 91.56 92.36 M09 92.69 90.33 91.56 M09 95.62 95.05 95.99

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 70.15 69.66 70.69 M01 68.35 64.69 66.35 M01 64.20 60.17 62.96

M02 72.66 73.21 73.65 M02 69.36 68.32 67.35 M02 61.32 62.65 60.98

M03 71.15 75.11 76.02 M03 61.25 62.35 61.22 M03 65.21 67.32 67.06

M04 77.62 78.65 77.12 M04 69.36 70.32 68.33 M04 70.26 71.06 69.49

M05 82.15 83.62 84.12 M05 84.63 83.98 84.05 M05 85.77 84.12 83.85

M06 86.66 85.95 86.01 M06 82.65 81.63 80.62 M06 85.19 83.54 84.98

M07 90.65 90.36 91.65 M07 91.65 90.61 89.63 M07 91.20 89.55 89.99

M08 92.15 91.62 92.99 M08 86.63 87.65 89.65 M08 87.97 86.32 84.62

M09 96.33 95.95 96.36 M09 94.32 95.62 93.64 M09 95.22 95.05 95.99

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 65.32 64.12 63.25 M01 66.30 62.27 65.06 M01 62.10 63.43 61.76

M02 64.15 64.32 66.21 M02 68.74 67.70 66.73 M02 66.41 66.58 68.47

M03 61.15 62.35 65.32 M03 72.00 75.96 76.87 M03 60.60 61.70 60.57

M04 72.55 71.65 72.36 M04 69.07 69.87 68.30 M04 75.80 81.65 75.61

M05 83.15 84.13 85.65 M05 84.10 85.08 86.60 M05 85.08 86.06 87.58

M06 80.75 81.73 83.25 M06 88.31 87.60 87.66 M06 83.81 82.79 81.78

M07 85.82 86.80 88.32 M07 88.59 85.20 85.05 M07 93.91 92.87 91.89

M08 82.75 86.32 85.25 M08 90.16 89.89 88.95 M08 89.98 91.00 93.00

M09 90.72 91.70 93.22 M09 93.63 91.27 92.50 M09 93.97 92.65 93.29

(g) (h) (i)

Dropout = 0.10

Models Dataset 1 Dataset 2 Dataset 3

M01 65.95 84.32 63.88

M02 69.93 68.89 67.92

M03 67.41 88.65 69.26

M04 83.89 84.87 86.39

M05 79.83 81.30 81.80

M06 87.47 88.45 89.97

M07 87.57 88.59 90.59

M08 91.63 90.35 93.32

M09 96.62 94.32 95.32

(j)
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Table 6. The performance accuracy (%) for an embedding size of 300.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 67.36 64.32 68.62 M01 71.22 70.39 70.84 M01 72.32 72.32 72.32

M02 70.35 72.15 72.44 M02 72.51 72.87 72.42 M02 66.36 65.32 67.33

M03 74.22 73.12 71.56 M03 74.84 75.48 75.88 M03 61.63 62.36 64.36

M04 63.00 83.65 82.22 M04 76.48 77.51 75.98 M04 74.33 73.66 72.35

M05 95.65 91.59 94.22 M05 91.12 90.65 93.32 M05 84.36 83.22 86.35

M06 86.31 84.32 87.35 M06 89.25 88.65 85.65 M06 88.25 87.56 86.32

M07 92.56 93.32 91.21 M07 90.32 92.35 90.36 M07 90.65 91.63 91.54

M08 84.56 85.12 85.58 M08 93.65 94.62 92.65 M08 89.99 87.25 88.63

M09 92.36 94.25 91.35 M09 94.56 95.65 93.65 M09 96.32 94.32 95.33

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 72.36 71.53 71.98 M01 70.51 67.47 71.77 M01 69.35 67.32 68.35

M02 73.65 74.01 73.56 M02 73.50 75.30 75.59 M02 72.12 71.15 73.65

M03 75.98 76.62 77.02 M03 77.37 76.27 74.71 M03 75.65 74.36 76.32

M04 77.62 78.65 77.12 M04 81.32 84.36 83.32 M04 84.35 81.36 82.35

M05 84.92 85.63 86.01 M05 85.21 86.07 84.14 M05 86.32 87.18 85.25

M06 87.16 87.9 88.1 M06 83.21 84.21 85.00 M06 84.32 85.32 86.11

M07 91.21 91.56 92.01 M07 89.14 90.41 88.25 M07 90.25 91.52 89.36

M08 93.63 94.01 93.9 M08 87.42 86.04 85.21 M08 88.53 87.15 86.32

M09 97.23 97.65 97.01 M09 95.14 93.21 94.77 M09 96.25 94.32 95.88

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 73.83 70.79 75.09 M01 72.16 71.33 71.78 M01 72.90 71.93 74.43

M02 74.84 75.20 74.75 M02 72.88 74.68 74.97 M02 77.10 77.46 77.01

M03 76.16 75.06 73.50 M03 76.83 77.47 77.87 M03 76.72 75.62 74.06

M04 80.07 83.11 82.07 M04 83.16 80.17 81.16 M04 83.32 81.65 85.32

M05 86.37 87.23 85.30 M05 87.32 88.18 86.25 M05 86.33 84.12 85.22

M06 84.37 85.37 86.16 M06 88.81 89.55 89.75 M06 84.21 86.32 82.55

M07 90.30 91.57 89.41 M07 91.26 93.29 91.30 M07 91.56 90.21 91.24

M08 88.58 87.20 86.37 M08 94.59 95.56 93.59 M08 92.56 91.25 91.11

M09 96.30 94.37 95.93 M09 95.50 96.59 94.59 M09 95.62 94.12 95.22

(g) (h) (i)

Dropout = 0.10

Models Dataset 1 Dataset 2 Dataset 3

M01 74.46 84.32 75.72

M02 74.07 75.87 76.16

M03 77.85 88.65 78.52

M04 85.14 82.93 84.03

M05 87.53 88.39 86.46

M06 85.53 86.53 87.32

M07 91.46 92.73 90.57

M08 89.74 88.36 87.53

M09 97.46 95.53 97.09

(j)
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Table 6 shows the classification accuracy performance for the embedding size of 300
and with dropout rates ranging from 0.01 to 0.10. As per the observations for the above
figure, it is clear that none of the models shows consistent performance. For example,
model M01 shows an accuracy rate of 67.36% for dataset 1, but for dataset 2 the accuracy
decreases to 64.32%, and again the model achieves a higher accuracy rate of 68.62% for
dataset 3, with a dropout rate of 0.01. Model M02 achieves its highest accuracy rate of
77.46% for dataset 2 with a dropout rate of 0.09, whereas the lowest accuracy rate of 67.33%
is achieved with a dropout rate of 0.04. The observations from the experiments with an
embedding size of 300 and dropout rate of 0.03 indicate that this combination with other
hyperparameters has shown consistent performance for all models.

Table 7 shows the accuracy performance for the embedding size of 400 and with
dropout rates ranging from 0.01 to 0.10. The observations show that except for the proposed
model, none of the models show consistency.

Table 7. The performance accuracy (%) for an embedding size of 400.

Dropout = 0.01 Dropout = 0.02 Dropout = 0.03

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 64.32 66.33 65.24 M01 66.55 67.36 68.22 M01 62.35 66.35 64.21

M02 66.55 64.32 62.33 M02 68.36 67.21 69.36 M02 66.32 67.24 65.32

M03 68.36 68.32 70.56 M03 70.22 71.56 72.32 M03 70.25 69.68 71.56

M04 70.25 71.52 72.22 M04 72.36 73.32 71.35 M04 74.65 73.22 74.01

M05 74.36 76.32 72.52 M05 75.62 78.32 74.22 M05 76.32 77.25 74.35

M06 76.32 78.25 77.85 M06 77.55 75.22 76.32 M06 81.65 82.54 80.26

M07 84.66 85.65 83.26 M07 79.65 80.25 91.56 M07 84.68 85.10 86.32

M08 89.56 88.32 90.23 M08 84.32 82.35 83.77 M08 89.62 90.21 91.25

M09 94.35 94.56 93.26 M09 90.21 91.36 91.55 M09 94.56 95.21 94.96

(a) (b) (c)

Dropout = 0.04 Dropout = 0.05 Dropout = 0.06

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 67.87 68.68 69.54 M01 69.25 66.32 68.32 M01 66.32 68.21 65.22

M02 70.76 68.53 66.54 M02 72.65 73.26 71.25 M02 68.21 69.32 70.21

M03 73.54 74.88 75.64 M03 74.32 74.21 74.88 M03 73.32 70.54 72.25

M04 78.53 79.65 77.52 M04 77.36 78.65 79.32 M04 76.95 75.32 74.55

M05 81.32 82.52 93.56 M05 81.54 80.32 81.01 M05 81.65 80.32 84.32

M06 86.32 86.21 86.55 M06 84.56 85.65 86.32 M06 86.32 87.21 85.32

M07 88.25 87.36 89.32 M07 88.32 87.36 90.32 M07 88.51 89.32 88.81

M08 91.52 91.98 92.65 M08 92.65 93.25 91.35 M08 91.56 93.35 92.80

M09 94.23 95.88 96.21 M09 92.54 94.36 95.21 M09 96.21 95.18 94.21

(d) (e) (f)

Dropout = 0.07 Dropout = 0.08 Dropout = 0.09

Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3 Models Dataset 1 Dataset 2 Dataset 3

M01 69.21 70.25 68.11 M01 65.32 67.21 66.25 M01 70.50 71.61 72.50

M02 70.22 71.56 72.54 M02 68.22 69.01 70.15 M02 73.27 72.36 75.60

M03 71.32 70.41 73.65 M03 70.21 71.15 69.32 M03 75.79 74.50 76.90

M04 76.32 79.25 78.22 M04 72.54 71.25 73.65 M04 80.00 80.70 78.90

M05 78.00 79.15 77.25 M05 78.65 79.35 77.55 M05 83.19 81.97 82.66

M06 80.21 81.56 83.32 M06 81.36 83.35 82.65 M06 87.64 87.53 87.87

M07 83.55 84.32 85.11 M07 85.65 84.32 86.35 M07 90.23 89.34 91.30

M08 88.55 89.56 88.36 M08 89.32 90.35 90.99 M08 94.88 96.67 96.12

M09 92.25 93.36 93.35 M09 94.21 92.25 91.36 M09 94.75 96.57 97.42

(g) (h) (i)
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Table 7. Cont.

Dropout = 0.10

M01 67.25 68.32 69.11

M02 70.22 71.66 69.21

M03 72.35 74.31 71.33

M04 77.55 76.32 79.65

M05 80.32 79.55 80.11

M06 83.35 84.22 85.21

M07 88.66 87.32 86.21

M08 90.32 90.11 90.56

M09 94.21 96.21 91.56

(j)

Table 8 above shows the average performance accuracy of each model for the three
datasets. The average accuracy is measured on dropout rates ranging from 0.01 to 0.10 for
an embedding size of 200. Model M01 exhibits the lowest accuracy rate of 61.45% for the
0.01 dropout rate and the highest average accuracy rate of 71.38% for the 0.10 dropout rate.
Model M02 has the lowest average accuracy rate of 61.65% for the dropout rate of 0.06 and
the highest average accuracy rate of 73.17% for the dropout rate of 0.04. For models M03,
M04, M05, and M06, the lowest observed performance results are 60.96% for a dropout rate
of 0.09, 69.08% for a 0.08 dropout rate, 80.98% for a dropout rate of 0.10, and 81.90% for a
dropout rate of 0.01, respectively. The highest accuracy rates achieved for these models are
75.11% for M03 using a dropout rate of 0.10, 85.05% for M04 on a dropout rate of 0.10, and
86.24% for M05 using a dropout rate of 0.09, while for M06, the highest average accuracy
can be observed for a dropout rate of 0.10, with 88.63%. The highest average performance
rate for model M07 can be observed for a dropout rate of 0.09%, with an accuracy rate of
92.89%, whereas the lowest average accuracy rate of 84.60% can be observed with a floor
dropout rate of 0.01%. The performance of the proposed model is the highest among all
models, with the lowest average accuracy rate of 91.53% for a dropout rate of 0.02, whereas
the highest accuracy rate of 96.21% can be observed for a dropout rate of 0.04. In Table 8,
the observations clearly show that the proposed model performs much better and is more
consistent for all dropout rates as compared to the other eight models.

Table 8. Average classification accuracy (%) results for an embedding size of 200.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 61.45 63.60 64.22 70.17 66.46 62.44 64.23 64.54 62.43 71.38

M02 65.97 62.56 62.36 73.17 68.34 61.65 64.89 67.72 67.15 68.91

M03 69.18 68.78 65.30 74.09 61.61 66.53 62.94 74.94 60.96 75.11

M04 72.28 71.43 70.40 77.80 69.34 70.27 72.19 69.08 75.44 85.05

M05 82.14 81.50 83.17 83.30 84.22 84.58 84.31 85.26 86.24 80.98

M06 81.90 82.25 85.79 86.21 81.63 84.57 81.91 87.86 82.79 88.63

M07 84.60 85.34 90.40 90.89 90.63 90.25 86.98 86.28 92.89 88.92

M08 86.92 88.73 85.63 92.25 87.98 86.30 84.77 89.67 91.33 91.77

M09 92.40 91.53 95.55 96.21 94.53 95.42 91.88 92.47 94.18 95.42
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Table 9 shows the comparative observations of all models with dropout rates of 0.01
to 0.10 for an embedding size of 300. Again, the observations show that none of the models
achieve better performance than the proposed model. For an embedding size of 300, all
the models show much better performance as compared to the embedding size of 200.
Model M01 shows the lowest average accuracy rate of 66.77%, which is 5.32% more than
that of the embedding size of 200. The highest performance rate for model M01 is 78.17%
for a dropout rate of 0.1, which is again much better than the performance of model M01,
which is just 71.38% for the embedding size of 200. Model M02 has the lowest average
accuracy rate of 66.34% for the dropout rate of 0.04. The highest performance accuracy rate
for M02 of 77.19% can be observed for the dropout rate of 0.09. For the dropout rate of
0.01, an exceptional case can be identified for model M05, which shown better performance
than model M09, with an average accuracy rate of 93.82%, while the proposed model
shows a 92.65% average accuracy rate. The overall observations in Table 9 show that except
for model M09, none of the models are consistent, but the proposed model M09 shows
clear and consistent performance, with the highest average accuracy rate of 97.3% for the
dropout rate of 0.03 and embedding size of 300.

Table 9. Average classification accuracy (%) results for an embedding size of 300.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 66.77 70.82 72.32 71.96 69.92 68.34 73.24 71.76 73.09 78.17

M02 71.65 72.60 66.34 73.74 74.80 72.31 74.93 74.18 77.19 75.37

M03 72.97 75.40 62.78 76.54 76.12 75.44 74.91 77.39 75.47 81.67

M04 76.29 76.66 73.45 77.80 83.00 82.69 81.75 81.50 85.00 84.03

M05 93.82 91.70 84.64 85.52 85.14 86.25 86.30 87.25 88.23 87.46

M06 85.99 87.85 87.38 87.72 84.14 85.25 85.30 89.37 85.30 86.46

M07 92.36 91.01 91.27 91.59 89.27 90.38 90.43 91.95 91.53 91.59

M08 85.09 93.64 88.62 93.85 86.22 87.33 87.38 94.58 89.57 88.54

M09 92.65 94.62 95.32 97.30 94.80 95.91 95.53 95.56 94.45 97.12

For the embedding size of 400 and using different dropout rates ranging from 0.01
to 0.10, the average classification accuracy results are shown in Table 10. As far as the
performance is considered, the same trend can also be observed here, showing that the
proposed model M09 outperforms the other models but these embedding and dropout
combinations do not achieve the highest and most consistent performance for all models as
well as the proposed model. The proposed model shows better performance than the other
models, but these hyperparameter combinations do not achieve the best performance.

Figure 4a–c depict the average performance accuracy results for all of the models
for the three datasets. Figure 4a shows the average performance accuracy results for an
embedding size of 200 and with dropout rates ranging from 0.01 to 0.10. Figure 4b shows
the average performance accuracy results for an embedding size of 300 and with the
dropout rates ranging from 0.01–0.10. Figure 4c shows the average performance accuracy
results for an embedding size of 400 and with the dropout rates ranging from 0.01 to 0.10.
The experimental findings for the three datasets demonstrate that the proposed model
shows effective and efficient performance over the other models, and except for very few
combinations of hyperparameters, the models do not show consistent performance results.
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Table 10. Average classification accuracy (%) results for an embedding size of 400.

Dropout

Models 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M01 65.30 67.38 64.30 68.70 67.96 66.58 69.19 66.26 71.54 68.23

M02 64.40 68.31 66.29 68.61 72.39 69.25 71.44 69.13 73.74 70.36

M03 69.08 71.37 70.50 74.69 74.47 72.04 71.79 70.23 75.73 72.66

M04 71.33 72.34 73.96 78.57 78.44 75.61 77.93 72.48 79.87 77.84

M05 74.40 76.05 75.97 85.80 80.96 82.10 78.13 78.52 82.61 79.99

M06 77.47 76.36 81.48 86.36 85.51 86.28 81.70 82.45 87.68 84.26

M07 84.52 83.82 85.37 88.31 88.67 88.88 84.33 85.44 90.29 87.40

M08 89.37 83.48 90.36 92.05 92.42 92.57 88.82 90.22 95.89 90.33

M09 94.06 91.04 94.91 95.44 94.04 95.20 92.99 92.61 96.25 93.99

Figure 4. Average accuracy performance results for different embedding sizes: (a) embedding size of
200; (b) embedding size of 300; (c) embedding size of 400.
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Out of all the models under consideration, and particularly as compared models M01
and M02, when Word2Vec is applied with CNN and BiLSTM, respectively, the response
of the model is very poor. If BERT is used in place of Word2Vec then some improvement
can be observed in inaccuracy, which shows the effectiveness of the BERT model in text
classification. The BERT model shows its supremacy over the Word2Vec model, with
improvements of 5% to 10% for sentiment classification. Models M05, M06, M07, and M08
also show improvements, but the proposed model shows the highest and most consistent
performance for all datasets for the embedding size of 300 and dropout rate of 0.03. Since
this combination showed consistent performance for other models, the embedding size 300
and dropout rate of 0.03 were implemented on all datasets for all models to conduct further
experiments, as shown in Table 11.

Table 11. Hyperparameters settings.
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M01 CNN Word2Vec ReLu 300 0.03 sgd 50 512

M02 BiLSTM Word2Vec ReLu 300 0.03 sgd 50 -

M03 CNN BERT ReLu 300 0.03 sgd 50 512

M04 BILSTM BERT ReLu 300 0.03 sgd 50 -

M05 MFMLSC Word2Vec ReLu 300 0.03 sgd 50 -

M06 MFMLSC Word2Vec ReLu 300 0.03 sgd 50 -

M07 MFMLSC BERT ReLu 300 0.03 sgd 50 -

M08 MFMLSC BERT ReLu 300 0.03 sgd 50 -

M09 MFMLSC XLNet ReLu 300 0.03 sgd 50 -

4.5. Evaluation of Multi-Fold Model of Sentiment Classification (MFSC)

To investigate the performance of a sentiment classification approach that relies solely
on multi-dimensional sentiment modeling, the performance of the proposed multi-fold sen-
timent modeling method with XLNet (MFSC) shown in Table 12 and Figure 5 is compared
with a CNN with Word2Vec, BiLSTM with Word2Vec, CNN with BERT, and BILSTM with
BERT. The methods are discussed below.

CNN with Word2Vec: Firstly, Word2Vec is used to initialize the vectorized word,
following which CNN is applied to extract the features of the sentiments from the dataset,
and finally a fully connected network is used for sentiment classification of the social
media text.

BiLSTM with Word2Vec: In this instance, Word2Vec is applied to achieve the word
vectors, then BiLSTM is implemented for extraction of the sentiment characteristics of
a given dataset, and finally a fully connected network is used for implement sentiment
classification of the dataset.

CNN with BERT: The initialization of the word vector is accomplished with the help
of BERT, then the CNN is applied for extraction of the sentiment features of the dataset,
and finally a fully connected network is used for sentiment classification of the dataset.

BILSTM with BERT: Here, BERT is utilized to initialize the vector of words, followed by
the BiLSTM technique being used for extraction of the sentiment features of the dataset, then
in the last phase a fully connected network is used to implement sentiment classification of
a dataset.
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Table 12. Sentiment classification accuracy (%) results using the MFSC model.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 83.65 82.98 83.12 83.25

M06 85.61 84.52 86.32 85.48

M07 89.56 89.98 90.32 89.95

M08 91.96 92.05 92.25 92.09

M09 94.32 94.1 95.01 94.48

Figure 5. Graphical representation of the performance results with the MFSC model.

MFSM with CNN and Word2Vec: The Word2Vec, CNN, and MFSM approaches are
used to classify sentiments. To begin, emoji-based symbols are treated as language symbols
in a social media text. Next, Word2Vec is implemented to for the initialization of the word
vector, and the CNN extracts sentiment characteristics from the dataset. Finally, the senti-
ment categorization approach is accomplished through a completely connected network.

MFSM with CNN and BERT: the BERT, CNN, and MFSM approaches are used to
create a sentiment classification system. To begin, both language symbols and emoticon
symbols are handled in datasets in the same manner as language symbols. Next, BERT
is used for the initialization of the word vector, and the CNN is implemented to extract
the emotional components of the dataset. Finally, the sentiment categorization approach is
accomplished through a completely connected network.

MFSM with BiLSTM and Word2Vec: The Word2Vec, BiLSTM, and MFSM-based
sentiment categorization approaches are used. To begin, all symbols in a dataset, including
language symbols and emoticon symbols, are regarded as language symbols. The vector of
the word is then initialized using Word2Vec, and the BiLSTM model extracts features of
sentiments from the dataset. Finally, the sentiment categorization approach is accomplished
through a completely connected network.
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MFSM with BiLSTM and BERT: This is a sentiment categorization approach based
on the BERT, BiLSTM, and MFSM models. To begin, in the dataset, language symbols
and emoticon symbols are both treated as language symbols. The BiLSTM model collects
sentiment characteristics from the dataset after initializing the word vector with BERT.
Finally, a completely connected network is used to achieve sentiment categorization.

4.6. Evaluation of Multi-Level Model of Sentiment Classification (MLSC)

In the second phase of the performance evaluation of the proposed model, the evalua-
tion is conducted only with the multi-dimension model of sentiment classification (MLSC).
The MDSC model with XLNet is compared with the CNN with Word2Vec, BiLSTM with
Word2Vec, CNN with BERT, and BILSTM with BERT approaches, as shown in Table 13
and Figure 6. In addition to these models, the MDSC model is also implemented with the
abovementioned techniques.

Table 13. Sentiment classification accuracy results using the MLSC.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 83.65 84.21 84.32 84.06

M06 86.33 85.98 86.1 86.14

M07 89.32 88.75 89.1 89.06

M08 92.62 92.78 91.92 92.44

M09 95.51 95.32 95.98 95.60

Figure 6. Graphical representation of the performance results with the MLSC.

MLSC with CNN and Word2Vec: The classification of sentiments is accomplished with
the assistance of the Word2Vec, CNN, and MLSM models. Initially, the vectorized word is
populated with the help of Word2Vec, and then with a CNN-based attention mechanism,
the emotional characteristics of the dataset are retrieved from different levels of words,
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sentences, and phrases. Lastly, the completely linked network is used to implement the
sentiment classification.

MLSC with BILSTM and Word2Vec: This is a Word2Vec, BiLSTM, and MDSC-based
sentiment categorization algorithm. Here, Word2Vec is used to initialize the word vector,
and then BiLSTM is used to extract sentiment features of the dataset from different levels of
words and sentences using an attention mechanism. Finally, the completely linked network
is used for sentiment classification in the given dataset.

MLSC with CNN and BERT: This is a BERT, CNN, and MDSC-based sentiment classi-
fication approach. The word vector’s initialization is achieved using BERT, and then the
CNN is utilized to extract the sentiment features of the dataset from different levels, as
discussed using an attention mechanism. Finally, the completely linked network is used for
the sentiment classification of the dataset.

MLSC with BILSTM and BERT: This is a BERT, BiLSTM, and MDSC-based sentiment
classification approach. BERT is used to initialize the word vector, and then BiLSTM is
utilized to extract the sentiment features of the dataset from the given levels using an
attention mechanism. In the final phase, using a fully interconnected computer network,
the dataset classification process is carried out

4.7. Assessment of Multi-Fold and Multi-Level Modeling of Sentiment Method (MFMLSC)

To assess our method’s overall performance, the performance results in terms of the
multi-fold and multi-level classification for the sentiment method are compared with the
methods discussed in the previous section.

As shown in Figure 7 and Table 14, the proposed model achieves the maximum
performance as compared to the other deep learning models that use combinations of
different deep learning and word embedding models. For the embedding size of 300 and
dropout rate of 0.03, the proposed MFMLSC shows the highest accuracy rates during
sentiment classification, with scores of 97.23%, 97.65%, and 97.01% for datset 1, dataset 2,
and datset 3, respectively. The proposed model outperforms the other models, with an
average accuracy rate of 97.30%.

Figure 7. Graphical representation of the performance with the MFMLSC.
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Table 14. Accuracy results for sentiment classification using the MFMLSC.

Methods Dataset 1 Dataset 2 Dataset 3 Average

M01 72.36 71.53 71.98 71.96

M02 73.65 74.01 73.56 73.74

M03 75.98 76.62 77.02 76.54

M04 77.62 78.65 77.12 77.80

M05 84.92 85.63 86.01 85.52

M06 87.16 87.9 88.1 87.72

M07 91.21 91.56 92.01 91.59

M08 93.63 94.01 93.9 93.85

M09 97.23 97.65 97.01 97.30

5. Conclusions

We observed that the autoregressive-based model for sentiment classification that uses
the pre-trained word vector XLNet showed the greatest classification accuracy, with an
average of 97.30% accuracy for all datasets. The proposed model solved the problem of the
lack of semantic information in reviews, which affects the accuracy during classification.
The experimental findings demonstrated that when compared to the current methods, our
method significantly increases the accuracy of the sentiment classification process for social
media datasets.
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