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Abstract: After around 50 years of development, the key substance known as polyethylene has been
extremely influential in a variety of industries. This paper investigates how polyethylene materials have
been used in the domains of water, packaging, and medicine to advance contemporary society in order
to comprehend the physical and chemical alterations that polyethylene undergoes after being subjected
to long-term environmental variables (e.g., temperature, light, pressure, microbiological factors, etc.).
For the safe operation of polyethylene materials, it has always been of the utmost importance to evaluate
polyethylene’s service life effectively. This paper reviews some of the most common literature journals
on the influence of environmental factors on the degradation process of polyethylene materials and
describes methods for predicting the lifetime of degradable polyethylene materials using accelerated
aging tests. The Arrhenius equation, the Ozawa–Flynn–Wall (OFW) method, the Friedman method, the
Coats–Redfern method, the Kissinger method and Kissinger–Akahira–Sunose (KAS) method, Augis
and Bennett’s method, and Advanced Isoconversional methods are all discussed, as well as the future
development of polyethylene.
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1. Introduction

Polyethylene is one of the most significant and useful polymers that has been extensively
studied for use as a plastic material [1–8]. The benefits of using polyethylene as a commercial
plastic material include its excellent mechanical properties, good flexibility, good chemical
resistance, lightweight properties, good thermal stability, and high-cost performance [9,10].
The piping sector has been impacted by the trend of replacing steel with plastic during the
past few decades, resulting in the steady replacement of metal-based pipes with plastic pipes.
Polyethylene pipes are the most commonly utilized among them [11,12]. Consider the case
of high-density polyethylene pipes. Its market worth was USD 15.975 billion in 2018, and
9.283 million tons were consumed each year. The service life of polyethylene pipes will not
be less than 50 years, and it will continue to grow at a rate of at least 5% annually in the
upcoming years [13,14].

Polyethylene has numerous applications in a wide range of industries, including agri-
culture [15], manufacturing [16,17], medicine [18–20], construction [21,22], packaging [23],
energy [24], outdoor items [25], and others, due to its technical benefits and low cost when
compared to other materials. In China alone, the use of agricultural films reached 2.6 million
tons in 2016, including 1.47 million tons of polyethylene films, covering 18.4 million hectares of
land [26].

Although polyethylene materials offer great resistance to microbial, peroxide, and
degrading damage, they do have a tendency to alter their initial performance characteristics
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with time [27–30]. In general, three frequent and significant occurrences are bound to
happen when polyethylene is present in a gaseous or liquid environment for an extended
period of time. The first phenomenon demonstrates that the mobility of polyethylene
molecules is altered by the diffusion of gas or liquid molecules, just as it is by changes in
temperature, pressure, or time, which also have an impact on the material’s mechanical
properties. The second phenomenon relates to the fact that, due to the extremely adhesive
nature of the amorphous phase attached to the crystalline skeleton, the physical aging of
polyethylene materials is destined to occur over extended periods in glassy amorphous
polymers or semi-crystalline polymers [31,32]. The third phenomenon demonstrates that
polyethylene is subject to aging and degradation processes when exposed to chemically
active gases or liquids for extended periods. As a result, brittleness [33], fracture [34],
bending [35], and other phenomena may occur, which may shorten the service life of
polyethylene products.

In general, it’s critical to comprehend the mechanisms of degradation in addition to
the elements that influence how polyethylene materials deteriorate over time. Researchers
must investigate polyethylene’s deterioration behavior and offer theoretical backing to
enhance the material’s performance and service life. However, there has not been a study
conducted yet that completely explains the degradation mechanism of polyethylene.

The aging degradation process of polymeric materials is described in this work as being
influenced by several common external environmental conditions. First, it enumerates the
common ways that polyethylene degrades in the environment and describes the effects
that these different elements have on the process. Second, illustrations of the fundamental
hypotheses and technical approaches employed in the experimental research carried out
thus far are provided. Finally, some thoughts and views are shared along with predictions
about polyethylene’s future trends.

2. Aging Degradation of Polyethylene
2.1. The Process of Degradation

Catalytic peroxide decomposition, direct interactions of metal compounds with organic
substrates, oxidation, and energy transfer during photolysis are the primary mechanisms of the
chemical degradation of polymers [36]. While the chemical structure of a polymer frequently
does not change much, polymer degradation involves a reduction in the polymer’s molecular
weight [37]. A macromolecular complex called a polymer is made up of big molecules with
repeating structural elements. Polymers are typically combinations of substances with various
chain lengths or substances with various molecular weights. The properties of polymers are
strongly affected by their molecular weight, and this is also one of the processes through
which macromolecular substances are created [38].

The primary source of the polymer degradation process is the continuous interaction
between oxygen and the polymer’s macromolecules, as well as free radicals created as a
consequence of environmental factors such as temperature, humidity, light, mechanical stress,
and radiation [39]. In addition, it appears to suggest a decrease in molecular weight, potential
branching, and, in a few cases, the formation of cross-linked structures [40]. The unstable
oxidized substances formed by degradation gradually converge towards the formation of
stable macromolecules with oxidation groups and cause significant changes in the molecular
structure, such as molecular weight, polydispersity, branching, etc. While other polymers
often migrate in the direction of lower molecular weights, the development of cross-linked
structures as mentioned above occurs primarily in the degradation of polyethylene.

For polyethylene materials, aging is bound to occur with extended use. Both aging and
degradation can have a significant impact on the performance of polyethylene. Exposure
to numerous environmental variables, such as heat, UV radiation, ozone, chemical attack,
mechanical stress, and microbes, can cause polyethylene to degrade, eventually resulting
in embrittlement, cracking, discoloration, etc. [41,42]. Understanding the primary stages of
polyethylene breakdown is crucial for this reason.
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2.2. Types of Degradation

Premature failure of polyethylene materials is caused by irreversible chemical reactions or
physical alterations. Abiotic and biodegradation are the two categories into which polyethylene
degrades. Biodegradation is the term used to describe the degradation caused by the action
of microorganisms that alter and consume polyethylene and change its properties. Abiotic
degradation is defined as deterioration caused by external environmental variables, such as
temperature and UV irradiation. Even though each of these two degradation mechanisms can
be used to classify the deterioration of polyethylene, the two types work together in nature [43].

2.2.1. Biodegradation

The process of biodegradation happens when microbial populations, other decomposing
organisms, or abiotic forces work together to break down biodegradable materials into
minute parts [44]. Three primary processes make up the biodegradation of polyethylene:
(1) biodegradation, which occurs when microorganisms grow on the polyethylene’s surface or
within it, altering its mechanical, physical, and chemical qualities; (2) biodegradation, which is
the process of having microorganisms break down a polymer into oligomers and monomers;
(3) assimilation, which is the process by which microbes acquire the requisite carbon, energy,
and nutrients from the breakdown of polymers and transform the carbon in the material into
carbon dioxide, water, and biologically necessary chemicals [45]. The chemical composition,
molecular weight, and crystallinity of the polymer, as well as other physical, chemical, and
biological aspects, all affect how effectively a substance degrades [46].

Biological factors that may cause the biodegradation of polyethylene include bacteria,
fungi, and microorganisms. Over the past few decades, numerous bacterial strains have
been found to interact with polyethylene, and research studies have shown that there are
already several genera of bacteria and a small number of genera of fungus that are able
to degrade polyethylene. Some of the categories are shown in Table 1. In reality, enzymes
choose particular functional groups. Generally, shorter chains, more amorphous parts,
and less complicated structures in polymers make them more susceptible to microbial
biodegradation [47].

Table 1. Bacterial and fungal strains linked to polyethylene biodegradation [48].

Fungiidae Fungal Species Bacteriaceae Bacterial Species

Penicillum
Simplicissimum

Bacillus
Amyloliquefaciens

Frequentans Brevies
Pinophilum Cereus

Aspergillus Versicolor Streptomyces Badius
Flavus Viridosporus

Phanerochaete Chrysosporium Rahnella Aquatilis

Verticillium Lecanii Rhodococcus Rhodochrous

Cladosporium Cladosporioides Brevibacillus Borstelensis

2.2.2. Non-Biodegradable

The abiotic degradation of polyethylene is influenced by environmental and molecular
factors. The breakdown of polyethylene is promoted and accelerated by environmental ele-
ments such as sunlight’s UV radiation, oxygen, heat, water, certain animals, and contaminants.
The combined action of these factors may have a synergistic effect on the degradation rate of
polyethylene [49]. Photoreactions and thermal oxidation reactions, which result in the creation
of new products during chain breakage, hydrogen atom detachment, or cage effects, are the
main environmental drivers of polymer degradation [50].

The interaction between oxygen and UV light causes polyethylene to begin to photode-
grade. While photodegradation is the process by which molecules produce free radicals,
photooxidation is the process by which polymers are destroyed by absorbing photons of visible,
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ultraviolet, or infrared light in the presence of oxygen [51]. Random chain breakage and pho-
tooxidation are the primary outcomes of photodegradation, and these processes in turn cause
secondary crystallization and the creation of several degradation products, including carboxylic
acids, ketones, and aldehydes, which are collectively known as carbonyl compounds [52,53].
The Norrish reaction can result in the synthesis of vinyl groups (such as unsaturated bonds
and conjugated systems), and it is crucial to realize that hydroperoxides are byproducts of
the free radical formation process [54]. In addition to the breakdown of hydrogen peroxide,
Norrish types I and II processes involving ketone groups can also start the photooxidation
of polyethylene [55], as shown in Figures 1 and 2. Chain breakage and cross-linking are the
primary and secondary outcomes of these three starting processes, respectively.
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The process by which heat or high temperatures are applied to a material, product, or
component and where the outcome is a loss of physical, chemical, or electrical qualities
is referred to as “thermal degradation” [58]. Free radical chains that are engaged in
thermal and photodegradation have fundamentally identical processes. Typically, the
degree to which the reaction with oxygen takes place has a significant impact on the
mechanism and rate of degradation. The molecular amplification reactions are mostly
chain-breaking reactions when oxygen is present [47]. Depending on the physical and
chemical makeup of the polymer, for which many thermal degradation mechanisms exist,
thermal degradation may cause molecular deterioration. The most frequent is the polymer’s
intermolecular links being broken or unchained, releasing oligomers and monomer units.
Some polymer backbone and side chain reactions will also contribute to the polymer’s final
decomposition [59].

One of the crucial components of abiotic degradation’s parameters is chemical degra-
dation. The characteristics of polyethylene macromolecules may change as a result of
reactions with atmospheric contaminants and some agrochemicals. Many materials must
come into contact with air when used in daily life, making reactions with oxygen in the air
simple. Free radicals are created when the covalent bonds in polyethylene react with the
oxygen molecules in the air. The covalent bonds of polyethylene are subject to oxidative
degradation, which is dependent on the chain structure of polyethylene and works in
conjunction with photodegradation to form free radicals. Peroxyl radicals from oxidative
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degradation can also act on polyethylene and cause cross-linking or chain breakage, just
like the byproducts of the Norrish reaction stated above. Another process that might lead to
the chemical breakdown of polymers is hydrolysis reaction [60–62]. It is significant to note
that because polyethylene molecules are entirely composed of alkyl groups and lack any
radical energy groups that could interact with water molecules, they cannot be hydrolyzed.

As the name suggests, catalytic degradation refers to the use of catalysts to break
down polyethylene. Typically, catalytic degradation is employed in scientific research or to
degrade polyethylene materials. The use of an appropriate catalyst and optimal processing
conditions might result in the development of the intended, more precise product, and, in
some situations, prevent the formation of inferior products, giving catalytic degradation
some advantages over the other degrading methods previously discussed [63]. The ability
to shorten experiment durations and lower reaction temperatures during studies is a more
significant benefit of catalytic degradation.

Polyethylene experiences mechanical degradation most frequently as a result of the
influence of various stresses on the material. These forces can occur for a variety of
reasons. For example, buried polyethylene pipes may experience operational issues during
installation, and wild animals may unintentionally harm them as a result of the pressure that
the soil and carried material exert on them [45]. This also applies to polyethylene products
used outside, such as mulch film and protective jackets used on some cables, which may
experience multiple mechanical degradations under unforeseen outdoor conditions [64–66].
In general, damage to polyethylene materials caused by macroscale factors, including soil
or water pressure, may not be immediately noticeable but may start to have an impact at the
microscopic molecule level. Even though mechanical causes are not the primary cause of
degradation, once a material has been mechanically traumatized, it may be more susceptible
to the effects of biodegradation [59]. Under field circumstances, mechanical forces and other
abiotic parameters (such as humidity, radiation, and contaminating substances) interact
with polyethylene material.

2.3. General Mechanism of Degradation

Various types of polymers have different degradation mechanisms. The deterioration of
polymeric materials may involve multiple degradation pathways at once [67]. Bond fractures
in the polymer’s backbone are the main method by which they degrade, and these breaks
can occur anywhere in the chain or at the ends of the chain due to random generation. A
frequently used mechanism in the breakdown of polymers is the chain-break decomposition
mechanism. A multi-step free radical chain reaction with the general properties of such
reaction mechanisms as initiation, proliferation, branching, and termination is involved in the
chain-breaking breakdown process [68].

Free radicals are produced in both induced reactions—when a chain break happens
at a random location in the main chain—and the terminal chain breaks reactions, where
such a tiny unit or group is broken at the end of the main chain [59]. The following is the
reaction sequence:

R−H
heat,light→ R·+ H· (1)

The proliferative process begins with a free radical reaction with oxygen molecules,
then produces a peroxide radical, a hydroperoxide group with hydrogen atoms, and finally,
a peroxide radical with oxygen molecules [69]. The resulting groups are extremely unstable
and readily decompose into renewable free radicals. The following is the reaction sequence:

R·+ O2 → ROO· (2)

ROO·+ RH → R·+ ROOH (3)

ROOH→ RO·+ ·OH (4)

RO·+ RH → R·+ ROH (5)
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OH + RH→ R·+ H2O (6)

Taking over a hydrogen atom or another atom on a carbon atom next to a radical from
another chain is known as a “termination reaction”. The following is the reaction sequence:

R·+ R· → R− R (7)

2ROO· → ROOR + O2 (8)

R·+ ROO· → ROOR (9)

R·+ RO· → ROR (10)

HO·+ ROO· → ROH + O2 (11)

Both biotic and abiotic circumstances, such as photooxygenation, can cause the afore-
mentioned degradation pathways to occur in polymeric materials. From a macro per-
spective, the biodegradation process can be broken down into three stages. In the first
stage, a particular enzyme secreted by microorganisms can lead to the depolymerization
of polyethylene molecular chains. In the second stage, the microorganisms absorb the
products of the first stage and transform them into the energy they need. In the third stage,
the microorganisms use these products to finish their own cellular metabolism and convert
them into other compounds [47].

In conclusion, the degradation of polymers under actual conditions is frequently a
combination of various degradation mechanisms because the mechanism of degradation of
polymers is quite complex and no one mechanism can fully describe the situation. For our
investigation into the service life of polyethylene materials, it is crucial to comprehend the
biotic and abiotic causes of degradation.

3. General Service Life of Polyethylene

Due to their strength, durability, and low cost when compared to other materials,
polyethylene-based products are frequently seen in daily life. This low cost significantly
lowers manufacturing costs and promotes the sustainable growth of the global economy.

Polyethylene materials are commonly used for the packaging of food products. The
materials used to create food packaging are produced in a way that does not detract from
the food’s flavor, appearance, or nutritional value. In order to ensure that the shelf life of
the packaging material is longer than the shelf life of the food itself, it is crucial to safeguard
the food’s quality. This is because the substances in the packaging material may spread
into the food and harm it.

High-density polyethylene, which is frequently used for cable sheathing and has an
initial design life of roughly 50 years, typically does not last as long as predicted outdoors
due to numerous uncontrollable circumstances. Due to prolonged exposure to UV light, the
cable sheath typically cracks after fewer than 10 years of operation in terms of ultraviolet
light alone [70].

Natural gas and drinking water are both transported via polyethylene pipes because
of their flexibility, light weight, ease of connecting between pipes, and comparatively low
installation costs [71]. The polyethylene material will deteriorate and age with continued
use, which will affect the pipe’s functionality. Premature pipe damage can result in major
safety issues, such as gas leaks, which can seriously endanger people’s lives and property.
Premature pipe damage also causes inconveniences in our daily lives. The DuPont Com-
pany has been employing polyethylene pipes to transmit natural gas on a massive scale
for about 57 years [72], but the lifespan of the pipeline cannot be ignored due to the rising
safety issues.

Notable medical uses for polyethylene include complete hip replacements. One of the
best therapies for advanced femoral head necrosis is total hip replacement, which typically
has a lifespan of at least ten years [20]. Traditional polyethylene has been replaced with highly
cross-linked polyethylene since it is extremely prone to wear and tear during use [73].
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Materials made of polyethylene are frequently employed in horticulture and agriculture.
Films are the primary form of application in agriculture [65], and they are typically used as mulch
to cover crops [74]. By more effectively blocking all types of weather that are not favorable for
crop growth, such as violent storms, polyethylene mulch can reduce the growth of weeds, retain
the moisture and nutrients needed by crops [66], and provide a desirable growing environment
for crops. In order to prevent soil contamination, polyethylene mulch is recycled after use and
normally lasts a few months to a year outdoors [75]. If polyethylene film breaks down while in
use, the ensuing degradation chemicals may be environmentally hazardous. They may also
seep into rivers and contaminate the water [76]. To prevent unwanted environmental pollution,
it is crucial to recycle polyethylene film within a set time range.

Polyethylene has many other applications that we will not discuss here, but in sum-
mary, it is critical to precisely estimate the material’s performance to precisely predict the
material’s life during its service life.

4. General Service Life of Polyethylene

Understanding the degradation process is crucial for polyethylene applications. To
gauge the degree of performance degradation of the product, or, in other words, to further
gauge the robustness of polyethylene products in long-term use situations, it is important
to first comprehend how long the process of degradation takes to become obvious [47]. As
a result, when carrying out pertinent experimental tests, the material’s aging must be sped
up [77]. Accelerated aging techniques are useful for estimating the remaining useful life
of polymeric materials like polyethylene, and they can be contrasted to choose the most
appropriate technique [78–83].

According to a widely used standard protocol for accelerated aging tests, polyethylene
materials are put through cyclic tests in one or more substances for a specified amount
of time or a specified number of cycles. To alter the effect of the same substance, the
content of the substance utilized as a variable in this test procedure should be significantly
different from the level of the substance itself during usage [84–86]. Depending on the
needs of the experiment, these studies are typically carried out in suitable climate chambers
where polyethylene samples may be exposed to high temperatures or humidity [87,88], UV
radiation [89,90], various acids, bases, salts, etc. [91]. The parameters, which are dependent
on the particular test conditions, must be decided upon as the initial stage in constructing
an accelerated aging technique [92]. The ability to manage whether environmental elements
are increasing or decreasing has a significant impact on the test’s dependability [93]. In a
perfect scenario, the environmental elements that the experiment simulates would be as
similar to those in the natural state as possible, and the experiment’s duration would be
kept to a minimum. The level of testing that is being conducted now, however, is still far
below what is optimal for experiments.

5. Prediction Techniques for Polyethylene Materials
5.1. Thermogravimetric Analysis for Kinetic Modeling

In recent decades, predicting the lifetime of polymeric materials such as polyethylene
has become a significant research issue [94–96]. The mass decomposition of materials that
are linearly dependent on time and temperature can be determined using thermogravimet-
ric analysis (TGA) [97], which is frequently used to research the mass decomposition and
kinetics of polyethylene materials. It is challenging to study each stage of the polyethylene
breakdown process separately using a straightforward kinetic model because of how com-
plex it is [98,99]. Approaches based on single-step approximations, either model-free or
model-fitting methods, are typically employed to explain polyethylene dynamics [100].

The degree of conversion that changes with time or temperature is referred to as
the reaction rate in thermogravimetric analysis research, and the conversion rate α is
determined using Equation (12) in terms of mass loss.

α =
ωo −ωt

ωo −ω∞
=

∆ω

∆ωo
(12)
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where ωo, ωt, and ω∞ stand for the initial mass, the mass at temperature t, and the final
mass, which is the mass at which the mass loss is practically constant, respectively. The
product of two functions, one of which is dependent on temperature T and the other on
the rate of the reaction, is typically used to indicate the conversion rate of a kinetic process.
The general kinetic model of degradation is defined by Equation (13) [101]:

dα

dt
= K(T) f (α) (13)

where f (α) is the transformation function, and K(T) is the temperature-dependent function
given by the Arrhenius Equation (14) [102].

K(T) = Ae− Ea/RT (14)

Thus, Equation (13) can be further written as:

dα

dt
= Aexp

(
− Ea

RT

)
f (α) (15)

where A is the pre-exponential factor, Ea is the activation energy, and R is the gas constant.
The reaction model has various forms, some of which are shown in Table 2.

Table 2. Kinetic model and its conversion function [100].

Kinetic Model Symbol f(α)

n-order reactions

First order F1 1− α

Second order F2 (1− α)2

nth order Fn (1− α)n

Diffusion
1-D diffusion D1 1/2α

2-D diffusion D2 [− ln(1− α)]−1

3-D diffusion–Jander D3 3/2(1− α)
2
3

[
1− (1− α)

1
3

]
3-D diffusion–Ginstling–Brounshtein D4 3/2 [(1− α)−

1
3 − 1]

−1

Phase-boundary reactions

Contracting area R2 2(1− α)
1
2

Contracting volume R3 3(1− α)
2
3

Prout–Tompkins B1 α(1− α)
expandedProut–Tompkins Bn (1− α)nαm

First order withautocatalysis C1 (1− α)(1+KcatX)

nth order withautocatalysis Cn (1− α)n(1+KcatX)

Nucleation and nuclei growth

Avrami–Erofeev A2 2(1− α) [− ln(1− α)]
1
2

Avrami–Erofeev A3 3(1− α) [− ln(1− α)]
2
3

Avrami–Erofeev An n(1− α) [− ln(1− α)]
n−1

n

5.2. Arrhenius Equation
5.2.1. General Arrhenius Equation

Accelerated aging experiments offer a reliable foundation for estimating the life of
polyethylene materials. Temperature influences the time to failure or aging efficiency of
polyethylene materials, and both factors are important for more accurately estimating the
performance of polyethylene materials. The Arrhenius connection is the foundation of the
most significant method for polyethylene aging. Svante Arrhenius, a Swedish chemist,
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presented the Arrhenius equation (Equation (14)) in 1889. It is an empirical chemical kinetic
equation that describes the rate of reaction as a function of temperature [103]. The depen-
dence of the kinetics of some simple chemicals’ chemical reactions on the critical element of
temperature is extremely well described by the Arrhenius equation. The material produces
a very modest reaction rate at very low temperatures, according to the Arrhenius equation,
yet the minimum value will not be zero. The following conditions must be met to use the
Arrhenius equation: (1) There must be only one main chemical reaction that causes thermal
deterioration within a specific temperature range, and this significant chemical reaction
should serve as the test’s starting point [104–107]. (2) First-order or other fixed-order kinet-
ics govern the process of degradation [105,108]. (3) The degradation does not appreciably
alter at time zero. (4) There has been no phase change [106,107]. (5) The experimental
study’s temperature range was somewhat constrained to prevent the accuracy of the test
results from being impacted by further degradation mechanisms [109]. (6) Throughout
the test’s deterioration range, the activation energy should remain constant [110]. The
non-exponential form of Equation (16) can be used to represent the Arrhenius equation,
making it simpler to use and allowing for graphical interpretation [111]:

ln K(T) = ln A− Ea

RT
(16)

However, it is not accurate enough to detect the aging process of the material with
a single experiment, so it is necessary to learn more about the change curve of material
properties versus time under several experimental conditions, as shown in Figure 3, and
use it as a foundation for material life speculation.
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By plotting the relationship between lnK(T) and 1/T in the equation’s linear relation-
ship, the least squares method can be used to best fit the data. It is possible to calculate for
Ea and A the slope and intercept of the fitted line as shown in Figure 4.
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5.2.2. The modified Arrhenius Equation

The Arrhenius equation has undergone several revisions, and the updated equation
now accounts for the impact of relative humidity on the rate of degradation (Equation (17))
[105,106,113–115]:

ln K(T) = ln A− Ea

RT
+ B(%RH) (17)

where lnK(T) is affected linearly by the humidity sensitivity component B at a constant
temperature. In the examined range, it is presumed that the relative humidity has an impact
only on the molecular mobility and not on the reaction route [106,114]. The frequency of
molecule collisions determines the degree and extent of a substance’s migration within a
material, which is known as molecular mobility [106]. Equation (18) can be used to get B
from the intercept of the line to B at constant temperature, where lna-Ea/RT is a constant
term. Equation (18) can also be used to calculate B from the slope of lnK(T) to %RH:

ln K(T) = intercept + B(%RH) (18)

Numerous investigations have conclusively demonstrated that some degradation processes
can be adequately characterized by straightforward linear Arrhenius equations [116–119]. As
Arrhenius is dependable, time-efficient, and makes it simple to compute changes in aging
performance, it is the approach of choice for life prediction in the majority of studies. On the
basis of these examples, it can be demonstrated that the Arrhenius equation may be used to
forecast the life of polymeric materials other than polyethylene.

5.3. Equal Conversion Rate Method

One of the more trustworthy kinetic approaches for working with thermal analysis
data is the equal conversion rate method [120,121]. The main benefit of isoconversion
methods, which are based on the isoconversion principle, is that they do not necessitate the
assumption of any kind of reaction model f (α) in order to calculate the effective activation
energy Ea. Thermal analysis techniques can also be used to measure changes in the overall
reaction rate. Analyzing the change in Ea reveals the change in the response mechanism.
This method is known as Ea-dependence [122].

To create a more accurate activation energy Ea as a function of the degree of conversion
α, the equal conversion rate technique calls for trials at various temperatures. As a result
of the significant variation of Ea with α, which suggests that the process is kinetically
complex, the Ea-dependence was evaluated using the isotransformation rate method and
used as a foundation for kinetic analysis in order to comprehend the intricate nature of the
experiment’s process and produce accurate kinetic predictions [123].

5.3.1. Ozawa–Flynn–Wall (OFW) Method

Based on the mass loss and temperature data of the polyethylene material at various
heating rates, the Ozawa–Flynn–Wall (OFW) approach calculates the activation energy Ea
of the thermal degradation process [124]. The complexity of the decomposition mechanism
can be ascertained using this method, which does not necessitate prior knowledge of the
steps of the degradation mechanism used by the material. Instead, the activation energy
for various conversion rates can be assessed. The conversion rate α and the reaction model
g(α), which are integrated based on the Doyle approximation, are considered constants in
this method despite variations in the heating rate [125] as shown in Equation (19) [126,127]:

ln β = ln
AEa

Rg(α)
− 5.331− 1.052

Ea

RTp
(19)

where β is the heating rate, Ea is the activation energy, R is the gas constant, and Tp is the
peak temperature. The experimental thermal spectra captured at the heating rate can be
used to derive a linear regression of ln β = f (1/T), and the slope of the straight line can be
used to calculate the activation energy Ea at a constant conversion rate α [126].
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The Ozawa–Flynn–Wall (OFW) method can be used in reaction systems where the
activation energy changes over time; however, it may not work when various reaction types
with various activation energies coexist. Additionally, competitive responses involving
a range of different products cannot be studied using the Ozawa–Flynn–Wall (OFW)
Method [128].

5.3.2. Friedman Method

The integral and differential approaches make up the equal conversion rate method [120,129].
In the differential approach, one of the simplest ways to determine the activation energy is by the
Friedman method [130] as shown in Equation (20):

ln
dα

dt
= ln A + ln f (α)− Ea

RT
(20)

Equation (20) can be further expressed as follows when several runs with various
constant heating rates are taken into account and given values for [131]:

ln β
dα

dt
= ln A + ln f (α)− Ea

RT
(21)

According to the experimental thermal spectrum captured at the heating rate, the
graph of ln(βdα/dt) vs. 1/T should be a straight line for the conversion α = constant [100].
α is constant when ln A + ln f (α) is constant, despite the fact that the heating rate β is
varied [132]. By taking fixed readings of the conversion rate α, temperature T, and reaction
rate dα/dt, the activation energy Ea may be estimated from the slope denoted by ln(dα/dt)
for tests carried out at various heating rates [131].

The Friedman approach is more precise than the integral method while not using
mathematical approximations such as other integration methods. However, given the
potential variability of the reaction rate, the Friedman approach necessitates a high base of
thermal analysis equipment [120,133]. Any test, including dynamic and isothermal tests,
can be subjected to the Friedman model. Due to experimental flaws or the inherent uncer-
tainty of the differential approach, this method’s sensitivity to noise makes it potentially
less reliable for kinetic data acquired by thermogravimetric analysis (TGA) [131].

5.3.3. Coats–Redfern Method

The Coats–Redfern method is an integral approach based on an equation and con-
nected to the thermal deterioration mechanism (22) [134]:

ln
[

g(α)
T2

]
= ln

(
AR
βEa

)
− Ea

RT
(22)

where the finger front factor A can be calculated from the intercept of the straight line, the
activation energy Ea can be calculated from the slope of the line drawn between ln

[
g(α)/T2]

and 1/T, and g(α) can vary depending on the model and mechanism of the reaction.

5.3.4. Kissinger Method and Kissinger–Akahira–Sunose (KAS) Method

The original Kissinger method was proposed in 1957, and Kissinger made the premise
that the experimental conditions barely affect the reaction rate and that it reaches a maximum
at a temperature Tp that corresponds to a specific conversion rate α. In this instance, only
non-isothermal conditions are suitable for determining the manifest activation energy Ea
of the crystallization process, which is proportional to the slope of the maximum value
corresponding to the crystal temperature. The heating rate β often affects the conversion rate
α. The Kissinger equation is shown in Equation (23) [135]:

ln(
β

T2
p
) = ln(

AR
Ea

)− Ea

RTp
(23)
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where Tp is the peak temperature, and the activation energy Ea can be obtained from the
slope of the line ln(β/T2

p) to 1/Tp.
According to the Kissinger–Akahira–Sunose (KAS) technique, the activation energy is

assumed to be constant for a specific conversion rate [136,137]. The method is based on
Equation (24) [138,139]:

ln(
β

T2
p
) = ln

(
AR

Ea f (α)

)
− Ea

RTp
(24)

where the ln(β/T2
p) versus 1/Tp curve is a straight line, and the slope and intercept can be

used to calculate the activation energy Ea and the value of pre-exponential factor A for a
given type.

The Kissinger–Akahira–Sunose (KAS) method corrects some biases in the Ozawa–Flynn–Wall
(OFW) method by using the Coats–Redfern approximation, and the Kissinger–Akahira–Sunose
(KAS) method provides a more accurate estimate of the activation energy [133,134].

5.3.5. Augis and Bennett’s Method

The Kissinger method began by not specifying the number of reaction levels, thereby
determining the activation energy of the n-level reaction. Regardless of the fitted kinetic
model, the method allows for the determination of the reaction’s activation energy without
knowledge of the reaction mechanism [140]. Augis and Bennett proposed the following
equation as a complement to the Kissinger method, based on non-isothermal differential
thermal analysis (DTA) and differential scanning calorimetry (DSC):

ln
(

β

Tp − T0

)
= ln A− Ea

RTp
(25)

where β is the heating rate, Ea is the activation energy, R is the gas constant, Tp is the
temperature corresponding to the peak of the differential scanning calorimetry (DSC) or
differential thermal analysis (DTA) curve, and T0 is the starting temperature.

The accuracy of the DTA or DSC curve plotting and the heating rate β influence the
evaluation of Augis and Bennett’s method for the onset temperature T0. Augis and Bennett
recommend using a single T0 value for all heating rates, i.e., one that is lower than the
lowest starting temperature corresponding to the lowest heating rate [141].

5.3.6. Advanced Isoconversional Methods

The differential method has the advantage of not requiring approximations and can be
applied to isothermal, non-isothermal, or more complex temperature tests of any type. The
main disadvantage of the differential method is the possibility of experimental result value
instability [142]. To address some of the shortcomings of the commonly used integration
method, some researchers pioneered the advanced equal conversion method [120,143,144].
The Vyazovkin method, which is one of the more sophisticated isotransformation techniques,
is represented by Equations (26) and (27):

Φ(Eα) =
n

∑
i=1

n

∑
j 6=i

J [Eα, Ti(tα)]

J
[
Eα, Tj(tα)

] (26)

J[Eα, T(tα)] =

tα∫
tα−∆α

exp [
−Eα

RT(t)
] (27)

where Ea is the effective activation energy and the value of Ea is the value that minimizes
the function Φ(Eα). This nonlinear kinetic approach (NLN) deals with a set of n experi-
ments performed at different temperatures Ti(t), which can be numerically integrated over
time using the trapezoidal method. Exact interpolation using the Lagrangian algorithm
determines the time tα,i and temperature Tα,i associated with the selected value of α for
each ith temperature program [145].
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6. Conclusions

In modern society, polyethylene materials are utilized in a variety of applications, but
as their use increases, their initial performance qualities tend to change. Temperature, light,
pressure, chemical attack, mechanical stress, microorganisms, and other factors can all
affect the degradation of polyethylene materials. This influence is frequently synergistic,
making polyethylene degradation extremely complex. Many researchers have developed
various kinetic methods for predicting the lifetime of polyethylene materials, and this paper
describes the most common and widely used kinetic methods.

The isoconversion method derives from the Ozawa–Flynn–Wall (OFW) method and
the Friedman method, both of which do not require a mathematical model and instead
use several curves at different heating rates to calculate the kinetic parameters at the same
conversion rate and obtain the activation energy. The multi-curve method is another name
for the equal conversion rate method. With the introduction of the Kissinger–Akahira–
Sunose (KAS) method, the accuracy of the equal conversion rate method has improved.
Kissinger and OFW are model-free analyses, which means that the activation energy is
calculated without taking into account the kinetic model of the reaction process. Friedman’s
method has the advantage of not being limited to linear changes in heating rate and
exhibiting simplicity, adequacy, and accuracy. The advanced isotransformation rate method
is now widely acknowledged as one of the most precise methods for estimating activation
energies from TGA experiments.

Due to the numerous applications of polyethylene materials in people’s lives, the
extensive use of polyethylene materials can lead to environmental pollution. Extending
the service life of polyethylene can promote the development of the 5Rs [146] for reducing
environmental pollution, therefore, the life prediction of polyethylene and other polymeric
materials is critical.
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