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Abstract: A cyber-physical system (CPS) can be referred to as a network of cyber and physical com-
ponents that communicate with each other in a feedback manner. A CPS is essential for daily activ-
ities and approves critical infrastructure as it provides the base for innovative smart devices. The 
recent advances in the field of explainable artificial intelligence have contributed to the development 
of robust intrusion detection modes for CPS environments. This study develops an Explainable Ar-
tificial Intelligence Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems 
(XAIID-SCPS). The proposed XAIID-SCPS technique mainly concentrates on the detection and clas-
sification of intrusions in the CPS platform. In the XAIID-SCPS technique, a Hybrid Enhanced Glow-
worm Swarm Optimization (HEGSO) algorithm is applied for feature selection purposes. For intru-
sion detection, the Improved Elman Neural Network (IENN) model was utilized with an Enhanced 
Fruitfly Optimization (EFFO) algorithm for parameter optimization. Moreover, the XAIID-SCPS 
technique integrates the XAI approach LIME for better understanding and explainability of the 
black-box method for accurate classification of intrusions. The simulation values demonstrate the 
promising performance of the XAIID-SCPS technique over other approaches with maximum accu-
racy of 98.87%. 

Keywords: security; intrusion detection; cyber-physical systems; explainable artificial intelligence; 
feature selection 
 

1. Introduction 
A cyber-physical system (CPS) enables physical gadgets with sensing abilities to in-

teract with the internet or controllers as required [1]. The communication channels used 
can be short-distance communication or wireless technology to continually upgrade the 
physical environment condition or physical device status to a remote server or controller 
[2]. The recent developments in wireless communications and sensor technologies have 
utilized the CPS in several application fields, such as aviation and chemical industries, 
electronics, material manufacturing with automatic supply chain, and smart industries, 
which includes transport, etc. [3]. The advent of CPS applications in different fields even 
paves the way for novel security challenges and issues to safeguard confidential data or 
infrastructure against cybersecurity. The attacks include cyberattacks via internet-con-
nected devices, and physical assaults which can lead to supply chain disruption or system 
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failures [4]. Therefore, CPS security is very challenging compared to the classical IT and 
network substructure [5]. Figure 1 represents the CPS and potential security threats. 

 
Figure 1. CPS and potential security threats. 

Intrusion detection systems (IDS) are highly capable of detecting and preventing data 
breaches by stopping and detecting intrusions [6–8]. Anomaly detection (AD) and Misuse 
detection are two kinds of ID. Misuse detection depends on patterns or information, 
whereas AD relies on behavior. Present IDS have a higher detection rate, which leads to 
several false alarms. In an IDS, false positives must be reduced. Several IDS were applied 
with the help of various ML methods as they can find valuable data from the database. 
Such techniques have the potential to diminish false positives. ML techniques, involving 
IDS, an association of rules, and GA were enforced through artificial neural networks 
(ANNs). Ensemble learning merges different ML techniques. The authors found that an 
ensemble method involving ML techniques lessens false positives. 

This study develops an Explainable Artificial Intelligence Enabled Intrusion Detec-
tion Technique for Secure Cyber-Physical Systems (XAIID-SCPS). In the XAIID-SCPS 
technique, a Hybrid Enhanced Glowworm Swarm Optimization (HEGSO) algorithm is 
applied for feature selection purposes. For intrusion detection, the Improved Elman Neu-
ral Network (IENN) method was exploited with an Enhanced Fruitfly Optimization 
(EFFO) algorithm for parameter optimization. Moreover, the XAIID-SCPS technique inte-
grates the XAI approach LIME for better explainability and understanding of the black-
box method for the accurate classification of intrusions. The simulation values of the 
XAIID-SCPS technique can be tested on benchmark intrusion datasets. 

The rest of the study Is organized as follows. Section 2 elaborates on the existing IDS 
models in the CPS environment. Next, the proposed XAIID-SCPS technique is discussed 
in Section 3, and the experimental results are defined in Section 4. Finally, Section 5 con-
cludes the work with key findings and possible future work. 
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2. Related Works 
Radanliev et al. [9] presented a new mathematical approach for integrating concepts 

for cognition engine design, edge computing and Artificial Intelligence and Machine 
Learning to automate anomaly detection. The authors in [10] identified a wide range of 
methods for cyber analytics and explore the risks of deliberately influencing or disrupting 
behaviors in socio-technical systems. It modeled the connections and interdependencies 
between a system’s edge components to both external and internal services and systems. 
Munir et al. [11] presented an AI-based exploratory cyber-physical safety analyzer struc-
ture. This structure modelled supervised learning-related AI techniques such as K-KNN, 
DT, LR, LSTM, and RF to detect and predict spoofing attacks and cyber jamming. After-
wards, the developed structure examines the conditional dependency depending on Pear-
son’s correlation coefficient between controlled messages to identify the reason for effec-
tive assaults related to the outcome of the AI system. Colelli et al. [12] intended to offer a 
tool for detecting cyberattacks in CPS. This technique depends on ML for enhancing the 
system’s security. It is possible to assess the classifier performance of the three methods 
through analysis of values assumed by ML. The method gained with the help of trained 
set permits categorizing a sample of anomalous behavior and a sample that can be rele-
vant to usual behavior. In [13], a novel risk assessment technique was presented in this 
study for quantifying the effect of malicious assaults on the physical mechanism of ICPS. 
This technique helps to perform suitable attack mitigation measures. The technique lev-
erages a Bayesian network to devise an attack propagation procedure and infer the prob-
ability of actuators and sensors being compromised. 

Schneider and Böttinger [14] introduced a uniform framework and method to apply 
an AD to various Fieldbus protocols. The author used stacked denoising AE to derive a 
packet classification and feature learning technique in one step. In addition, the author 
created a potential structure which can even manage the increased amount of transmis-
sion in CPS. Sharma et al. [15] devised superior lightweight behavior rule specification-
related misbehavior recognition for IoT-embedded CPS (BRIoT). The main aim of this 
technique was to devise a mechanism with which misbehavior of an IoT gadget was es-
tablished so assaults exploiting the exposed susceptibility can be identified with the use 
of formal verification and automated model checking, irrespective of whether the assault 
was unknown or known. 

In [16], a security decision-making technique related to the stochastic game model 
was modelled for characterizing the communication among defenders and attackers in 
ICPS, producing the best defense approaches for reducing system losses. The major dif-
ference in this technique was that it offers a practical means to frame a cross-layer security 
game method for ICPS with time-based unified payoff quantification and quantitative 
vulnerability analysis. Huang and Zhu [17] presented a dynamic game structure to devise 
long-term communication between a proactive defender and a stealthy attacker. The de-
ceptive and stealthy behaviors were captured by a multi-stage game of unfinished data, 
where all players have their private data unknown to others. 

Wang et al. [18] presented a Knowledge Distillation method dependent upon Triplet 
CNN for improving the model efficiency and significantly improve the speed of AD for 
industrial CPS (ICPS) and decrease the complexity of model. A novel NN trained ap-
proach termed as K-fold cross training was also presented for enhancing the accuracy of 
AD. Tang et al. [19] examine an ICPS with IDS dependent upon the Diffusion model. Pri-
marily, data equivalent to the rare class can be created by the diffusion model that gener-
ates the trained database of various classes balanced. 

Ramadevi et al. [20] introduced an Optimal DBN-based distributed IDS (ODBN-IDS) 
for securing CPS platform. The presented method was focused on pre-processing the 
cloud network traffic data and improve their quality to the next level. An equilibrium 
Optimizer Algorithm (EOA) was utilized for fine-tuning the hyperparameters in DBN 
technique. Alohali et al. [21] examined a novel AI-assisted multi-modal fusion-based IDS 
(AIMMF-IDS) for CCPS in industry 4.0 platform. Moreover, an improved fish swarm 
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optimizer based FS (IFSO-FS) approach was utilized for suitable FSs. Dutta et al. [22] pre-
sented a robust AD method dependent upon semi-supervised ML approach permitting 
us near real-time localization of attacks. A DNN structure was utilized for AD dependent 
upon reconstruction error. 

3. The Proposed Model 
In this study, we have presented an automated intrusion detection technique, named 

the XAIID-SCPS technique, for the CPS environment. The presented XAIID-SCPS method 
mostly concentrates on the detection and classification of intrusions in the CPS platform. 
In the XAIID-SCPS technique, several subprocesses are involved, namely, data pre-pro-
cessing, HEGSO-based feature selection, IENN-based classification, and EFFO-based pa-
rameter tuning. Figure 2 illustrates the overall flow of the XAIID-SCPS system. 

 
Figure 2. Overall flow of XAIID-SCPS system. 

3.1. Preprocessing 
In this phase, data conversion and data normalization are the two stages of prepro-

cessing. The input dataset in .xls form is converted into .csv form during data conversion. 
In addition, data normalization can be performed by the min–max technique, where the 
minimum and maximum values are taken from the given dataset. It aims to the normali-
zation of sample to a higher value of 1 and a lower value of 0 as follows: 𝑀𝑖𝑛 −𝑀𝑎𝑥.𝑁𝑜𝑟𝑚 = 𝑥 − 𝑥௠௜௡𝑥௠௔௫ − 𝑥௠௜௡         (1)

3.2. Feature Selection Using HEGSO Algorithm 
To select features accurately, the HEGSO algorithm is exploited in this study. The 

classical GSO technique is based on glowworm behaviors and was rooted in the natural 
activity of glowworms during the night [23]. The glowworm exhibits a kind of communi-
cation with other glowworms in a group depending on the luciferin. If the luciferin was 
high, then the light produced by the glowworm was high. As a result, the glowworm goes 
towards it. In this neighborhood, Luciferin update, movement, and update phases are the 
three different stages of the GSO technique. 

The luciferin update stage refers to luciferin creation. The quantity of luciferin was 
directly proportional to the fitness of the current site on the main function. During the 
movement stage, the glowworm selects the use of probabilistic means to go towards the 
neighbor where the value is high. The succeeding stage involves the adaptive 
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neighborhood range for perceiving the peak presence. The optimizing process can be per-
formed by using the HEGSO technique. The presented study applies the hybrid model 
where the HEGSO technique is used. Moreover, the usage of two genetic algorithms in-
cludes mutation and crossover operators. The optimization algorithm is initiated when 
the path is found between the beginning and the end points of the vehicular nodes that 
are presented in the road segment. The HEGSO method can be given in the following, 

Step 1: Initialize the ‘Eearch Agent’ (EA), namely, separate glowworm 𝑋 and the 
population size can be represented as 𝑄. 𝑧 shows the step size, the maximum number of 
iterations is represented by 𝑁௜௧, 𝐼௢ indicates the initial value of luciferin, 𝑟௢ indicates the 
primary value of radial gamut of SA, and 𝑛 denotes the hour’s instance. 𝑋 = ൛𝑥ଵ, 𝑥ଶ, … . 𝑥ொൟ  (2)

Step 2: Calculate the fitness function using the following expression: 

𝐹 = ෍ 𝐿𝐸𝑉௧(𝑉௜)௡
௥ୀଵ        (3)

where 𝐿 denotes the overall length of the road segment, the average velocity of the vehi-
cle on road was represented as 𝐸𝑉௧ and 𝑉௜ specify the vehicle. 

Step 3: In the luciferin stage, every new SA is calculated by the following equation: 𝑙௝(𝑛 + 1) = (1 − 𝜌)𝑙௝(𝑛) + 𝛽𝐽௝(𝑛 + 1)   (4)

where 𝑙(𝑛) indicates the luciferin value of SA at 𝑛 time, 𝑙௝(𝑛 + 1) indicates the luciferin 
value of SA at (𝑛 + 1) time, 𝐽௝ denotes fitness function, and 𝛽 denotes luciferin decay 
constant with the value in gamut [0, 1]. 

Step 4: The main function of every novel SA is evaluated by a similar fitness function 
that was declared in step 2. 

Step 5: Now, the SA headed for the neighboring glowworm was based on luminance. 
The SA movement can be determined by Euclidean distance among the glowworms. Here, 
SA heads for evaluated neighborhoods based on the probabilistic model, which can be 
expressed as follows. 𝑥௝(𝑛 + 1) = 𝑥௝(𝑛) + 𝑍 ቆ 𝑥𝑘(𝑛) − 𝑥௝(𝑛)ฮ𝑥𝑘(𝑛) − 𝑥௝(𝑛)ฮቇ (5)

In Equation (5), 𝑍 denotes step size. 
Step 6: Here, the decision range was upgraded, namely, the neighborhood range of 

SA is upgraded as follows: 𝑟ௗ(𝑛 + 1) =  min (𝑟௦, max (𝑂, 𝑟ௗ(𝑛)) + 𝐵(𝑛௘ − ห𝑁௝(𝑛)ห)   (6)

In Equation (6), 𝐵 indicates the constant, 𝑟௦ represent the largest sensing radius of 
the glowworm. 𝑛௘ shows the SA having a higher luciferin value in the decision range, 𝑟ௗ(𝑛 + 1) and 𝑟𝑑 denote the upgraded and preceding values of the neighborhood range. 

Step 7: Check whether the ending condition is met. When the ending condition is 
satisfied, then a better solution can be attained. When the ending conditions are not satis-
fied after two genetic operators, namely, crossover and mutation operators, are used. Fur-
thermore, the 2-point crossover was used. This can be followed by a mutation process 
where there are specific genes. The value that can be chosen for the crossover operator 
were mutated and then integrated. 

In the proposed HEGSO approach, the fitness function is intended to have a balance 
between the classification accuracy (maximum) and the number of selected features in all 
the solutions (minimum) attained Equation (10) characterizes the fitness function to esti-
mate the solution. 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾ோ(𝐷) + 𝛽 |𝑅||𝐶| (7)

where 𝛾ோ(𝐷) signifies the classifier error rate of the given classifier. |𝑅| indicates the car-
dinality of the selective subset and |𝐶| denotes the overall number of features in data, 
and 𝛼 and 𝛽 denote the two parameters corresponding to the significance of classifier 
quality and subset length, respectively. ∈ [1, 0] and 𝛽 = 1 − 𝛼 as explained in Algorithm 
1. 

Algorithm 1. HEGSO Algorithm 
Process HEGSO 
Start: Input: 𝑋௜ , 𝑄, 𝑧, 𝑁௜௧ , 𝐼௢, 𝑟௢. 
Define fitness function 
While 𝑡 < 𝑁௜௬ do 

For every glowworm do 𝑙௝(𝑛 + 1) = (1 − 𝜌)𝑙௝(𝑛) + 𝛽𝐽௝(𝑛 + 1) 𝑥௝(𝑛 + 1) = 𝑥௝(𝑛) + 𝑍 ቆ 𝑥𝑘(𝑛) − 𝑥௝(𝑛)ฮ𝑥𝑘(𝑛) − 𝑥௝(𝑛)ฮቇ 𝑟ௗ(𝑛 + 1) =  min (𝑟௦, max (𝑂, 𝑟ௗ(𝑛) + 𝐵(𝑛௘ − 𝑁௝(𝑛) 

End for 
End while 
Implement the crossover and mutation 
Return 𝑋௕௘௦௧ 
End Process 

3.3. Intrusion Detection Using Optimal IENN Model 
For detecting intrusions accurately, the IENN model is used. The ENN was a fully 

connected dynamic feedback NN that has a local feedback function and local memory 
unit. It realizes the mapping of a dynamic system and realizes the modeling of a static 
system and directly reflects the dynamic features of the model [24]. In comparison to 
FFNN, Elman was a one-step delay operator that attains the purpose of short-term stor-
age, and add another receiving layer based on a three-layer structure of hidden, input and 
resultant layers. Thus, the Elman method can adapt to time-varying features. Simultane-
ously, it has strong network stability and computing power. While there is a non-linear 
relationship between the parameters of SOH and LIB, such features of the ENN enable -
linear relation with better precision. Thus, the ENN is selected as an infrastructure. 

The ENN architecture with one output unit, two input units and three hidden units. 𝑘 denotes the 𝑘௧௛ time; 𝑋(𝑘) signifies the input vector of an input layer; 𝑤௜௝ଵ , 𝑤௜௝ଶ , and 𝑤௜௝ଷ  signify the weight connection from input to hidden layers (HLs) from receiving to HL 
and from HL to the output layer, correspondingly. 𝐶(𝑘), 𝐶∗(𝑘), and 𝑌(𝑘) signify the 
output vector of the hidden, getting, and resultant layers, correspondingly. 𝑏1 to 𝑏4 de-
notes the threshold of getting and resultant layers, correspondingly, and it can be mathe-
matically expressed as follows: 𝐶∗(𝑘) = 𝐶(𝑘 − 1)  (8)𝐶(𝑘) = 𝑓 ቀ𝑤௜௝ଵ 𝑋(𝑘) + 𝑏𝑖 + 𝑤௜௝ଶ𝐶∗(𝑘)ቁ (9)𝑌(𝑘) = 𝑔൫𝑤௜௝ଷ𝐶(𝑘) + 𝑏𝑖൯𝑓(⋅)    (10)
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Here, 𝑏𝑖 indicates the corresponding threshold, 𝑔(∙) denotes the activation function 
of output neurons that is usually a linear integration, and 𝑓 signifies the activation func-
tion of HL. 

However, ENNs have their benefits and drawbacks. Focusing on the drawbacks of 
NN algorithms in real-time engineering applications, research workers have primarily in-
vestigated and amended from two factors of learning algorithms and network topology. 
The amendment of NN topology will dramatically increase the computation problem that 
was not advantageous to the development of NN performance. Thus, the additional mo-
mentum technique improves the learning method of the NN and the algorithm implies 
that during backpropagation, a part of the preceding weight change was included to pre-
sent weight adjustment values by using momentum factors and utilized as an actual 
weight adjustment values: 𝛥𝑤(𝑡 + 1) = 𝛼𝛥𝑤(𝑡) + (1 − 𝛼)𝜂 𝜕𝐸(𝑡)𝜕𝑤(𝑡) (11)𝛥𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝛥𝑤(𝑡 + 1) (12)

Now, 𝑡 denotes the count of training times, 𝛼 indicates the momentum factor, usu-
ally fixed to 0.95, and 𝜂 indicates the learning rate. 

To alter the variables related to the IENN method, the EFFO approach was used. In 
general, the FFO algorithm is based on the behaviors of fruit flies during the food search 
process [25]. This method comprises three stages: 

(1) Initializing stage: the fruit flies have dispersed arbitrarily as 𝑋ିୟ𝑥𝑖𝑠 and 𝑌 ୟ𝑥𝑖𝑠, 
where r𝑣 denotes the uniform distribution random number. 𝑋௜ = 𝑋௔𝑥𝑖𝑠 + 𝑟𝑣   (13)𝑌௜ = 𝑌௔𝑥𝑖𝑠 + 𝑟𝑣  (14)

(2) Path Construction stage: the distance and odor intensity of each fruit fly is per-
formed by using the following equation. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௜ = ට𝑋௜ଶ + 𝑌௜ଶ     (15)

𝑆𝑀௜௖ = 𝑙𝐷𝑖𝑠tan𝑐𝑒௜ (16)

where 𝐷𝑖𝑠tan𝑐𝑒௜ denotes the distance between the food location and the 𝑖௧௛ individual, 𝑆𝑀௜௖ denotes the judgment value of odor intensity concentration, and this was the recip-
rocal of distance. 

(3) Fitness evaluation stage: The fitness formula can be expressed in the following. 𝑠𝑚𝑒𝑙𝑙௜ = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑆𝑀௜௖) (17)𝑠𝔪𝑒𝑙𝑙௕௘௦௧, 𝑖𝑛𝑑𝑒𝑥௕௘௦௧ =  max (𝑠𝔪𝑒𝑙𝑙௜) (18)

where 𝑠𝑚𝑒𝑙𝑙௜ shows the value of odor intensity of the distinct fruit flies, 𝑠𝑚𝑒𝑙𝑙 ௕௘௦௧ and 𝑖𝑛𝑑𝑒𝑥  ௕௘௦௧ denote the maximum component and its corresponding indices have dissimilar 
dimensions of smell vector, and max (𝑠𝑚𝑒𝑙𝑙௜) indicates the highest odor intensity concen-
tration amongst fruit flies. 

(4) Movement phase: The fruit fly provides a better value of odor intensity and flies 
towards that position correspondingly. The pseudocode of the FFO algorithm (Algorithm 
2) is shown below. 𝐵𝐸𝑆𝑇 𝑆𝑀𝐸𝐿𝐿 = 𝑠𝑚𝑒𝑙𝑙௕௘௦௧  (19)𝑋௔𝑥𝑖𝑠 = 𝑋(𝑖𝑛𝑑𝑒𝑥௕௘௦௧) (20)𝑌௔𝑥𝑖𝑠 = 𝑌(𝑖𝑛𝑑𝑒𝑥௕௘௦௧) (21)
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Algorithm 2. FFOA algorithm 
Step 1 Initializes the parameter 
Step 2 Repeat 

Select the random position under distance and odor intensity  
Assess the fitness function 𝑆𝑀௜௖ 
Recognize the fruit fly with the highest odor intensity concentration between 
The fruit fly swarm 
Ranking of solutions, and upgrading the better solution 

Step 3 Return the better solution 

The EFFO algorithm is defined by the incorporation of a chaotic concept. The chaotic 
signal made by the deterministic system has the quality of genus-randomness. The curve 
can be defined by the initial value and chaos mapping parameter. 

Logistic mapping was leveraged widely. The Logistic chaotic mechanism has com-
plicated dynamical behavior and it is defined as follows: 𝜆௜ାଵ = 𝜇 × 𝜆௜ × (1 − 𝜆௜)    (22)𝜆 ∈ [0, 1], 𝑖 = 0,1,2,⋯ , 𝜇 is in [1, 4]. The study recommended that 𝜇 was closer to 4, 
and 𝜆 was closer to the average distribution between [0, 1]. Meanwhile, the system was 
completely chaotic if 𝜇 value is 4. The initial population was a significant part of the in-
telligent optimizer technique that affect the final solution quality and convergence rate. 
Logistic chaotic mapping was leveraged for initializing the population of FFO that ex-
ploits the solution space to enhance the efficiency of the model. 

The fitness selection is a critical factor in the EFFO algorithm. Solution encoding can 
be used to assess the aptitude (goodness) of the candidate solution. Here, the accuracy 
value is the main condition used to design a fitness function. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)     (23)𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃  (24)

From the expression, TP represents the true positive and FP denotes the false positive 
value. 

3.4. Modeling of XAI Using LIME 
In this work, the XAIID-SCPS technique integrates the XAI approach LIME for supe-

rior explainability and understanding of the black-box method for the accurate classifica-
tion of intrusions [26]. Local interpretable model-agnostic explanation (LIME) could de-
scribe several ML techniques for regression prediction, utilizing the featured value change 
in the data samples to convert the featured value into the contribution of the predictor. 
The explainer provides a local interpretation of the data samples. For instance, interpret-
able models in LIME frequently use decision trees (DTs) or linear regression (LR) that are 
trained by the small perturbation (hiding parts of an image, adding random noise, and 
removing specific words) in the model. The quality of this model seems to be increasing 
and was utilized to solve the best part of business victimization data. Moreover, there was 
a persistent tradeoff between interpretability and model accuracy. In general, the accuracy 
is enhanced to use sophisticated techniques such as random forest, material, boosting, 
SVM, and call trees, which are “blackbox” techniques. The local interpretable model ag-
nostic explanation (LIME) gives a clear description of the problem with the blackbox clas-
sifier. The LIME is a way to understand an ML BlackBox technique by perturbing the in-
put dataset and seeing how the prediction changes. The LIME is used for any ML black-
box models. The main steps are given below: 
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In the class explain_instance, a technique named explain_instance accepts the refer-
ence to the instance where the explanation is required, together with the number of fea-
tures to be added in the explanation and the trained model’s prediction technique. 

A TabularExplainer can be initialized by the data used for training the data about the 
features, and various class names. 

4. Performance Validation 
In this section, the intrusion detection results of the XAIID-SCPS method can be in-

vestigated on two datasets namely NSLKDD2015 and CICIDS2017 dataset as shown in 
Table 1. 

Table 1. Details dataset. 

Class 
No. of Samples 

NSLKDD 2015 CICIDS 2017 
Normal 67,343 50,000 

Anomaly 58,630 50,000 
Total Number of Samples 125,973 100,000 

The confusion matrices of the XAIID-SCPS method on the NSLKDD 2015 dataset are 
illustrated in Figure 3. The results recognized the normal and abnormal samples profi-
ciently. For instance, with 80% of TRS, the XAIID-SCPS technique identifies 53,611 normal 
and 46,054 abnormal samples. Along with that, with 20% of TSS, the XAIID-SCPS tech-
nique identifies 13,343 normal and 11,578 abnormal samples. Finally, with 30% of TSS, the 
XAIID-SCPS technique identifies 19,787 normal and 17,364 abnormal samples. 

In Table 2, detailed intrusion recognition outcomes of the XAIID-SCPS method on 
the NSLKDD2015 dataset are provided under 80:20 of TRS/TSS. The experimental results 
demonstrated that the proposed model properly recognizes normal and anomaly samples 
under 80:20 of TRS/TSS. With 80% of TRS, the XAIID-SCPS technique obtains an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.86%, 𝑝𝑟𝑒𝑐௡ of 98.93%, 𝑟𝑒𝑐𝑎௟ of 98.86%, 𝐹௦௖௢௥௘ of 98.89%, and 𝐴𝑈𝐶௦௖௢௥௘ of 
98.86%. Meanwhile, with 20% of TSS, the XAIID-SCPS methodology acquires an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.87%, 𝑝𝑟𝑒𝑐௡ of 98.95%, 𝑟𝑒𝑐𝑎௟ of 98.87%, 𝐹௦௖௢௥௘ of 98.91%, and 𝐴𝑈𝐶௦௖௢௥௘ of 
98.87%. Additionally, for 30% of TSS, the XAIID-SCPS method obtains an average 𝑎𝑐𝑐𝑢௕௔௟ 
of 98.32%, 𝑝𝑟𝑒𝑐௡ of 98.28%, 𝑟𝑒𝑐𝑎௟ of 98.32%, 𝐹௦௖௢௥௘ of 98.30%, and 𝐴𝑈𝐶௦௖௢௥௘ of 98.32%. 

Table 2. Intrusion recognition outcome of XAIID-SCPS system on the NSLKDD2015 dataset. 

NSLKDD 2015 Dataset 
Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

Training Phase (80%) 
Normal 99.40 98.55 99.40 98.97 98.86 

Anomaly 98.31 99.30 98.31 98.81 98.86 
Average 98.86 98.93 98.86 98.89 98.86 

Testing Phase (20%) 
Normal 99.51 98.47 99.51 98.98 98.87 

Anomaly 98.24 99.43 98.24 98.83 98.87 
Average 98.87 98.95 98.87 98.91 98.87 

Training Phase (70%) 
Normal 98.04 98.70 98.04 98.37 98.28 

Anomaly 98.52 97.76 98.52 98.14 98.28 
Average 98.28 98.23 98.28 98.25 98.28 

Testing Phase (30%) 
Normal 98.11 98.70 98.11 98.41 98.32 
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Anomaly 98.52 97.85 98.52 98.19 98.32 
Average 98.32 98.28 98.32 98.30 98.32 

 
Figure 3. Confusion matrices of XAIID-SCPS system on NSLKDD2015 dataset (a,b) TRS/TSS of 80:20 
and (c,d) TRS/TSS of 70:30. 

The TACY and VACY of the XAIID-SCPS model on the NSLKDD2015 dataset are 
represented in Figure 4. The figure designated the XAIID-SCPS model has shown en-
hanced performance with maximal values of TACY and VACY. It is visible that the 
XAIID-SCPS model has maximum TACY results. 
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Figure 4. TACY and VACY outcome of XAIID-SCPS system on NSLKDD2015 dataset. 

The TLOS and VLOS of the XAIID-SCPS model on the NSLKDD2015 dataset are rep-
resented in Figure 5. The figure inferred that the XAIID-SCPS model has superior perfor-
mance with least values of TLOS and VLOS. It is visible that the XAIID-SCPS model has 
resulted in reduced VLOS outcomes. 

 
Figure 5. TLOS and VLOS outcome of XAIID-SCPS system on NSLKDD2015 dataset. 
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The confusion matrices of the XAIID-SCPS methodology in the CICIDS 2017 dataset 
are shown in Figure 6. The results recognized the normal and abnormal samples profi-
ciently. For instance, with 80% of TRS, the XAIID-SCPS technique identifies 39,508 normal 
and 39,422 abnormal samples. Along with that, with 20% of TSS, the XAIID-SCPS tech-
nique identifies 9774 normal and 9950 abnormal samples. Finally, with 30% of TSS, the 
XAIID-SCPS technique identifies 14,582 normal and 14,505 abnormal samples. 

 
Figure 6. Confusion matrices of XAIID-SCPS system on CICIDS 2017 dataset (a,b) TRS/TSS of 80:20 
and (c,d) TRS/TSS of 70:30. 

In Table 3, a brief intrusion recognition outcome of the XAIID-SCPS method on the 
CICIDS 2017 dataset is provided under 70:30 of TRS/TSS. The experimental results 
demonstrated that the proposed model properly recognizes normal and anomaly samples 
under 70:30 of TRS/TSS. With 80% of TRS, the XAIID-SCPS technique obtains an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.66%, 𝑝𝑟𝑒𝑐௡ of 98.66%, 𝑟𝑒𝑐𝑎௟ of 98.66%, 𝐹௦௖௢௥௘ of 98.66%, and 𝐴𝑈𝐶௦௖௢௥௘ of 
98.66%. Meanwhile, with 20% of TSS, the XAIID-SCPS technique obtains an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.62%, 𝑝𝑟𝑒𝑐௡ of 98.62%, 𝑟𝑒𝑐𝑎௟ of 98.62%, 𝐹௦௖௢௥௘ of 98.62%, and 𝐴𝑈𝐶௦௖௢௥௘ of 
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98.62%. Moreover, for 30% of TSS, the XAIID-SCPS technique obtains an average 𝑎𝑐𝑐𝑢௕௔௟ 
of 96.96%, 𝑝𝑟𝑒𝑐௡ of 96.96%, 𝑟𝑒𝑐𝑎௟ of 96.96%, 𝐹௦௖௢௥௘ of 96.96%, and 𝐴𝑈𝐶௦௖௢௥௘ of 96.96%. 

The TACY and VACY of the XAIID-SCPS model on the CICIDS 2017 database are 
represented in Figure 7. The figure shows that the XAIID-SCPS method has shown en-
hanced performance with increased values of TACY and VACY. It is visible that the 
XAIID-SCPS model has higher TACY outcomes. 

Table 3. Intrusion recognition outcome of XAIID-SCPS system on the CICIDS 2017 dataset. 

CICIDS 2017 Dataset 
Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

Training Phase (80%) 
Normal 98.57 98.76 98.57 98.66 98.66 

Anomaly 98.75 98.57 98.75 98.66 98.66 
Average 98.66 98.66 98.66 98.66 98.66 

Testing Phase (20%) 
Normal 98.53 98.69 98.53 98.61 98.62 

Anomaly 98.71 98.55 98.71 98.63 98.62 
Average 98.62 98.62 98.62 98.62 98.62 

Training Phase (70%) 
Normal 97.03 96.91 97.03 96.97 96.97 

Anomaly 96.90 97.03 96.90 96.97 96.97 
Average 96.97 96.97 96.97 96.97 96.97 

Testing Phase (30%) 
Normal 97.14 96.79 97.14 96.96 96.96 

Anomaly 96.77 97.13 96.77 96.95 96.96 
Average 96.96 96.96 96.96 96.96 96.96 

 
Figure 7. TACY and VACY outcome of XAIID-SCPS system on CICIDS 2017 dataset. 
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The TLOS and VLOS of the XAIID-SCPS model on the CICIDS 2017 dataset are rep-
resented in Figure 8. The figure indicated that the XAIID-SCPS model has better perfor-
mance with the least values of TLOS and VLOS. It is visible that the XAIID-SCPS model 
has resulted in reduced VLOS outcomes. 

 
Figure 8. TLOS and VLOS outcome of XAIID-SCPS system on CICIDS 2017 dataset. 

In Table 4 and Figure 9, comparative results of the XAIID-SCPS technique with exist-
ing models take place [27]. The results indicate that the XAIID-SCPS method shows max-
imum performance over other existing models. Based on 𝑎𝑐𝑐𝑢௬, the XAIID-SCPS tech-
nique results in an increasing 𝑎𝑐𝑐𝑢௬ of 98.87% while the FURIA, AE-RF, Forest-PA, WIZ-
ARD, GSAE, and LIB-SVM models reach a reducing 𝑎𝑐𝑐𝑢௬ of 98.14%, 97.62%, 96.72%, 
96.64%, 97.63%, and 96.57%, respectively. 

Table 4. Comparative outcome of XAIID-SCPS system with other systems. 

Methods Accuracy Precision Recall F1-Score 
XAIID-SCPS 98.87 98.95 98.87 98.91 

FURIA 98.14 97.57 96.93 98.26 
AE-RF 97.62 97.35 97.79 97.30 

Forest-PA 96.72 96.97 97.32 98.13 
WISARD 96.64 97.58 97.29 98.65 

GSAE 97.63 95.97 98.39 98.19 
LIB-SVM 96.57 96.96 96.83 97.92 
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Figure 9. 𝐴𝑐𝑐𝑢௬ outcome of XAIID-SCPS system with other systems 

Meanwhile, based on 𝑝𝑟𝑒𝑐௡, the XAIID-SCPS method results in an increasing 𝑝𝑟𝑒𝑐௡ 
of 98.95% while the FURIA, AE-RF, Forest-PA, WISARD, GSAE, and LIB-SVM models 
reach a reducing 𝑝𝑟𝑒𝑐௡ of 97.57%, 97.35%, 96.97%, 97.58%, 95.97%, and 96.96%, respec-
tively. Eventually, based on 𝐹௦௖௢௥௘ , the XAIID-SCPS technique results in an increasing 𝐹௦௖௢௥௘  of 98.91% while the FURIA, AE-RF, Forest-PA, WISARD, GSAE, and LIB-SVM 
models reach a reducing 𝐹௦௖௢௥௘ of 98.14%, 98.26%, 97.30%, 98.13%, 98.65%, 98.19%, and 
97.92%, correspondingly. These results highlighted the betterment of the XAIID-SCPS 
technique for intrusion detection purposes. 

5. Conclusions 
In this study, we have presented an automated intrusion detection technique named 

XAIID-SCPS technique for the CPS platform. The presented XAIID-SCPS approach pri-
marily concentrates on the detection and classification of intrusions in the CPS platform. 
In the XAIID-SCPS technique, several subprocesses are involved, namely, data pre-pro-
cessing, HEGSO-based feature selection, IENN-based classification, and EFFO-based pa-
rameter tuning. Moreover, the XAIID-SCPS technique integrates the XAI approach LIME 
for better understanding and explainability of the black-box method for accurate classifi-
cation of intrusions. The simulation values of the XAIID-SCPS technique are tested on a 
benchmark intrusion dataset and the outcomes prove the promising performance of the 
XAIID-SCPS technique over other recent approaches. In the future, data clustering and 
outlier removal methodologies can be designed to enrich the detection performance of the 
XAIID-SCPS technique. Moreover, the proposed model can be extended to the design of 
ensemble voting classifiers to improve the detection rate of the XAIID-SCPS technique. 
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