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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive and
functional impairment. Recent research has focused on the deregulation of microRNAs (miRNAs)
in blood as the potential biomarkers for AD. As such, a differential expression analysis of miRNAs
was conducted in this study using an integrated framework that utilized the advantages of statistical
and machine learning approaches. Three miRNA candidates that showed the strongest significance
and correlation with each other, namely hsa-miR-6501-5p, hsa-miR-4433b-5p, and hsa-miR-143-3p,
were identified. The roles and functions of the identified differentiated miRNA candidates with AD
development were verified by predicting their target mRNAs, and their networks of interaction in AD
pathogenesis were investigated. Pathway analysis showed that the pathways involved in contributing
to the development of AD included oxidative phosphorylation, mitochondrial dysfunction, and
calcium-mediated signalling. This study supports evidence that the miRNA expression changes in
AD and indicates the need for further study in this area.
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1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease that causes
a dementing syndrome. It is clinically recognized by cognitive dysfunction, such as mem-
ory loss and behavioural changes that significantly impact functional ability [1]. AD is
characterized pathologically by the abnormal accumulation of extracellular amyloid-β
peptide (Aβ) plaques and intraneuronal neurofibrillary tangles (NFTs) composed of hyper-
phosphorylated tau protein in the brain [2,3]. The abnormal accumulation of these proteins
is thought to lead sequentially to neuroinflammation, neuronal cell death, synaptic dys-
function, and finally, cognitive impairment [2]. AD appears to be genetically dichotomous,
with rare mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1), and prese-
nilin 2 (PSEN2) associated with early-onset familial AD, and apolipoprotein E4 (APOE4)
polymorphism associated with an increased risk of late-onset AD [4].

The diagnostic accuracy for AD has increased with the use of new neuroimaging
modalities, such as amyloid or tau positron emission tomography (PET) scans, and the
evaluation of biomarkers in cerebrospinal fluid (CSF), obtained via lumbar puncture [5].
However, these procedures are not suitable for the screening of normal populations as
they are prohibitively expensive or invasive [5]. Hence, attention has been drawn to the
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application of blood-based biomarkers, which is comparably more accessible and well-
tolerated in regular clinical practice, to investigate and identify AD [5,6].

MicroRNAs (miRNAs), which circulate in the peripheral blood system, may be poten-
tial biomarkers for AD. The emergence of next-generation sequencing (NGS) technology,
such as RNA sequencing (RNA-seq), of small RNAs enables the reading of thousands or
millions of miRNA molecules, lending an understanding of their roles in neurodegenerative
diseases for investigation. miRNAs are small (approx. 18–25 nucleotides long), non-coding
RNA molecules that regulate posttranscriptional gene expression by binding to the 3′-
untranslated regions of messenger RNAs (mRNAs). The changes in expression of a miRNA
can repress the translation of many mRNAs (gene silencing), influencing the amounts and
functions of numerous proteins. A miRNA can target multiple mRNAs, including mRNAs
that exert contradicting effects within the same molecular pathway [7]. Several miRNAs
that regulate the synthesis of activity-mediated proteins, affecting the underlying processes
of cognitive function and disease risk/progression in AD, have previously been identified.
miRNAs are abundant and stable in human bodily fluids, including the blood and the CSF,
as compared to mRNAs, making miRNAs easier to evaluate and study [8].

Studies investigating the possibility of miRNAs as biomarkers for AD suggested that
the dysregulation of miRNAs in blood may be able to reflect the pathological process of
neuronal impairment that occurs in AD [5,6,9]. Aberrant expressions of miRNAs have
been identified in AD, such as miR-101, miR-20a, and miR-17, which appear to negatively
regulate the expression of APP [10,11]. Others, such as miR-22-3p and miR-340, were found
to significantly alleviate Aβ levels in AD [11], whereas miR-107 levels were found to be
negatively correlated with APOE4 [10–13]. The suppression of miR-203 was also found to
downregulate APOE4 and tau in mice [11].

The analysis of complex and highly heterogeneous AD expression data requires strong
computational power to untangle the network of interactions between the miRNAs and
to select the most likely candidates with the highest sensitivity and specificity in relation
to AD [14]. The “curse of dimensionality”, caused by the presence of large variables but
a small sample size in a dataset, often poses the biggest challenge in the analysis of AD
data [15]. The unbalanced ratio of the variables to the number of samples gives rise to the
problem of overfitting and can increase false-positive results [14]. Although some statistical
methods have been reported to perform well with such data comprising smaller sample
sizes and high biological replicates [16,17], machine learning methods are deemed to be
more reliable in solving data overfitting problems [18]. Feature-selection methods and cross-
validation steps carried out during the analysis reportedly perform well at removing noise
and outliers in the dataset, while avoiding overfitting caused by the high dimensionality of
gene expression data [19].

In most conventional studies, the genes of interest are evaluated through their ex-
pression values in a case–control study, where a set of genes with expression that varied
in one class, as compared to others, is selected. Numerous statistical models and tests
have been developed with the aim of identifying the most significant set of candidates.
However, statistical methods only focus on univariate comparison, and the importance
of the gene–gene relationship is often neglected. On the contrary, other than predicting
outcomes for classes to improve the performance of a model, machine learning can be
used to select relevant features by looking into the intrinsic intervariable relationships of
the genes.

In AD studies, machine learning methods have been applied to select differential
miRNA biomarkers that exhibit similar structural and functional patterns [20]. The recent
trend of machine learning in miRNA expression studies in AD mainly focuses on selecting
a small set of miRNAs from a group of differentiated miRNAs to obtain more precise and
reliable results of association [20,21].

The present case–control study focuses on investigating the differential miRNAs in the
peripheral blood of Malaysian AD patients. The population in Malaysia is multi-ethnic and
exposed to multicultural environments. Hence, this may result in differences not seen in the
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findings of studies on monoethnic populations, such as Caucasian, African, and Chinese.
The present study started with a data-integration framework that applied statistical and
machine learning techniques to identifying potential miRNA candidates that demonstrate
differential expression in AD patients as compared with controls. Problems caused by the
high dimensionality of the dataset were minimized by conducting a two-step machine
learning method in which supervised feature-selection and unsupervised clustering were
carried out. In addition, the potential roles of the miRNA candidates in AD pathogenesis
were correlated with the functions of their respective targeted mRNAs (genes) by carrying
out miRNA target gene prediction. The pathways involved with the identified miRNAs
and genes, together with their roles in AD, were discussed in an attempt to reach a more
complete understanding of AD development.

The remainder of this paper is structured as follows: Section 2 discusses the existing
methods used in the study of AD and the research gaps that need to be filled. Section 3
explains the materials used and the integration framework proposed in this study. Section 4
presents the results, and the findings are discussed in Section 5. Finally, conclusions are
drawn and the challenges of this study are highlighted in Section 6.

2. Related Works

Previous studies have proposed the application of integrated statistical and machine
learning models for the identification of potential miRNA candidates. Lugli et al. (2015)
carried out a series of statistical and machine learning analyses to measure differential
miRNAs and successfully identified seven miRNAs that showed significant differences
in AD. The study compared the performance of several machine learning algorithms;
however, the machine learning approaches were not used as a part of the differential
miRNA expression analysis, but rather to evaluate how robust each algorithm is [22].
Furthermore, a study of 14 miRNAs with differential expression in an AD group, as
compared to normal controls, was conducted [23]. Similar to aforementioned studies, the
proposed methods of statistical and machine learning approaches were applied here to
carry out different tasks in our study: statistical methods for differential miRNA expression
and machine learning for prediction performance.

The lack of the utilization of machine learning techniques in the analysis of differential
miRNA expression data, especially in AD-related fields, represents a research gap that
needs to be addressed.

3. Methods and Materials
3.1. Subjects

A total of 12 subjects were recruited from the Memory Clinic and the Geriatric Clinic,
University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia, for the present
study. Blood samples were collected from the subjects, including eight patients diagnosed
with AD and four normal controls. All of the subjects were over 65 years of age at the time
of recruitment and had been assessed by a geriatrician with experience in dementia care.
The selection criteria used in recruiting the subjects are included in the Supplementary
Materials, Table S1. The subjects’ details and the corresponding sample IDs used in this
study are included in the Supplementary Materials, Table S2. The study protocol was
approved by the Medical Research Ethics Committee, UMMC, with the approval number
2020114-9193.

The study was carried out according to the framework illustrated in Figure 1.
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Figure 1. The framework for the differential expression analysis of miRNA in the blood of AD patients
and that of normal controls. miRNA sequencing was conducted on the samples after appropriate
preparation. The raw count data were analysed using bioinformatics. Differential miRNA expression
analysis was carried out using two independent approaches, i.e., statistical and machine learning.
Differentially expressed miRNAs (DEMis) were subjected to miRNA target gene prediction, followed
by the evaluation of enriched pathways.

3.2. Sample Preparation

A quantity of 6 ml of blood was collected from each subject in a BD Vacutainer EDTA
blood collection tube. A series of routine investigations, extraction, and centrifuging were
conducted, and the samples were stored at −80 ◦C until further processing. The details
of the procedure are listed in the Supplementary Materials. The DNA and other blood
contaminants in the samples were eliminated, and the quantity and purity of the RNA
samples were measured using Nanodrop.

3.3. Small RNA-Sequencing Analysis

Small RNA libraries were constructed from the RNA samples using a NEXTflex Illu-
mina Small RNA-seq Kit v3 (Bioo Scientific, Austin, TX, USA), following the manufacturer’s
protocol. The libraries were loaded and sequenced on the Illumina NovaSeq 6000, and
more than 10 M (1.5 Gb) reads were obtained from each library. The raw reads were first
quality-checked, and low-quality bases were trimmed from the 3′ end. Subsequently, the
reads were dynamically trimmed for an adapter sequence by using cutadapt [24]. Clean
reads were then mapped against the reference genome (H_sapien) using Bowtie [25]. The
matched reads were aligned to identify mature miRNAs in miRbase v22. The count data
were used for further bioinformatics analysis.

3.4. Integrative Statistical and Machine Learning Analysis
3.4.1. Differential Expression Analysis

(i) Statistical approach: EdgeR



Appl. Sci. 2023, 13, 3071 5 of 18

Raw counts from the miRNA sequencing dataset were filtered to exclude miRNAs
with low expressed counts (<10 counts for every sample). The resulting counts were first
scaled according to the library size, followed by normalization using a method known as the
trimmed mean of M-values (TMM) [26]. The normalization was based on the log-expression
ratio of the read count data [26]. Differential miRNA expression analysis was carried out
to compare the AD and control groups, based on a linear model generalized by negative
binomial distribution in edgeR [27]. A p-value of <0.05 was considered significant and was
applied as the threshold for selecting the top differentially expressed miRNA (DEMi) candi-
dates. DEMi candidates with log2 fold-change (FC) values that were >0.5 were considered
as upregulated, and those with log2FC < −0.5 were considered as downregulated.

(ii) Machine learning approach

Step 1: Hybrid carss-SVMRFE feature-selection
Feature-selection was performed using the normalized miRNA dataset (with low-

quality reads filtered out) so as to filter out the uninformative genes and to select a subset
of genes with the most relevant features. The input expression data were first normalized
and log2-transformed according to the trimmed mean of M-values (TMM) in edgeR, which
minimized the difference in the miRNAs with low expression counts, creating a fitted
dispersion with a weaker bias effect.

The present study implemented supervised feature-selection using a hybrid filter-
wrapper approach based on the absolute correlation-adjusted regression survival scores
(carss) and multiple support vector machine recursive feature elimination (MSVM-RFE) in
packages mlr3 and e1071, R [28,29].

First, the filter method carss was used to select informative variables based on the
measurements of the correlation between the “decorrelated” variables, while considering
the target outcome (AD/normal control). Subsequently, MSVM-RFE was conducted as the
wrapper method to select miRNA subsets that could improve the results for subsequent
analysis. A sequential backward elimination procedure was applied in MSVM-RFE recur-
sively (k = 5), and feature-ranking scores were calculated in each fold. The average ranking
was computed for each feature, and the best feature subset was selected. At the end of
this step, the top 50 ranked features (miRNAs) were selected, and those proceeded to the
next step.

Step 2: Principal component analysis (PCA) with self-organizing map (SOM)
Next, SOM [30] was performed using the top 50 miRNAs that were selected in Step

1. SOM is an unsupervised clustering method of neural networks which groups and
captures the input pattern of the gene expression data in terms of learning rules and then
organizes it to reflect the clustering in the final layer [31]. Therefore, the output of a SOM
contains clusters, with each cluster containing features of similar characteristics, and the
high dimensionality of the data is reduced. In this study, a SOM with a map size of 2 × 2,
with hexagonal topology, was applied. Hierarchical clustering (HC) was then applied
to the resulting SOM cluster to further define the clusters. The miRNAs were clustered
according to their expression values, without the predefined knowledge of the dependent
class labels [32]. The outcomes were visualized using PCA to observe the gene expression
patterns of the clusters resulting from the SOM. PCA is a method that has the ability to
reduce the dimensionality of the data while compressing the complexity of the data [33,34].
This technique was applied in this study to improve the interpretability of the SOM results.

3.4.2. miRNA Target Gene Prediction

miRNA target gene prediction was performed using DIANA-microT-CDS v5.0 [35].
The prediction threshold was set to 0.7 (sensitive), and the keyword “Alzheimer” was
inserted into the queries to identify potential gene targets that are related to AD.

3.4.3. miRNA Pathway and Gene Ontology (GO) Analysis

By utilizing the target genes predicted in the previous step, DIANA-miRPath v3.0 [36]
was used to carry out miRNA pathway analysis to discover the possible pathways involved
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in AD pathogenesis. The target genes were enriched with KEGG pathway [37] and GO
analysis [38]. GO terms, including the biological process, the molecular functions, and
the cellular functions, were investigated. The significant threshold of p-value <0.05 was
corrected according to the false discovery rate (FDR). Additionally, the species “Human”
was specified in the query. Significant and common pathways were selected using gene
union tools. Furthermore, networks showing the interactions between the miRNAs and the
target genes in specific pathways were depicted using Cytoscape [39].

4. Results

Unfortunately, one sample (AD 8) failed during the construction of the small RNA
libraries and had to be excluded as analysis of the miRNA concentration of this sample
by the Small RNA bioanalyzer produced an inconclusive outcome, thus leaving a total of
11 samples to be entered into the study. As a result, a total of 420 mature miRNAs were
included in the analysis after reads of a low quality were removed.

4.1. Statistical Approach: edgeR

In the differential miRNA analysis using edgeR, 12 DEMi candidates (5 upregulated
and 7 downregulated) were identified between the AD and normal control groups, with a
significant threshold p-value of <0.05 (Table 1).

Table 1. DEMi candidates selected using edgeR.

DEMi Log2FC p-Value Regulation

hsa-miR-941 0.752891 0.020286 Up

hsa-miR-1273c 0.72872 0.016058 Up

hsa-miR-150-5p 0.685625 0.049536 Up

hsa-miR-10a-5p 0.597925 0.023684 Up

hsa-miR-9-5p 0.563954 0.011416 Up

hsa-miR-1307-3p −0.59803 0.024833 Down

hsa-miR-877-5p −0.61671 0.048433 Down

hsa-miR-4433b-5p −0.67039 0.036891 Down

hsa-miR-143-3p −0.69404 0.048802 Down

hsa-miR-1296-5p −0.85825 0.018019 Down

hsa-miR-5100 −1.21725 0.046714 Down

hsa-miR-6501-5p −1.34159 0.003957 Down

4.2. Machine Learning Approach

The original, mature miRNAs (n = 420) were first filtered using a supervised hybrid
filter-wrapper approach as the feature-selection method. As the result, top 50 ranked
miRNAs were identified, and an unsupervised machine learning approach using SOM
was performed.

The input data were presented in the 2 × 2 feature output space, which consisted
of four neurons in total. A total of 50 features of the data were clustered into 4 neurons.
The mean distance was calculated based on the position of each neuron. Following that,
additional subclustering was subsequently carried out, using HC on the 2 × 2 feature
output space to split the four neurons into two clusters, as shown in Figure 2.
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Figure 2. Clustering of SOM neurons using HC.

Figure 2 illustrates the subclusters of the four neurons generated in SOM. Of the four
neurons, three had higher connectivity with one another (pink), which indicated that these
neurons were located in the same cluster. In contrast, the remaining cluster contained only
one neuron (black).

Next, the result was visualized using PCA to produce a more interpretable view
of the miRNA clustering. Figure 3A shows the distribution of the miRNAs in the two
clusters, as extended from Figure 2. Figure 3B shows the distribution pattern of the samples,
indicated by the pointing of the arrows that originate from the centre point. All of the AD
samples were located on the right side of the plot, indicating higher values in these samples.
Corresponding to the pattern of miRNA clustering in Figure 3A, the miRNAs in SOM
cluster 1 (red dots) showed a similar distribution to the AD cohorts in Figure 3B. Hence,
the member miRNAs in SOM cluster 1 in Figure 3A were identified, and 24 miRNAs were
selected as DEMi candidates.
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4.3. Integrated Bioinformatics and Machine Learning Approach

The DEMi candidates identified using the machine learning approach were compared
with the DEMi candidates identified using edgeR so as to identify common DEMis. A Venn
diagram of this comparison is shown in Figure 4.
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learning approach.

Five common DEMis (hsa-miR-6501-5p, hsa-miR-1296-5p, hsa-miR-1307-3p, hsa-miR-
4433b-5p, and hsa-miR-143-3p) were identified in this study.

4.4. Target Gene Prediction

Target gene prediction, which was carried out subsequently, identified the mRNAs
associated with the five common DEMis. Notably, only three DEMis, hsa-miR-6501-5p,
hsa-miR-4433b-5p, and hsa-miR-143-3p, were predicted to be related to AD and thus were
selected as the DEMi signatures for this study (Table 2).

Table 2. DEMis and the predicted target genes related to AD.

DEMi Gene ID Gene Name miTG Score

hsa-miR-6501-5p ENSG00000124172 ATP5E 0.824031785
ENSG00000138814 PPP3CA 0.793189081

hsa-miR-4433b-5p
ENSG00000161509 GRIN2C 0.754847813
ENSG00000160014 CALM3 0.746931533
ENSG00000162736 NCSTN 0.720055687

hsa-miR-143-3p

ENSG00000273079 GRIN2B 0.932644441
ENSG00000172071 EIF2AK3 0.898086248
ENSG00000147684 NDUFB9 0.852775513
ENSG00000139180 NDUFA9 0.84781014
ENSG00000080815 PSEN1 0.825585469
ENSG00000100030 MAPK1 0.756048436
ENSG00000023228 NDUFS1 0.751173742
ENSG00000198838 RYR3 0.744614559
ENSG00000186318 BACE1 0.739327029
ENSG00000131143 COX4I 0.736374347

4.5. miRNA Pathway and Gene Ontology (GO) Analysis

Next, KEGG pathways involved with the identified AD-related target genes were
identified (Table 3). Interaction networks of the three identified DEMi signatures with
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the target genes and their corresponding pathways are illustrated in Figure 5. The results
indicate that the significantly enriched pathways of the three DEMi signatures and their
respective target genes are involved in six pathways, which are the AD, oxidative phos-
phorylation, circadian entrainment, amphetamine addiction, long-term potentiation, and
oxytocin pathways.

Table 3. KEGG pathways associated with the DEMi signatures and the respective target genes.

KEGG Pathway p-Value DEMi Involved Gene Involved

Alzheimer’s disease 1.58 × 10−10

hsa-miR-6501-5p ATP5E
PPP3CA

hsa-miR-4433b-5p
GRIN2C
CALM3
NCSTN

hsa-miR-143-3p

EIF2AK3
NDUFB9
NDUFA9
PSEN1
MAPK1

NDUFS1
RYR3

BACE1
COX4I1

Oxidative phosphorylation 9.67 × 10−6

hsa-miR-6501-5p
ATP5E

NDUFB9

hsa-miR-143-3p
NDUFA9
NDUFS1
COX4I1

Circadian entrainment 0.023972099
hsa-miR-4433b-5p GRIN2C

CALM3

hsa-miR-143-3p MAPK1
RYR3

Amphetamine addiction 0.023972099

hsa-miR-6501-5p PPP3CA

hsa-miR-4433b-5p GRIN2C
CALM3

Long-term potentiation 0.023972099

hsa-miR-6501-5p PPP3CA

hsa-miR-4433b-5p GRIN2C
CALM3

hsa-miR-143-3p MAPK1

Oxytocin signalling pathway 0.023972099

hsa-miR-6501-5p PPP3CA

hsa-miR-4433b-5p CALM3

hsa-miR-143-3p MAPK1
RYR3

In the GO analysis, 12 significant enriched GO terms were identified (Table 4), with
the suggestion that the DEMi signatures and target genes were mainly related to the gener-
ation of precursor metabolites and energy, mitochondrion, calcium-mediated signalling,
and protein metabolic processes. Notably, hsa-miR-4433b-5p and hsa-miR143-3p showed
common enrichment to the terms relating to Aβ, which is one of the important pathological
indicators for AD. The interaction networks of the three identified DEMi signatures with
the target genes and their corresponding pathways are illustrated in Figure 6.
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Table 4. GO terms associated with the miRNAs and the respective target genes.

GO Category p-Value DEMi Involved Genes Involved

respiratory electron
transport chain 1.19 × 10−5

hsa-miR-6501-5p

ATP5E
NDUFB9
NDUFA9
NDUFS1

hsa-miR-143-3p COX4I1

generation of precursor
metabolites and energy 3.03 × 10−5

hsa-miR-6501-5p ATP5E

hsa-miR-4433b-5p CALM3

hsa-miR-143-3p

NDUFB9
NDUFA9
NDUFS1
COX4I1

beta-amyloid metabolic process 0.001017955

hsa-miR-4433b-5p NCSTN

hsa-miR-143-3p PSEN1
BACE1

calcium-mediated signalling 0.001521237

hsa-miR-6501-5p PPP3CA

hsa-miR-4433b-5p CALM3

hsa-miR-143-3p EIF2AK3

membrane protein
ectodomain proteolysis 0.002220614

hsa-miR-143-3p PSEN1
BACE1

hsa-miR-4433b-5p NCSTN

mitochondrial inner membrane 0.005473536 hsa-miR-143-3p

NDUFB9
NDUFA9
PSEN1

NDUFS1
COX4I1

mitochondrial electron transport,
NADH to ubiquinone 0.005473536 hsa-miR-143-3p

NDUFB9
NDUFA9
NDUFS1

NADH dehydrogenase
(ubiquinone) activity 0.01130008 hsa-miR-143-3p

NDUFB9
NDUFA9
NDUFS1

mitochondrial respiratory
chain complex I 0.01133565 hsa-miR-143-3p

NDUFB9
NDUFA9
NDUFS1

amyloid precursor protein
catabolic process 0.0124875

hsa-miR-4433b-5p NCSTN

hsa-miR-143-3p PSEN1

Notch-receptor processing 0.01577116
hsa-miR-4433b-5p NCSTN

hsa-miR-143-3p PSEN1

response to calcium ion 0.01746326
hsa-miR-6501-5p PPP3CA

hsa-miR-4433b-5p CALM3

Although gene GRIN2B was selected as one of the target genes for hsa-miR-143-3p
in relation to AD, it was identified as being involved in neither the pathways, nor in the
GO analysis. Similarly, a family member of GRIN2B, named GRIN2C, was identified in the
KEGG pathway analysis but not in the GO analysis.

5. Discussion

The present study aimed to provide new insight into AD by studying miRNAs in
Malaysians. Although AD is the most common type of dementia and is known to have
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a strong association with the accumulation of Aβ and phosphorylated tau protein, the
mechanisms involved in the pathogenesis of this disease are still uncertain and may be
related to environmental, genetic, cultural, and other factors [2,4].

The five common miRNAs identified (hsa-miR-6501-5p, hsa-miR-1296-5p, hsa-miR-
1307-3p, hsa-miR-4433b-5p, and hsa-miR-143-3p), when the DEMis, using statistical (edgeR)
and machine learning approaches were compared, were downregulated DEMis in edgeR
(Table 1). Downregulated miRNAs often cause the upregulation of target genes, and vice
versa, and as such, this finding may be related to the roles played by the miRNAs in
suppressing mRNA expression [26].

Among these five commonly identified DEMis, only three DEMis (hsa-miR-6501-5p,
hsa-miR-4433b-5p, and hsa-miR-143-3p) were predicted to have target genes related to AD
(see Table 2). Although the role of hsa-miR-6501-5p in AD is ambiguous, two target genes,
ATP5E and PPP3CA, were predicted to be involved in AD-related pathways.

Hsa-miR-4433, of which hsa-miR-4433b-5p is a member, has been identified as regulat-
ing glial cells and neuroimmune systems, indicating the participation of this miRNA in
neurodegenerative disease [40]. Hsa-miR-4433b-5p has also previously been associated
with neurodegenerative diseases such as AD, Parkinson’s disease (PD), and frontotemporal
dementia (FTD) [41]. It is negatively correlated with lipids, where the formation of Aβ is
involved in the cholesterol-metabolism regulation pathway [42]. In relation to AD, GRIN2C,
CALM3, and NCSTN are downstream target genes of hsa-miR-4433b-5p.

Hsa-miR-143-3p has been suggested as a possible AD biomarker in review stud-
ies [43,44]. In our study, hsa-miR-143-3p was downregulated in the plasma of AD patients,
which is consistent with the findings seen in another study using an AD cell-culturing
model [45]. The overexpression of hsa-miR-143-3p has been observed to attenuate tau
phosphorylation, decrease APP levels, and reduce Aβ accumulation [45]. Another AD cell
model, however, found that the inhibition of hsa-miR-143-3p fostered neuronal survival
and indirectly slowed down AD progression, which was an upregulated expression in the
serum of AD patients [43]. That finding was contradictory to that of the present study,
which is probably due to the different sample types used. Several genes that are related to
AD, those being GRIN2B, EIF2AK3, NDUFB9, NDUFA9, PSEN1, MAPK1, NDUFS1, RYR3,
BACE1, and COX4I1, have been identified as the target genes for hsa-miR-143-3p.

The roles and functions of the target genes in AD pathogenesis are summarized in
Table 5.

Table 5. List of target genes and their roles and functions as related to AD.

Gene Roles and Functions as Related to AD

ATP synthase F1 subunit epsilon (ATP5E)

• A mitochondrial-encoded oxidative phosphorylation (OXPHOS) gene [46].
• OXPHOS dysfunction increases the level of reactive oxygen species (ROS)

and oxidative stress, which subsequently leads to neuronal damage in the
AD brain [47].

Protein phosphatase 3 catalytic subunit
alpha (PPP3CA)

• A catalytic subunit of calcineurin, which is involved in the calcium
signalling and inflammatory pathways related to AD [48].

• Dysregulation of PPP3CA was observed in the AD brain through its
involvement with oxidative stress and pathological cellular dysfunction
losses [48,49].

Glutamate Ionotropic Receptor NMDA Type
Subunit 2C (GRIN2C)

• Takes part in glutamate-mediated neurotoxicity, which stimulates the
progressive decline of cognitive function in AD patients [50].

Calmodulin 3 (CALM3) • An indicator for calcium signalling dysfunction, where lower expressions
were detected in AD patients as compared to normal controls [51,52].
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Table 5. Cont.

Gene Roles and Functions as Related to AD

Nicastrin (NCSTN)

• Nicastrin is one of the subunits of γ- secretase that plays an important role
in the amyloidogenic pathways of AD pathogenesis [53].

• The inactivation of NCSSTN restricts Aβ production and subsequently
inhibits neurodegeneration [53,54].

Glutamate Ionotropic Receptor NMDA Type
Subunit 2B (GRIN2B)

• Expresses in the brain regions that are predominantly affected in AD [55].
• Involved in synaptic functioning, where its dysfunction leads to neuronal

damage and cognitive impairment [55].

Eukaryotic translation initiation factor 2
alpha kinase 3 (EIF2AK3)

• Encodes for PERK protein, which is involved in cognitive activities such as
learning and memory [56].

• Overexpression of EIF2AK3 induces tau phosphorylation and promotes
amyloidogenesis [56].

• Interacts with the strongest genetic factor of AD, APOE4 [56,57].

NADH:ubiquinone oxidoreductase subunit
B9 (NDUFB9)

• An OXPHOS gene [46].
• Involved in the oxidative phosphorylation pathway in AD [58].

NADH:ubiquinone oxidoreductase subunit
A9 (NDUFA9)

• An OXPHOS gene [46].
• Involved in mitochondrial failure, leading to Aβ accumulation [59].

Presenilin 1 (PSEN1)

• Most prevalent genetic variant of AD [59,60].
• Encodes protein presenilin 1, which is one of the subunits of γ- secretase

that plays an important role in the amyloidogenic pathway of AD
pathogenesis [60,61].

• Exacerbates the production of Aβ in AD pathogenesis [61].

Mitogen-activated protein kinase 1 (MAPK1)

• Takes part in cellular signal transduction [62].
• Aβ induces the elevation of MAPK1 expression, elevates tau

phosphorylation, exacerbates the amyloidogenic pathway, and aggravates
AD development [62,63].

NADH:ubiquinone oxidoreductase subunit
S1 (NDUFS1)

• An OXPHOS gene [46,64].
• Involved in mitochondrial energy metabolism; however, its main function

remains unknown [64,65].

Ryanodine receptor 3 (RYR3)

• Releases stored calcium ions into the extracellular space [66].
• The deposition of Aβ causes the increase of RYR3 expression [66].
• The upregulation of RYR3 may form a protection for the neurons and

against the impact of Aβ in the late stage of AD [67,68].

β-secretase cleaving enzyme 1 (BACE1)

• Responsible for β-secretase activity in the amyloidogenic pathway, which
initiates the generation of Aβ [69].

• Shows high expression in AD patients as compared to normal controls,
including in the plasma [70].

• The inhibition of BACE1 serves as the target for the study of AD drug
candidates [71].

Cytochrome c oxidase subunit 4I1 (COX4I1)

• Involved in the mitochondrion electron transport chain, a crucial
mechanism in cellular metabolism and the electron transport chain [72].

• The cleavage of APOEε4 inhibits the COX gene, leading to mitochondrial
dysfunction [73].

• COX4I1 showed significant downregulation in AD patients [72].

The roles and functions of the DEMi signatures and their respective target genes
further corroborate the results of the KEGG pathway and GO analysis (see Tables 3 and 4).
Pathways related to oxidative phosphorylation, mitochondrial dysfunction, and calcium-
mediated signalling are particularly highlighted in the present study. The interaction of the
genes is demonstrated in Figure 7.
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Figure 7. KEGG Alzheimer’s disease pathway (hsa05010): The selected target genes are highlighted
by yellow boxes. The genes involved in oxidative phosphorylation, mitochondrial dysfunction, and
the calcium signalling pathways are indicated by purple boxes. The gene GRIN2B was not identified
as being involved in this pathway and is therefore excluded from the figure.

Defects in oxidative phosphorylation, mitochondrial mechanisms, and calcium sig-
nalling are interconnected in a cascade sequence and ultimately lead to neurodegeneration
in AD. Failure in oxidative phosphorylation causes the deregulation of ATP-synthase ac-
tivities in mitochondria and contributes to the elevation of oxidative stress and cell death
of neuronal mechanisms [74,75]. Damage to mitochondrial function has been postulated
as being the fundamental feature of AD pathogenesis. The alteration of mitochondrial
mechanisms causes the impairment of energy metabolism in AD, especially in the brain,
which consumes a high level of energy, and eventually leads to neuronal cell death [76,77].
Dysregulation of calcium homeostasis is closely connected to Aβ in AD. Aβ has been
reported to trigger intracellular calcium deregulation, which probably elevates reactive
oxygen species (ROS), suppresses ATP production in mitochondria, and finally contributes
to neurodegeneration in AD [74,78,79]. Hence, the accumulation of intracellular calcium
leads to neuronal death, and subsequent learning and memory impairment has been
proposed [80].

The major limitation of this study is the sample size, which was unfortunately limited
by budgetary constraints. Difficulties in the persuasion of patients or their caregivers
to consent to the study were also occasionally encountered. With the limitation of the
sample size in this study, it is clear that further investigation is required as there appear
to be important revelations that may, in the future, provide much needed insight into
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AD. Nevertheless, the study has addressed technical concerns regarding the problem of
overfitting in the analysis of a limited sample size through cross-validation in MSVM-RFE.

6. Conclusions

This study presents preliminary findings on the differential miRNA expression in AD
patients against normal controls in Malaysian subjects, providing some insight into the
complex AD pathogenetic pathway. An integrative approach that combined a statistical
approach, edgeR, and a two-step machine learning framework was conducted to support
the analysis of data in this study. Three miRNAs, hsa-miR-6501-5p, hsa-miR-4433b-5p,
and hsa-miR-143-3p, were identified as showing correlations between each other. Their
biological roles in AD were indicated by predicting the target mRNAs of each respective
miRNA, and pathway analysis suggested their relationships in the disease pathogenesis.
Overall, the identified miRNAs, together with the target genes, were identified as being
involved in pathways related to oxidative phosphorylation, mitochondrial dysfunction, and
calcium-mediated signalling. Although the findings are consistent with the literature, they
nonetheless represent the miRNA expression changes within a dataset characterized by a
small sample size, and thus require further validation. This study provides further insight
related to AD pathogenesis from the miRNA perspective, collected from the Malaysian
population, which may potentially help in improving the diagnosis and treatment of this
disease in the future.
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