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Abstract: In the digital age, many sources of textual content are devoted to studying and expressing
many sorts of relationships, including employer–employee, if–then, part–whole, product–producer,
and cause–effect relations/causality. Mining cause–effect relations are a key topic in many NLP
(natural language processing) applications, such as future event prediction, information retrieval,
healthcare, scenario generation, decision making, commerce risk management, question answering,
and adverse drug reaction. Many statistical and non-statistical methods have been developed in
the past to address this topic. Most of them frequently used feature-driven supervised approaches
and hand-crafted linguistic patterns. However, the implicit and ambiguous statement of causation
prevented these methods from achieving great recall and precision. They cover a limited set of implicit
causality and are difficult to extend. In this work, a novel MCKN (multi-column knowledge-oriented
network) is introduced. This model includes various knowledge-oriented channels/columns (KCs),
where each channel integrates prior human knowledge to capture language cues of causation. MCKN
uses unique convolutional word filters (wf) generated automatically using WordNet and FrameNet.
To reduce MCKN’s dimensionality, we use filter selection and clustering approaches. Our model
delivers superior performance on the Alternative Lexicalization (AltLexes) dataset, proving that
MCKN is a simpler and distinctive approach for informal datasets.

Keywords: causality mining; knowledge-oriented channels; multi-level knowledge-oriented network;
relation network; relation classification

1. Introduction

Causality mining is an important method of artificial knowledge discovery that makes
use of unstructured datasets. It now presents a crucial and unsolved challenge for NLP.
Due to the underlying semantics, grammar, increasing vocabularies, and ambiguous na-
ture of natural language text, causality mining remains a difficult job. As a result, it has
prompted a great deal of academic interest in the last 10 years. The development of ML
(machine learning) and DL (deep learning) methods has allowed academics to develop
more productive models. Causality plays a significant role in decision making [1], question
answering [2,3], relationship among everyday activities [4,5], event prediction [6,7], and
generating future scenarios [8]. Causality exits in a wide range of disciplines including
Environmental Sciences [9], Computer Science and Biology [10], Psychology [11,12], Lin-
guistics [13,14], Medicine [15], and Philosophy [16]. Despite some similarities, the terms
“causality” and “correlation” have different meanings. A correlation between two entities,
however, does not always mean that a change in one thing is what caused the values of
the other thing. The causality refers to the relationships between two regularly occurring
events (e1 and e2) or phenomena (P1 and P2), i.e., that the existence of P1 or e1 causes the
occurrence of P2 or e2. However, it is challenging to define the term causation in a broader
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sense [17]. The idea has long been up for debate among philosophers. The sociological
theory dictionary [18] provides the following standard definition:

• When one event or series of related events occurs first and paves the way for the
occurrence of subsequent events. When the initial event (cause) occurs, the second
event (effect) inherently or definitely follows.

• According to the theory of multiple causations, there are numerous possible causes for
a particular event, each of which might be sufficient but not necessary for the effect to
occur or necessary but insufficient for the effect to exist.

Causality mining emphasizes the automatic detection/extraction of causality between
events in the text. As an example, “The 2019 COVID-19 pandemic caused a series of shock-
ing deaths around the world” implies causality between the cause (COVID-19 pandemic)
and the effect (deaths). Numerous methods for establishing causation are listed in the
literature, including causal knowledge and causal discovery [19,20]. However, earlier at-
tempts at causality mining relied on machine learning and rule-based methods. Rule-based
methods, however, require carefully planned linguistic features [13,15,21,22]. Usually, these
methods overlook hidden features and sequences of events. They are only able to mine
domain-dependent explicit causality from phrases, and they do not take into account the
features that point to the presence of dependence relationships. Similar to this, in machine
learning approaches [4,23–25], semantic, syntactic, and lexical features are constructed by
human operators through diligently feature engineering, and causality is automatically
determined from large labeled datasets. The model’s effectiveness in these techniques
depends on the arrangement and regularities of its features. However, the absence of
annotated datasets restricts these methods, which leads to error propagation in the systems.

Currently, the rising demand for the deep neural network such as RNN [26,27],
CNN [28], MCNN [29], Transformer block [30], BERT [31], TinyBERT [32], and Hopfield
neural network (HNN) [33–35] make it possible to perform various processing tasks with-
out complex feature engineering. Deep networks play a key role in encoding the linguistic
nature of words into fixed-size vectors to lessen the dependence on NLP toolkits [36] by
using pre-trained word embedding. A key component of many NLP strategies, pre-trained
word embedding offer a number of advantages over embedding taught from scratch [37].
However, due to the causality ambiguity and implicit nature in web corpora, it is still
beyond the scope of DL techniques. To mine implicit and ambiguous causality in the web
corpora, we proposed a novel deep MCKN model that outperforms the state-of-the-art
in terms of its ability to manage the causality problem. However, most of the current
approaches are strict when it comes to autonomously engineering features in implicit and
ambiguous datasets. As a result, the proposed MCKN is based on a multi-knowledge-
oriented channel by parsing every word in the source segments and connective (AltLex)
and then identifying causation between the segments on both sides of the connective.

According to the proposed paradigm, each channel has a specific input segment or
connective that presents a particular set of KCs. Each channel can incorporate linguis-
tic knowledge of cause-and-effect relationships from world knowledge bases (WordNet,
FrameNet) by capturing important linguistic cues of causality at the segment and connec-
tive level. Each channel uses a variety of convolutional word filters with different window
sizes to create numerous unique feature maps.. Utilizing max pooling, the convolution
results of each filter are further aggregated, and the feature map is mined for the most
promising features that can be used for classification. The usage of “wf”, a pre-trained word
embedding generated automatically by Algorithm 1 from the “Bootstraps” corpus, lowers
the overall dimensionality of the proposed model. After max pooling, the feature maps of
each channel are combined, and dimensionality reduction is used to reduce the dimension-
ality of the combined feature maps. In the end, four object pairs were produced and sent
to RN for further processing since RN needs object pairs for relation reasoning. For the
same purpose, we also apply WordNet categorical approaches, “wf” selection techniques,
FrameNet causal scores, and clustering algorithms for redundant and non-discriminative
features. The goals and contributions of our research are described in the section below.
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Algorithm 1: Automatic word filters’ generation

Step 1: Find all the lexical units of 50 causal semantic frames from
FrameNet and group them by the number of words (max: 64).

lu1 = {C1, C2, . . . , Cn1}
lu2 = {[C11, C12], [C21, C22], . . . , [Cn21, Cn22]}
lu3 =

{
[C11, C12, C13], [C21, C22, C23], . . . ,

[
Cn31, Cn32, Cn33

]}
lu4 =

{
[C11, C12, C13, C14], [C21, C22, C23, C24], . . . ,

[
Cn41, Cn42, Cn43, Cn44

]}
lu5 =

{
[C11, C12, C13, C14, C15], [C21, C22, C23, C24, C25], . . . ,

[
Cn51, Cn52, Cn53, Cn54, Cn55

]}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lu64 =

{
[C11, C12, C13, C14, C15, C16, . . . , C164], [C21, C22, C23, C24, C25, C26, . . . , C264], . . . ,[

Cn641, Cn642, Cn643, Cn644, Cn645, Cn646, . . . , Cn6464

] }
Step 2 : Extend lexical units o f lu1 using WordNet

for word in lu1 do
for synset in WordNet synsets o f word d

if
{

“effect”, “cause”, “responsible”, “causation”, “result”,
“reason”, “because”, “leadto”, “dueto”

}
in WordNet gloss

synet then
for lemma in WordNet lemmas o f synet do

if length of lemma == 1 then
lu1 = lu1 + lemma

else if length of lemma == 2 then
lu2 = lu2 + lemma

else if length of lemma == 3 then
lu3 = lu3 + lemma

else if length of lemma == 4 then
lu4 = lu4 + lemma

else if length of lemma == 5 then
lu5 = lu5 + lemma

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . then

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . then
else if length of lemma == 64 then

lu64 = lu64 + lemma
end if

end for
end if

end for
end for

Step 3 : Generate KC convolutional weights.
for each lexical unit [c1, . . . , ci]in luj, (j = 1, 2, 3, 4, 5, 6, 7, 8, . . . , 64) do

the corresponding f ilter weights is :
f = [f1, . . . , fk]

T

where fk ∈ Re is the word embedding o f ci f ound by looking
up the word embedding table Wwrd ∈ Re×|v| and k is the
convolutional window size.

end for

• This study is unique in that it analyzes sentences for causality leveraging web corpora,
which include noisier, larger, and more muddled data.

• The suggested model uniqueness is its first-ever use of multiple KCs and a novel word
filter technique, which significantly decreased the model dimensionality.

• The proposed model addresses implicit and ambiguous intra-sentence causality using
segment and connective levels features.

• This is the first attempt to train in all channels by using convolutional “wf” rather than
a data-oriented pre-defined convolutional filter.
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• Extensive experiments on publicly available datasets have shown that the MCKN model
performs much better than many baseline methods and text classification techniques.

The remainder of this article is structured as follows. Section 2 presents the literature
review. Section 3 details the suggested strategy. The entire experimental process is covered
in detail in Section 4. Finally, Section 5 summarizes our conclusion.

2. Literature Review

In terms of causality mining, previous research has mainly been divided into ML and
DL methods. The performance gain of DL over ML techniques is significant. ML approaches
normally require sophisticated feature engineering. For ML approaches, Ref. [38] uses a
dependency structure to derive causation event pairs. In [39], causal connectives were
used to govern how lexico-syntactic patterns and causal connectives interacted. These
connectives were obtained by computing the similarity of sentence syntax-dependent
structures through the Restricted Hidden Nave Bayes (RHNB) classifier. In [22], a related
monolingual corpus of simple and English Wikipedia PDTB is utilized to integrate world
knowledge (WordNet, VerbNet, and FrameNet) to evaluate the correlations across words
and segments though hardly handling those terms that never occur in the learning stage.
In [40], conditional text generation networks are proposed to craft possible causes and
effects for any free-form textual event. They focus on explicit relations within individual
sentences by linking one part of a sentence to another and using generated patterns instead
of sentence-level human annotation.

In contrast to ML approaches, models in deep learning techniques automatically
learn and extract useful features. In NLP, such models use pre-trained word embedding
(Google News, GloVe-6B, GloVe-840B, and Pre-trained Wiki), which play a significant
role in encoding syntactic and semantic properties of words into fixed-size vectors to
reduce the dependency on NLP toolkits [36]. In NLP, two commonly used models are
RNNs and CNNs. CNNs and RNNs [41] have been applied to document and paraphrase
classification [42–44] and relation extraction/classification [36,45]. In [46], a variant of CNN,
multi-column convolutional neural networks (MCNN) is presented to handle multiple
features in the question answering (QA) of candidate answers. An analogue of MCNNs for
relational classification is proposed in [47], as the piecewise max-pooling network. In [29],
using external BK (background knowledge), a well-known model of MCNNs based on [48]
is introduced. By utilizing question and response sequences [8], the MCNN model enriches
causality attention, which is in contrast with [29].

In [49], the FFNN (feed-forward neural network) is proposed to augment the feature
set to identify causality by computing the distance among events triggering words and
related words in phrases. The work of [50] is closely related [49] by using a novel FFNN
with a novel contextual word extension method. They use BK as an event context word
extension to extract causal network structures from news articles to classify event causality.
This is a challenging job as tweets often consist of a highly informal, unstructured nature,
and lack contextual knowledge. In [51], a TCDF (temporal causal discovery framework) is
presented to obtain a temporal causal graph by mining cause–effect relationship in time
series datasets. They applied a multi-attention-based CNN with a causal support stage.
BERT is a deep pre-trained language representation system using masked and Transformer
blocks, which produced improved results in various NLP tasks, driven by transfer learning
in computer vision.

In [26], a novel knowledge-oriented CNN (K-CNN) is presented for causal relations
recognition, which combines a data-oriented channel (DOC) and a knowledge-oriented
channel (KOC). The DOC acquires major features of causal relationships in the source data,
while KOC adds human past knowledge to retain the linguistic clues of causal relationships.
KOC automatically generates convolutional filters from FrameNet and WordNet without
the requirement to train a classifier with a lot of data. Such filters are causal word embed-
ding. In contrast to statistical, non-statistical, and single-level DL models, deep multi-level
models exhibit satisfactory performance. However, they hardly incorporate implicit and
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ambiguous causality. In [52], a graph reasoning technique based on document-level context
is proposed to recognize event causality. In [53], a SCITE (self-attentive Bi-LSTM-CRF
wIth Transferred Embedding) method is presented and formulates causality as a sequence
tagging by mining causal event pairs and their relationship. Moreover, they use multi-head
self-attention to enhance their performance [30].

In [54], a novel approach is proposed that exploits the advantages of neural model-
based approaches and feature engineering. The latest work [55] uses a head-to-tail entity
annotation method that expresses the entire semantics of complex cause–effect relation-
ships and visibly finds entity boundaries in source sentences. They employ entity location
perception along with RPA-GCNs (Relation Position and Attention-graph Convolutional
Networks), GATs (Graph Attention Networks), and other techniques. In [56], a generative
approach for extracting cause–effect relationships via encoder–decoder and pointer net-
works. They enhanced the performance but required more time to produce the required
result. In comparison to statistical and non-statistical techniques, DL approaches with pre-
trained word embedding are more fruitful. However, they work on a huge training dataset
that covers all causality expressions in the source text, which is somewhat impossible due to
the diversity and ambiguity of phrases and words in the dataset. However, the ambiguous
and implicit nature of causality is a challenging task. Our MCKN is motivated and inspired
by [26,29,31,57] for mining implicit and ambiguous causality sentences from publically
available web corpora. To begin, keep in mind that previous methods for leveraging MC-
NNs for NLP applications used multiple CNN channels with pre-defined convolutional
filters for training. Our inspiration is a novel approach using the concept of the MCNN
approach. Contrary to MCNNs, the proposed approach is based on knowledge-oriented
channels by using novel convolutional word filters generated by Algorithm 1. Table 1
provides a more concise description of the reviewed material.

Table 1. A list of related techniques that have been examined.

References Description Features Benefits Drawbacks

[38]
Using a supervised
approach for
extracting causality

Using event 1 cause, event
2 patterns

First attempt toward
web corpus

Focused on explicit
domain- specific causality

[22] Mining AltLexes of
causal discourse relations

Using Explicit
discourse connectives

Target web coups and
creation of
AltLexes dataset

Working with a large
feature vector set typically
slows down the processing
of the model

[29] An approach based on
MCNNs [48] Using prior BK features

Targeted implicit
and ambiguous
causality

Japanese dataset
was emphasized

[39] RHNB classifier RHNB model
based patterns

Combine lexi-cosyntactic
pattern and causality
connective in one place

Target large features that
typically slow down
model performance

[40] Conditional text
generation network Using generated patterns Bypass human effort

Emphasized explicit
relationships within
individual sentences

[8] Attention based MCNNs MCNNs + Attention Inspiration toward
causality attention

For QA using
causality attention

[49]

Computing the distance
among events triggering
words and related words
in phrases events

FFNN based They targeted implicit and
ambiguous causalities Over-fitting problem
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Table 1. Cont.

References Description Features Benefits Drawbacks

[50]
A novel model with an
event context word
extension mechanism

FFNN + BK
Targeted implicit
causalities social
media tweets

Results in info loss due to
opinionated posts

[51] TCDF model

Considered
multi-attention-based
CNN with a causal
support stage

Centred on implicit
observational time
series data

Executes rather worse on
short time series

[26] A novel K-CNN for
causality extraction Combined DOC and KOC. Focused on

implicit causality
Over-fitting
problem

[53] SCITE with multi-head
self-attention [30]

They formulate causality as
a sequence tagging X X

[54] A deep neural based
MCDN approach

Using word and segment
level information

Focused on implicit
and ambiguous

They only looked at
causality within sentences
and ignored
multi-level sentences

[56] Generative approach
Using encoder–decoder
and pointer networks to
extract causality

Focused on
implicit causality Limited to financial dataset

3. Proposed Approach

This section explores the MCKN model. This model consists of three channels/columns,
where each channel deals with its respective AltLex/connective (L), segments after AltLex
(AL), and segments before AltLex (BL) in the target sentence. MCKN mainly targeted
implicit and ambiguous causalities. The MCKN uses convolutional word filters instead of
pre-trained convolutional filters. In Figure 1, we explored the architecture of the MCKN
model, including (i) the first column dealing with the BL (e1) part of the input sentence,
(ii) the second column dealing with the L part of the input sentence, and (iii) the third
column dealing with the AL (e2) part of the input sentence. More details about Figure 1 are
covered in Section 3.4.

3.1. Linguistics Background of Source Corpus

This part discusses the linguistic background of causality and the AltLexes (https:
//github.com/chridey/altlex, accessed on 3 May 2021) dataset. About 12% of the Pine Dis-
course Tree Bank (PDTB) is labeled as causal, and around 26% is implicit [58]. In addition,
there exists another type of implicit relation called “AltLex”, which represents causality
and is marked as an open and infinite class of causality. The generalization of “AltLex”
is extended with an open class of markers [22]. Some examples in the “AltLexes” dataset
are not present in the explicit relations of PDTB including ambiguous causal verbs, e.g.,
“COVID-19 made many countries affected” and partial prepositional phrases, e.g., “He has
made aircraft with the idea of a new deep neural technology”. In the first example, the
term “made” has numerous meanings and is employed to express causation. However, in
the second example, the causal relationship expression is not clear. According to our analy-
sis, the parallel data constructed has 1164 causal connectives and about 7627 non-causal
connections. Furthermore, their intersection has 155 types of connectives, which are hybrid.
It shows their reliance on a causal set of 12.6%, and reliance on non-causal sets is 1.8% [22].
Several implicit and heterogeneous relationships are discovered as a result of the analysis.
In this case, prior approaches have several demerits to making an expert system.

https://github.com/chridey/altlex
https://github.com/chridey/altlex
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Figure 1. Applied MCKN architecture. This contains three columns using convolutional word filters:
the first column processes the BL (e1) part of the input sentence, the second column deals with the L
part of the input sentence, and the third column targets the AL (e2) part of the input sentence.

3.2. Input Sentence Representations

The input sentence (N) contains ‘n’ tokens, N = {n1, n2, . . . , ni−1, ni}. Where ‘ni’ is the
filter token in the sentence at ‘i’ position. Further, each sentence is formatted to L, AL, and
BL. The purpose is to generate sentence level ‘y’ predication, where ‘y’ is the input sentence
label shown in Equation (1). For the parallel corpus feature in our model, we employ a pair
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of simple and English Wikipedia sentences, although it still only takes a single sentence as
input [43].

y =

{
1, |Causal sentence
0, |Not− Causal sentence

(1)

Motivated by [30], each token/word in the input sentence can be denoted by sum-
ming the corresponding token embedding, position embedding, and segment embedding.
Likewise, the early work segments embedded here indicate segments L, BL, and AL in
each sentence. In Figure 2, first of all, the “word2vec toolkit” is used for pre-training
of word embedding with dimension dword, positional embedding with dimension dpos,
and segment embedding with dimension dseg for linguistic information. Lastly, summing
all three embeddings results in new representation Ń = {z1, z2, z3 . . . , zn−1, zn}, where
zn ∈ Rd for token ni, and keep equal d = dword = dpos = dseg dimensions of the word
embedding, position embedding, and segment embedding. Therefore, the Ń representation
of input sentences could bring fundamental features to complicated networks.
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create the input embedding.

3.3. Relation Network

In visual question answering (V-QA) [59], the relation network (RN) plays a very
significant role. It can be efficiently integrated with DL approaches including CNNs
(DeepCNN, knowledge CNN, and MCNN) and RNN (GRU, bi-GRU, LSTM, bi-LSTM) for
performance enhancement. The original RN, however, only performs single-step inference,
such as A→ B rather than A→ B→ C . For those tasks which need multistep relational
reasoning, Ref. [60] introduced RNNs that work on graph representations of entities..
Furthermore, Ref. [61] made memory networks with RNs capable of complicated reasoning,
which changed the computational complexity from nonlinear to linear. Though, most jobs
are only used for text and V-QA. Similarly, we consider RN in the proposed model, which
takes input object pairs from KCs and makes effective relational reasoning.

3.4. About Knowledge-Oriented Channel

Encouraged by [26], we have applied three different KCs to recognize keywords, cue
words, and cue phrases of causality in connective and segment levels of the input sentence.
For convolution operation, we used “wf” in each channel, which is a variant of the convo-
lutional filter. It is automatically generated from knowledge bases (WordNet, FrameNet)
using the linguistic knowledge of causality. Compared with the CNN convolutional filters,
the “wf” more precisely represents causal relationships. The weights of “wf” are the pre-
trained word embedding, which can be used without additional training. Using the “wf”
approach will significantly drop the number of pre-parameters of the model and reduce
the over-fitting issue in the small data corpus. Figure 1 depicts the proposed network’s
architecture, which consists of three channels. Each channel has its specific input segment
format including segments BL, AL, and connective L. The “L” is usually used to represent
the cue phrases, cue words, and keywords for cause–effect relations.
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Examples of such connectives include because, as result, lead to, resulted, due to,
and trigger. These words in the connectives part away from the BL and AL segments and
may affect the performance of a network. In the past, KCs only paid attention to the “L”
part of the input sentence (between event e1 and event e2) because it usually represents
causality signals. However, in the proposed model, each segment and connective has its
own KCs. To decrease the morphological variations of tokens in each segment, we used
WordNet tokens to make it consistent and mark each word in its lowercase by using the
lemmatizer function, and further, every word is converted into a precise input format as
shown in Figure 2. The single knowledge-oriented channel of the proposed model is shown
in Figure 3. In the input format, we set the maximum size of L as 8 words, and each BL
and AL to be 64 words. Sentences with fewer than 8 words in the “L” level and fewer than
64 words in the segments level are padded with padding characters with zero embedding
because CNN works with a fixed input size.
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Word Filters Archive Generation

Word filters are the embedding of causal words, cue words, and cue phrases that are
extracted from WordNet and FrameNet knowledge bases. Among them, WordNet is a
huge database of lexical that categorizes English words into sets of synonyms known as
synsets to denote diverse concepts [62]. To mimic their semantic and lexical relationships,
all synsets are linked in a hierarchical format. The meaning of every synset is given by
a gloss with some examples [26], where example 1 describes the WordNet elements for
the word “cause”, which belongs to specific synsets. Similar to this, FrameNet is a lexical
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resource built on the frame semantic theory; it organizes English phrases and words into
higher-level semantic frames exploring a variety of ideas [63]. Each frame is a conceptual
arrangement that includes a discussion of the type of event, the relation, or the object with
a conceptual definition; the participants in the frame are called frame elements, words
that frequently appear in the frame (referred to as lexical units (Lu)), and the relationship
to other frames. The FrameNet components of the “Causation” frame are described in
Example 2 [26].

In the proposed work, 50 causal frames (CF) are identified from FrameNet including
triggering, response, causation, causation_scenario, reason, and explaining the_facts, and
also 44 frames starting with the word cause. The “Lu” involved in this CF is the important
clues and regularly seemed words that raise causality in the text, hence these “Lu” can
be preserved much like cue phrases, clue words, and keywords of causality. To further
extend these “Lu” to cover causal words more widely, we automatically construct a bank
of causal words. These causal words and word embedding are used to find the weights
of convolutional “wf”. Automatically generating “wf” is accomplished by utilizing the
improved Algorithm 1 [26]. Such “wf” more efficiently represents keywords, clue words,
and cue phrases of causality. These “wf” are more effective than the convolutional filter
learned from training. Moreover, the weights of these “wf” are static values.

Finally, about 850 uni-grams, 240 bi-gram, and 20 tri-gram “wf” are created. During
convolutional, “wf” is convolved with n-grams to obtain the important linguistic clues of
causal relationships in the input text, resulting in a sequence of similarity scores. The pro-
posed convolutional method is capable to capture semantically related causal words other
than those that exist in the “wf” bank. We create several different filters for the L part of the
input sentence, where each filter size ranges from 1 to 8 filter words. Similarly, we create
different filters for AL and BL; each filter size ranges from 1 to 64 filter words. The convolu-
tional “wf” for every “Lu” is formatted as [c1, c2, . . . , ci] in Luj, (j = 1, 2, 3, 4, 5, 6, 7, 8 . . . 64),
the weights of corresponding ‘wf’ are f = [ f1, f2, . . . , fk]

T . Where fk ∈ Re is the word
embedding of ci discovered by looking the word embedding table Wwrd ∈ Re×|v|. Further,
the f = [ f1, f2, . . . , fk]

T convolved with input text matrix embk = {w1, w2, . . . , wn1}, where
k is the convolutional window sizes (uni-gram, bi-gram, and n-gram). We follow [26],
and modify the convolutional operation of each KCs so that each ‘wf’ becomes a future
map m =

[
m1, m2, . . . , mn1,−k+1

]
, where mi signifies the similarity among the “wf” and the

k-gram wkgram = [w1, . . . , wi+k−1]
T in input sentence. The improved convolutional method

is represented by Equation (2).

mi =

(
k

∑
j

f T
j wi+j−1 + b

)
/k (2)

In Equation (2), “b” represents the bias term. Rather than using a non-linear function,
we divided the CNN convolutional results by the window size k. By limiting f j and wi+j−1
(word embedding) to unit vectors, the resultant value of mi becomes the cosine similarity
between f and wkgram. The goal of cosine similarity in feature maps is to achieve equal
importance of “wf” with different lengths by creating the same scale for all convolutional
window sizes, while the conventional method will obtain a higher number for the wider
window size. The most specific feature map is generated using max-pooling for each filter
to further aggregate the convolutional results. The pooling procedure for each feature map
is shown in Equation (3). The largest cosine similarity provides strong cues for the presence
of cue phrases and keywords in the text, which is why the feature map maximum value
is obtained.

p = max
{

m1, m2, m3, . . . , mn1−k+1
}

(3)

About 900 “wf” are produced by Algorithm 1, which is thought to be highly dimen-
sional and has limited training data. These “wf” for causality mining provide a large
number of features, some of which may be redundant and irrelevant. In order to enhance
the performance of the model, we used “wf” clustering and selection [26].
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3.5. Segments and Connective Level Processing

The proposed model presents a novel method to mine causal relationships within
a single sentence at the connective and segment level using 3 KCs and RN. The input
connective L and segments BL and AL can be denoted as ZL ∈ RJL×d , ZBL ∈ RJBL×d , and
ZAL ∈ RJAL×d input format. Where, JBL, JAL, and JL are the token lengths in each segment
and connective. Each channel is responsible for parsing ZBL, ZL, and ZAL into a set of
objects. Unlike [26,58], MCKN convolves them through a 1D convolutional layer into
different window sizes for “k” feature maps of size JBL×1, JL×1, and JAL×1, where “k” is the
sum of “wf”. After convolution, each segment’s and connective feature maps are rescaled
into a k-dimensional vector via a max-pooling layer, and dimensionality reduction is then
implemented by further reducing the dimensionality. Finally, we create a set of objects in
Equation (4). {

oBL, oL, oAL
}
∈ Rk (4)

In addition, because RN works with objects, we created four object pairs in Equation (5).

ObjectPair =

∣∣∣∣∣∣∣∣
oBL; oL

oL; oAL

oBL; oAL

oAL; oBL

∣∣∣∣∣∣∣∣ (5)

The “;” is now an operator that concatenates object feature vectors. We can simplify it
using the notation in Equation (6), where ‘∗’ represents a pair-wise operation. For causality
candidates, BL ∗ L and L ∗ AL determine the relationship between the cause-effect event
and L, while BL ∗ AL and AL ∗ BL infer the direction of causality.

oBL ∗ L =
[
oBL; oL

]
oL ∗ AL =

[
oL; oAL

]
oBL ∗ AL =

[
oBL; oAL

]
oAL ∗ BL =

[
oAL; oBL

]
(6)

As a result, the simplified form of the object is represented by the Equation (7).

Op =

∣∣∣∣∣∣∣∣
oBL ∗ L
oL ∗AL
oBL ∗AL
oAL ∗ BL

∣∣∣∣∣∣∣∣ (7)

Here Op ∈ R4× (2k + 2dg) is the matrix representation of object pairs. More generally
speaking, by changing the architecture in a mathematical formulation, we were able to
derive the final representation (Final_rep ε R4dg) at the segment and connective levels in
Equation (8).

Final_rep = ƒF

(
∑ gθ(Op)

)
(8)

At the segments and connective level, MCKN transforms segments and connectives
into object pairs and then integrates these object pairs for pair-wise inference to discover
the relationship between segments and connectives.

3.6. Causality Identification

The applied model discovers causality in each sentence by passing “Final_rep” to FFN.
We used a 2-layer FFN involving a “dg” unit with a ReLU function followed by SoftMax
for prediction, which is expressed mathematically in Equation (9).

FFN(Final_rep) = SoftMax(ReLU(Final_rep (W1 + b1)W2 + b2) (9)

There is rich discrimination between causal and non-causal samples in the AltLexes
dataset. By using a Cross-Entropy (CE) loss function, the apparent inequality of causal and
non-causal examples in the source dataset can lead to unsatisfactory outcomes. Since each
connective and segments in the target sentence contain an ambiguous and heterogeneous
connective (make, made, create, construct, etc.), effect keyword (disable, lost, miss, destruc-
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tion, company, died, etc.), and causal keywords (lack, accident, fire, tupan, tsunami, flood,
earth quick, blast, etc.), it is hard to detect in each sentence.

L f l =
{
−a(1− ŷ)β y = 1
−a(1− ŷ)β y = 0

(10)

As a result, it is required to give causal and non-causal losses a soft weight, enabling
the model to focus more on ambiguous, implicit, and heterogeneous samples. Inspired
by [54,64], we consider the focal loss into a progress loss function [65], by adding a modu-
lating factor to the CE loss (1− ŷ)β, with a tunable hyperparameter β ≥ 0. In Equation (10),
the focal loss Ln is formulated as the objective function, with ‘α’ denoting the balance
weight hyperparameter.

4. Experimental Settings

In this part, we explore the MCKN model at the sentence level, which combines three
knowledge-oriented channels for causality mining.

4.1. Datasets

We used the “AltLexes” web corpus [22] in our proposed technique, which consisted of
86,896 training samples, of which about 7606 are causal, and 79,290 are non-causal samples,
a bootstrapped set of 100,744 samples, of which about 12,534 are causal and 88,240 are
non-causal. The bootstrapped dataset is produced using new AltLexes to bootstrap to find
more examples, which increases the causal samples by about 70 percent. The Dev set of
488 samples, of which about 181 are causal and 307 are non-causal, and the test set contains
611 samples, of which about 315 are causal and 296 are non-causal. We train MCKN on the
bootstrapped and training sets separately and fine-tune them on the Dev set. Finally, the
model is tested using the test set.

4.2. Hyperparameters and Evaluation Metrices

Hyperparameter: In the implementations, we set the initial learning rate of the pro-
posed model as 1× 10−2.5, and gradually compress after the F1 score has stopped growing
for more than 6 epochs. During training, we set the batch size to 32, the epoch size is 15,
and apply L2 regularization to deal with the over-fitting issues with a 0.5 dropout rate.
We set the regularization coefficient to 3× 10−5. For focal loss, we used α = 0.80 and
β = 4.5. For optimization purposes, Adam optimizer [66] is used with β1 = 0.9, β2 = 0.999,
∈ = 1× 10−8 hyperparamenter and clipped gradients norm. We used k = 130 for the
number of kernel/wf of various window sizes ranging from 1 to 8 at the “L” level and 1
to 64 at each of the “AL” and “BL” levels. In Table 2, we summarize all hyperparameters,
which provides a more convenient approach for the reader.

Table 2. Hyperparameters and their values used by proposed work.

S.No. Hyper Parameters Values

1. Learning Rate 1 × 10−2.5

2. Batch Size 32

3. Epoch Size 15

4. Regulation function L2

5. Dropout Rate 0.5

6. Regularization Coefficient 3 × 10−5

7. Focal loss α = 0.80, β = 4.5

8. Adam Optimizer β1 = 0.9, β1 = 0.999, ε = 1 × 10−8

9. Kernel/Word filter Size K = 130
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Evaluation Metrics: We compare MCKN with the baseline techniques in Table 3 using
a variety of evaluation metrics, such as precision, recall, and F1-score. The prediction
ability of algorithms is measured by their precision (Pr). It illustrates how many positive
predictions are achieved and how accurate predictions are made by individuals who make
them. The ‘Pr’ is calculated in Equation (11). Among these, true positive (TP) is the
number of correctly classified positive cases, and true negative (TN) is the proportion of
correctly classified negative events. False positive (FP) refers to the number of positively
classed instances that were misclassified, while false negative (FN) refers to the number of
positively classified instances that were incorrectly classified.

Pr =
TP

TP + FP
(11)

Table 3. Performance comparison of MCKN with state-of-the-art approaches.

Models
Training Dataset Bootstrapped Dataset

Precision Recall F1-Score Precision Recall F1-Score

K-CNN [26] 80.57 43.17 53.54 78.45 73.97 76.14

DPCNN [57] 69.06 58.10 63.10 79.66 74.60 77.05

BERT-base [31] 68.97 63.49 66.12 75.99 85.40 80.42

MCNN [29] 85.13 83.70 83.90 80.46 90.15 87.51

MCKN 90.55 83.22 86.81 93.13 91.79 90.15

F-score (F1) is a crucial need for simulating the situation with the highest probability of
obtaining the correct answer and explicitly demonstrating the algorithm’s ability. Moreover,
F1-score is defined as a harmonic mean of sensitivity and precision. The F value is calculated
in Equation (12).

F =
2TP

2TP + FP + FN
(12)

Recall (Rc) or sensitivity examines how well a case accurately yields a positive outcome
for an instance that has an explicit condition. Equation (13) calculates the value of Rc.

Rc =
TP

TP + FP
(13)

4.3. Baseline Methods

In this section, various baseline approaches are listed, including MCNN, K-CNN,
DPCNN, and BERT-base. DPCNN [57] is a word-level deep neural network for topic
categorization and sentiment classification. It can create downsampling without increasing
the number of feature maps, which can efficiently represent long-range relationships. A
deep pre-trained language representation system called BERT-base [31] is built on masked
and Transformer blocks, and it has improved a number of NLP applications, encouraged
by transfer learning from the computer vision sector. The next notable work in this field is
MCNN [29], a multi-column CNN with BK that integrates event causality candidates and
their contexts with relative web corpus. K-CNN [26] is the next novel work, which combines
a data-oriented network with a knowledge-oriented network by using convolutional “wf”,
thereby reducing the overall dimension of the model.

4.4. Results

Before releasing the results, we run each reproducible experiment six times for causal-
ity extraction using a train/bootstrapped/Dev test split described in Section 4.1. Then, we
report the average result along with its standard deviation. Table 3 compares MCKN’s
performance with state-of-the-art methods employing precision, recall, and F1-score in the
test set, which is a randomly selected subset of both the train and bootstrapped datasets.
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Our model performs, in particular, by learning distinct semantic representations of causa-
tion at the connective and segmental levels. In the train dataset, compared with the best
state-of-the-art feature engineering methods [26,29,31,57], MCKN enhanced the maximum
precision by 21.58% and a minimum of 5.42%, F1-score recorded by a maximum of 33.27%
and a minimum of 2.91%, and similarly, a low recall rate is recorded 0.48%, since it em-
phasizes on the interchangeability of connectives, whereas parallel examples frequently
contain the same connectives that might be evaluated as false negatives.

It is amazing that the proposed work on the bootstrapped train dataset enhances
the precision up to a maximum of 17.14% and a minimum of 12.67%, the F1 score of a
maximum of 14.01% and a minimum of 2.64%. They recorded a maximum of 17.82% recall
and a minimum of 1.64% because the bootstrapped train dataset has many more samples
of the causal signal compared to the training train dataset. The suggested model uses a
novel combination of KCs with “wf,” RN, and FFNN, as well as a unique combination of
a different hyperparameter employed in the training stage, to achieve the best precision,
recall, and F1-Score.

Contrary to CNN techniques such as K-CNN [26], DPCNN [57], BERT-base [31],
and MCNN [29] with a pre-trained convolutional filter mechanism, the usefulness of the
MCKN model is the uses of novel KCs with “wf”. To the best of my knowledge, this is
the first attempt to mine implicit causality in the web corpus using all KC channels with
the unique “wf.” Since “wf” may effectively target the causal relationships in the target
sentence by effectively decreasing the number of parameters of the model. The proposed
model performs satisfactorily when applied to single-sentence texts, but it is challenging
to apply to texts with multiple sentences. The suggested model’s successful findings
demonstrate that deep knowledge-oriented convolutional techniques are more effective
than conventional rule-based, statistical, and convolutional techniques in this area. Contrary
to text classification, classifying causality is a challenging task that necessitates strong multi-
level relational reasoning abilities. Figure 4 shows the relationship between epochs and their
performance on the train dataset, while Figure 5 demonstrates the relationship between
model performance and the number of epochs in the bootstrapped train dataset.
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4.5. Analysis
4.5.1. Effect of Multi-Column KNN

The validation matrices for the “AltLexes” dataset are shown in Table 3. We discovered
from the conventional KNN models that the two-column KNN performs slightly better
than the single-column KNN because it makes use of multiple convolutional window
sizes, which can capture more information on causality from various n-grams. Similarly,
by adding more information, the three-column KNN is better than two-column KNN.
Contrary to K-CNN [26], we present three KCs together with RN. The development of
the experimental results proves that multi-column KNN with convolutional “wf” can
more effectively extract causality. The performance advantage of multi-column KNN over
multi-column conventional CNN can be attributed to the following evidence:

• Compared with randomly initialized convolutional filters, the “wf” has an extra
precise illustration and pays more extensive attention to the cue phrases, cue terms,
and keywords of causality; this makes it possible for the model to more effectively
extract linguistic cues that indicate causation in a sentence.

• The use of multi-channel KNN keeps the model from losing key causality properties.
By utilizing already existing knowledge bases, the KCs are able to identify substantial
language cues of causation at the connectives and segment level of the target sentences.

• In contrast to convolutional CNNs, KCs have a significantly lower pre-parameter count.
This assists in resolving the issue of excessive over-fitting in a limited training dataset.

4.5.2. Strength of the MCKN

To understand more information about MCKN, we used both Areas under the Precision–
Recall Curve (AUPRC) and Areas under the Receiver Operator Curve (AUROC) to estimate
the specificity and sensitivity of the model. We evaluated the impact and robustness of
different word embedding on performance. In the past, most tasks were based on a one-hot
encoding and word-piece algorithm, different from pre-trained word embedding (GloVe-
840B, Pre-trained Wiki, and Google News), used by our model. Table 4 shows pre-trained
word embeddings with AUPRC and AUPOC scores, demonstrating the effectiveness of the
proposed model.

Our drawing in Figure 6 more effectively illustrates the analysis of the pre-training
words. In Figure 6, y-axis signifies the score of the Precision-Recall Curve (AUPRC), Areas
under the Receiver Operator Curve (AUROC), and F-Score to estimate the specificity and
sensitivity of the model.
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Table 4. Performance analysis of pre-trained-word embedding.

Types AUROC AUPRC F1-Score

GloVe-840B 87.48 88.58 83.50

Pre-trained Wiki 85.32 84.11 85.23

Google News 86.30 87.37 83.90

Average 86.80 87.29 84.90
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4.5.3. Ablation Study

Exploring MCKN and its contributions is very important to readers. In this section,
we show the ablation evaluation through different training modules of the proposed model.
Table 5 describes the results of the different modules of MCKN on the two datasets. In the
training dataset, the single-column KNN + RN module reaches the precision (p) value of
78.74, the recall (R) value is 76.56, and an F1 Score (F-1) is 73.85. The two-column KNN+RN
has enhanced the p value by 4.38, the R-value by 2.77, and the F-1 value by 7.54; further, the
three-column KNN + RN module enhanced the p value of 7.43, the R-value of 3.89, and
the F-1 value of 5.42 compared to two-column KNN + RN. Similarly, in the bootstrapped
dataset, the single-column KNN + RN module reached a p value of 79.23, an R-value of
82.11, and an F-1 of 80.21. In the two-column KNN + RN, the p value is enhanced by 7.96,
the R-value by 2.11, and the F-1 value by 5.6, of which the three-column KNN + RN module
further enhanced the p value of 5.94, the R-value 7.57, and the F-1 value 4.34 compared to
two-column KNN + RN. Based on the above analysis, compared with the single KNN + RN
and two-column KNN + RN, the three-column KNN + RN (MCKN) shows significant
results, because the three-column KNN + RN uses the combined features and knowledge
of all channels. This demonstrates how multi-column KNNs and RN significantly boosted
the model’s overall performance.
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Table 5. Ablation study of the proposed work.

Datasets Metrics Single-Column
KNN + RN

Two-Column
KNN + RN

Three-Column
KNN + RN

Training Dataset
P 78.74 83.12 90.55

R 76.56 79.33 83.22

F-1 73.85 81.39 86.81

Bootstrapped Dataset
P 79.23 87.19 93.13

R 82.11 84.22 91.79

F-1 80.21 85.81 90.15

5. Conclusions

The novelty of this work is how to recognize ambiguous and implicit causality in the
informal “AltLexes” web corpus. When compared to online corpora, the majority of earlier
works used more formal newspaper, historical stories, and book corpora that incorporated
clear causation. They frequently employ feature-driven supervised techniques to target
explicit causality and overlook the implicit and ambiguous causation in the web corpus.
In this work, a novel MCKN model is proposed that combines more than one KC and is
integrated with RN for causality extraction in the unstructured web corpus. MCKN deals
with each sentence at the connective and segment level for causal relational reasoning. The
proposal employs a new convolutional word filter approach that drastically reduces the
number of model parameters. Our model demonstrates the power of inferring compli-
cated causation at the sentence level, in contrast to causality and document classification
algorithms. Although, implicit and ambiguous causality and their event pair detection
across sentences/multi-sentence text is still a demanding problem. For such task in future
development, it is imperative to employ this model with more advanced features and a
standardized dataset.
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