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Abstract: The area of localization in wireless sensor networks (WSNs) has received considerable
attention recently, driven by the need to develop an accurate localization system with the minimum
cost and energy consumption possible. On the other hand, machine learning (ML) algorithms
have been employed widely in several WSN-based applications (data gathering, clustering, energy-
harvesting, and node localization) and showed an enhancement in the obtained results. In this
paper, an efficient WSN-based fingerprinting localization system for indoor environments based on
a low-cost sensor architecture, through establishing an indoor fingerprinting dataset and adopting
four tailored ML models, is presented. The proposed system was validated by real experiments
conducted in complex indoor environments with several obstacles and walls and achieves an efficient
localization accuracy with an average of 1.4 m. In addition, through real experiments, we analyze
and discuss the impact of reference point density on localization accuracy.

Keywords: fingerprinting; machine learning; indoor localization; received signal strength (RSS);
range-free localization

1. Introduction

Recently, the quick evolution of embedded systems and radio waves has led to the
advent of wireless sensor networks (WSNs), which have become a foremost research field
in the last period. In general, a WSN is a collection of sensor nodes distributed over the
area of interest to sense or monitor an event or set of events. A sensor node is an embedded
device which consists of a transceiver, limited power resource, microcontroller, and array
of sensors. Each sensor node can perform gathering and processing and communicate
with nearby sensors. WSNs have been deployed widely in several applications, including
industrial, military, environmental, home monitoring, and medical applications [1–4].

The positioning field has become an interesting field recently and has been adopted in
several applications [5–7]. Localizing stationary and mobile targets in the area of WSNs
is an interesting research field and involves estimating a location of a target object based
on the existence of stationary sensor nodes distributed over the area of interest. Several
WSN-based localization systems have been developed recently with different localization
methods, accuracy, and costs. For instance, several types of measurements can be consid-
ered as position estimation methods, such as time difference of arrival (TDOA) [8], received
signal strength (RSS) [9], time of arrival (TOA) [10], and angle of arrival (AOA) [11].

RSS-based localization systems offer reasonable localization accuracy outdoors; how-
ever, in indoor environments, the localization error becomes high due to the obstacles and
walls that may exist, which usually weaken or strengthen the radio waves, hence increasing
the localization error [12]. Mainly, WSN-based localization systems can be categorized into
two main categories: triangulation and fingerprinting. The former triangulates the location
of the target node using the RSS values received from stationary sensor nodes, whereas the
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latter is based on collecting RSS values from stationary sensor nodes in a database and then
estimates the position of the target node based on the stored RSS values.

On the other hand, the area of artificial intelligence (AI) represented by machine
learning (ML) and deep learning (DL) techniques has been deployed widely in several WSN
applications, including routing data, coverage problem, localization, and fault tolerance [13].
In this paper, we focus on the area of sensor node localization due to its significance in a
wide range of applications, for instance, locating objects in a lab area, tracking patients in
hospital, and localizing children in school.

There are several existing WSN-based localization methods and systems available to
localize objects in indoor environments [14,15]; however, these systems are either high in
cost, complicated, or inaccurate in complex environments. In addition, despite the available
wide range of WSN-based localization using fingerprint systems, these systems are usually
ineffective in real environments as most of the research studies focused on simulation
experiments. Therefore, this paper discusses the research and development of an efficient
localization system to accurately localize objects and items using the RSS technique and the
investigation of several ML models. Hence, this project aims to:

1. Research the recently developed WSN-based fingerprinting localization approaches.
2. Construct a real RSS fingerprint dataset to allow researchers and developers to imple-

ment a real and efficient localization system for WSN application in indoor environ-
ments.

3. Develop an efficient device-free localization system using the RSS approach and
tailored ML algorithms.

4. Investigate the impact of reference point density on the performance of localization
accuracy.

5. Validate the efficiency of the developed system using real experiments conducted in
the IIRC labs.

The rest of this paper is organized as follows: Section 2 discusses the recently devel-
oped fingerprinting localization systems, whereas in Section 3, the proposed fingerprinting
localization system is presented and discussed. Section 4 discusses the experimental testbed
in terms of the experiment testbed area, sensor nodes, communication protocol, and the
collection of reference points procedure. In Section 5, the obtained results are analyzed
and discussed, whereas Section 6 discusses the results obtained from real experiments and
compares them with existing fingerprinting localization systems. And finally, Section 7
concludes the work presented in this paper and proposes future works.

2. Related Works

In general, WSN-based localization systems are categorized into two main categories:
range-based and range-free techniques, as presented in Figure 1. The former requires an
additional positioning device to be employed with each reference node (sensor nodes with
known positions) or the target node (a sensor node with an unknown position), for instance,
adding infrared, ultrasonic, and GPS-based methods [16,17], whereas the latter is based on
the content of the transmitted message between the reference and the target nodes [18,19].

Range-free systems can be further divided into hop-count and multidimensional
scaling (MDS) localization approaches [20–22]. Hop-count systems are based on the average
hop distance between the reference node and target node, whereas the MDS systems
estimate the target node’s position based on the basic information of the reference nodes
in the communication range. Both the hop-count and MDS systems reduce the hardware
requirements for inexpensive sensor nodes; however, range-free approaches are inefficient
in terms of localization accuracy.
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On the other hand, range-based localization systems have received considerable
attention recently due to their efficiency in indoor environments and can be categorized
into triangulation and fingerprinting localization systems. The former estimates the target
node’s location through triangulating the distance estimated from at least three reference
nodes, whereas the latter is based on the behavior of signal propagation and information
around the geometry of the tracking area.

The triangulation approaches can be categorized into received signal strength (RSS)
and range-finder methods (such as infrared, ultrasonic, UWB, and RFID). In general,
triangulation methods offer high localization accuracy in outdoor environments but fail
in indoor environments, whereas fingerprinting achieves reasonable localization accuracy
in indoor environments. Therefore, in this paper, we focus on employing a fingerprinting
localization approach to track target nodes in the area of interest.

Fingerprinting approaches are categorized further into traditional approaches and ar-
tificial intelligence (AI)-based approaches. Both the traditional and AI-based fingerprinting
localization approaches consist of two phases: the offline phase and the online phase. The
main difference between the two approaches is the process of dealing with the fingerprints
(RSS values with the corresponding 2D coordinates). The traditional approaches estimate
the target node’s position based on the nearest reference points collected in the offline
phase, whereas the latter employed ML and DL approaches to train and estimate the target
node’s position.

Several WSN-based fingerprinting localization systems have been developed with
various localization accuracy and efficiency [23,24]. However, these approaches offer
unreliable localization information in complicated environments. Therefore, the AI-based
approaches are considered in this paper. This section discusses the recently developed AI-
based localization approaches that employed artificial neural networks and ML algorithms
in the localization phase.

The authors of [25] proposed a hybrid target tracking system using the ML and
Kalman filter to estimate the continuous location of the mobile target object. A fingerprint
system involves the collection of RSS values from the tracking area, and then the authors
employed an ML model for training purposes using the collected RSS dataset. Afterwards,
the Kalman filter was employed to combine the predictions of the target’s location based
on the acceleration information with the first estimates.

The work presented in [26] involves developing a device-free wireless localization
system using an artificial neural network. The developed system consists of two phases:
the collection of the RSS values from the distributed reference nodes and the employment



Appl. Sci. 2023, 13, 3037 4 of 18

of an ANN model to be trained using the collected RSS values. In the tracking phase, a
non-linear function between the RSS inputs and outputs can be approximated using the
pretrained ANN model.

In [27], the authors proposed a node localization system based on the Voronoi diagram
and a support vector machine (SVM). The main idea is to divide the tracking region into
several parts using the Voronoi diagram and anchor node in the localization region, and
then the initial location of the target node is calculated through locating the region of the
target node. Then, the SVM is employed to further optimize the position of the target node.

The authors of [28] proposed a novel algorithm that involves a DL model and high-
level extracted features using autoencoder to enhance the localization accuracy. The authors
raised the number of training data to improve the localization accuracy. On the other hand,
the work presented in [29] involves an indoor localization system based on an SVM model.
The authors employed a multi-class SVM with RSS measurements to develop a zoning
localization approach. The work presented was validated in two different areas (hospital
and laboratory buildings). The obtained results were compared with the ANN and showed
the effectiveness of the presented SVM model.

In [30], the authors developed a WSN-based localization system using a cascaded
layered recurrent neural network (L-RNN) for the classification of user localization in indoor
environments. After considering several experiments by adopting different neural network
models, the authors revealed that the experimental results showed that the implemented
L-RNN model is an accurate localization method for indoor environments.

The work presented in [31] investigates the employment of ML algorithms for network-
wide localization in large WSNs. The authors adopted an SVM model with a radio basis
function (RBF) kernel for training the learning algorithm using the training dataset. The
authors of [32] proposed a location identification method using the ANN method and
RSS signals for sensor networks. The authors revealed that the performance analysis
demonstrated the effectiveness of the proposed ANN model to estimate the location of the
target nodes.

The authors of [33] proposed the employment of an outlier detection method for
removing the effect of erroneous distance estimates in position estimating using the RSS
method. In this work, the authors proposed three different localization schemes that
apply the outlier detection to effectively minimize the localization errors in shadowed
environments.

In [34], the authors proposed a range-free localization algorithm based on neural
network ensembles (LNNEs), where the target’s location is estimated using LNNEs solely
based on the connectivity information in the WSN. The authors compared the obtained re-
sults with the centroid and DV-Hop range-free localization systems, where the experimental
results demonstrated the efficiency of the LNNE approach.

As discussed above, various localization systems have been developed recently with
different costs, accuracy, and experimental results. Table 1 presents a comparison among
the existing AI-based positioning approaches for WSN, where the recently developed
AI-based localization systems are discussed according to the following parameters:

1. ML algorithm: localization data can be estimated using different types of ML al-
gorithms. Therefore, it is important to determine the ML algorithm that has been
employed in the offline and online phases.

2. Experiment testbed: in general, experiments can be either simulation or real-time
experiments. Simulation experiments are efficient in ideal situations; however, they
offer unreliable results in complex environments. Real-time experiments, on the other
hand, are hard to implement; however, they offer reliable localization results.

3. Localization accuracy: localization systems need to be validated in order to assess the
performance of the localization accuracy. Usually, localization accuracy is measured
using the localization error in centimeters (cm) or meters (m).
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Table 1. A comparison between the recently developed AI-based localization systems.

Research Work Algorithm Experiment Testbed Localization Accuracy

[25] Kalman filter, ridge regression, and
vector output Simulation experiments Localization error: 2 m

[26] Artificial neural network (ANN) Real experiments using the
CC2530 ZigBee nodes Localization error: 1.7 m

[27] Voronoi diagram and support
vector machine

Simulation
experiments—MATLAB Localization error: 0.3 m

[28] Extreme learning machine Simulation Localization error: 2.5 m
[29] Support vector machine Simulation Classification rate: 90%
[30] Layered recurrent neural network Simulation using real datasets Accuracy: 93.55%

[31] Support vector machine with radial
basis function kernel Simulation using real datasets Localization error: 4 m

[32] Artificial neural network (ANN) Simulation experiments Localization error: 6 m
[33] Outlier detection Simulation experiments Localization error: 5 m

[34] Neural network ensembles
(LNNEs) Simulation experiments Localization error: 4.5 m

As presented in Table 1, several AI-based fingerprinting approaches have been pro-
posed recently with the aim of minimizing the localization error in WSN-indoor localization
scenarios. However, most of the existing systems were tested using simulation environ-
ments, which might offer inefficient localization accuracy and limited flexibility. In addition,
the issue of reference node density has a vital impact on localization accuracy, but this
issue was not taken into consideration in the existing AI-based fingerprinting approaches.
Therefore, the work presented in this paper overcomes the limitations that exist in the
previous research by investigating the adoption of several ML models for the purpose of
sensor node localization indoors, developing a real-time fingerprinting localization system
using real sensor nodes and analyzes the impact of the density of reference points on
localization accuracy.

3. Machine Learning-Based Localization System

In this section, the development of an efficient WSN-based localization system to
position target objects in complex indoor environments is presented. The developed system
consists of two main phases: offline and online. In the offline phase, the RSS values, along
with the corresponding 2D coordinates, are collected from several reference points in the
localization area and saved into a database file (csv file), and then, the collected RSS values
are passed into an ML model for training purposes. Figure 2 shows the concept of the
offline phase, which includes the collection process of RSS values from several reference
points, preprocessing of the RSS values, and then performing the training of an ML process.
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On the other hand, the online phase includes estimating the target node’s position
based on the RSS values received from reference nodes. Then, the collected RSS values
are preprocessed and fed into a pretrained ML model to estimate the position of the target
node. Figure 3 shows the concept of the online phase, which includes the collection of live
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RSS values from the stationary reference nodes, processing the collected data, and then
estimating the mobile target’s 2D location (x and y coordinates) based on the pretrained
ML model.
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The structure of the collected RSS dataset is presented in Figure 4, where the collected
data consists of 6 attributes (4 features and 2 labels). The features set includes the RSS
values from 4 different reference nodes, whereas the labels set is the corresponding location
of the mobile target node.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

node. Figure 3 shows the concept of the online phase, which includes the collection of live 
RSS values from the stationary reference nodes, processing the collected data, and then 
estimating the mobile target’s 2D location (x and y coordinates) based on the pretrained 
ML model. 

 
Figure 3. The online phase, which includes estimating the position of the target node. 

The structure of the collected RSS dataset is presented in Figure 4, where the collected 
data consists of 6 attributes (4 features and 2 labels). The features set includes the RSS 
values from 4 different reference nodes, whereas the labels set is the corresponding loca-
tion of the mobile target node. 

 
Figure 4. The structure of the RSS dataset. 

The adoption of ML algorithms in fingerprinting localization systems improves the 
localization accuracy of the developed localization system in indoor environments [35]. In 
general, ML algorithms are designed to predict a single numerical value. However, some 
ML algorithms support multioutput regression. The presented work is based on predict-
ing multioutput regression, which involves estimating two numerical values (x and y co-
ordinates) for any target node location. Therefore, four ML models were tailored, tested, 
and adopted in order to enhance the localization accuracy for target nodes employed with 
a ZigBee communication protocol, as follows: 
• Linear Regression (LR) is the most basic and commonly used category of predictive 

analysis, where LR investigates the relationship between one dependent variable and 
one or more independent variables. 

• K-Nearest Neighbor (KNN) approximates the association between independent var-
iables and the continuous outcome through averaging the observations in the similar 
neighborhood. 

• Decision Tree (DT) is based on the form of a tree structure, where it breaks down the 
RSS dataset into smaller subsets, while an associated decision tree is incrementally 
developed. 

Figure 4. The structure of the RSS dataset.

The adoption of ML algorithms in fingerprinting localization systems improves the
localization accuracy of the developed localization system in indoor environments [35].
In general, ML algorithms are designed to predict a single numerical value. However,
some ML algorithms support multioutput regression. The presented work is based on
predicting multioutput regression, which involves estimating two numerical values (x and
y coordinates) for any target node location. Therefore, four ML models were tailored, tested,
and adopted in order to enhance the localization accuracy for target nodes employed with
a ZigBee communication protocol, as follows:

• Linear Regression (LR) is the most basic and commonly used category of predictive
analysis, where LR investigates the relationship between one dependent variable and
one or more independent variables.

• K-Nearest Neighbor (KNN) approximates the association between independent vari-
ables and the continuous outcome through averaging the observations in the similar
neighborhood.

• Decision Tree (DT) is based on the form of a tree structure, where it breaks down the
RSS dataset into smaller subsets, while an associated decision tree is incrementally
developed.
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• Random Forest (RF) employs the ensemble learning method for regression, where it
combines predictions from multiple ML algorithms to make a more precise prediction
than a single ML one.

The above four ML models were tailored to be suitable with RSS fingerprints through
processing the RSS values and then estimating the localization information of the target
node.

4. Experiment Testbed

This section discusses the experimental testbed in terms of experiment testbed area,
the stationary reference nodes distributed in the tracking area, and the collection process of
the RSS values in the offline phase.

4.1. Experimental Area

The experiments were conducted in the Industrial Innovation and Robotics Center
(IIRC) lab at the University of Tabuk with the following dimension size (21.20 m × 7.60 m),
as presented in Figure 5, where the IIRC lab includes different benches, devices, robots,
equipment, and offices. As seen, there are walls and obstacles in the lab area, where radio
waves may be weakened or strengthen accordingly. Figure 6 shows the IIRC lab layout
with the 2D dimensions, whereas Table 2 presents the 2D coordinates for each reference
node.
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Table 2. The 2D coordinates for each reference node.

Node id x-Cord (Meter) y-Cord (Meter)

Node 1 1.0 0.0
Node 2 20.3 0.0
Node 3 20.3 7.50
Node 4 1.0 7.50

4.2. Reference and Mobile Nodes

The ZigBee communication protocol was employed in this study. In general, ZigBee is
a low-data rate, low-power consumption, and low-cost wireless communication protocol.
ZigBee protocol consists of 3 different type nodes: coordinator, router, and end-device.
The experiment testbed consists of a ZigBee network with 5 sensor nodes (4 router and
1 coordinator nodes), as follows:

1. Stationary nodes (reference nodes): a number of 4-sensor nodes (router nodes) were
placed in the corners of the IIRC lab at the University of Tabuk, as shown earlier in
Figure 6, whereas Figure 8 depicts the developed ZigBee-based sensor node, which
acts as stationary sensor node, and Figure 9 presents the architecture of the stationary
sensor node.

2. Mobile node: a single mobile node (coordinator) is required to be employed to collect
the transmitted frames from the stationary sensor nodes along with the RSS values for
each received frame. Figure 7 shows the architecture of the mobile target node, which
consists of an Arduino uno board to obtain and process the received RSS values from
the distributed stationary reference nodes.
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Figure 9. The architecture of the station reference node.

The parameters for the experiment testbed are presented in Table 3.

Table 3. Experiment testbed parameters.

Parameter Value

Transceiver XBee series 2
Communication protocol ZigBee
Transmission range 100 m
Test-bed size 20.2 × 7.6 m
number of reference nodes 4
number of target nodes 1
Power mode 4: High
Node type Router API
Minimum RSS value 0
Maximum RSS value 100

4.3. Collection of Reference Points

This section discusses the collection of reference point phase. The reference points
were collected manually from several points in the tracking area of interest and stored in a
database file. Two different gathering processes (the collection of reference points in the
tracking area) were conducted in order to analyze the impact of the reference point density
on localization accuracy.

A total number of 68 and 126 reference points were collected from equally distributed
points in the IIRC lab for gathering tasks 1 and 2, respectively. In addition, we merged
the two datasets to produce a new RSS fingerprinting dataset with a total of 194 reference
points. Table 4 presents general statistics on the 3 different RSS fingerprint datasets (small,
medium, and large) collected. However, the difference between the RSS datasets is analyzed
and compared according to the following parameters:

1. Total number of collected reference points (rp): this refers to the total number of
reference points in the tracking area, where rp involves the 2D location of a reference
point in the tracking area. Figure 10 depicts the total number of reference points that
were collected using 3 different experiments (small, medium and large).

2. Density of reference points: this refers to the total number of reference points over the
dimension (meter square) of the tracking area (rp/m2).

3. Gathering process time: this presents the total time in minutes needed to accomplish
the offline phase (the collection of reference points) for each RSS dataset.



Appl. Sci. 2023, 13, 3037 10 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 10. Total number of reference points for each dataset (small, medium, and large). 

For validation purposes, the RSS datasets were divided into two subsets: 70% train-
ing subset and 30% testing subset, where the training subset is used to train the ML model, 
and the testing subset is employed to test the localization accuracy. 

Table 4. General statistics on the RSS datasets. 

RSS Dataset # of rp Density (rp/m2) Time Training Size Testing Size 
Small dataset 68 0.422 65 m 47 21 
Medium dataset 126 0.782 132 m 88 38 
Large dataset 194 1.216 197 m 135 59 
m: meter. 

4.4. Hyperparameter Tuning for ML Models 
A hyperparameter is a parameter of an ML model which is required to be set before 

starting the training process. Hyperparameter tuning is essential for any ML process, as a 
good choice of hyperparameters can make the model succeed in meeting the desired met-
ric values. Therefore, this section presents the hyperparameter tuning for each ML model 
after considering several experiments. Table 5 presents the customized hyperparameter 
tuning for the LR model, where the number of splits was set to 10, and the number of 
repeats was set to 3. On the other hand, the customized hyperparameters for the KNN 
model is presented in Table 6, where the number of neighbors is equal to 5, and the metric 
distance function was set to Euclidian. 

Table 5. Hyperparameter tuning for LR model. 

Parameter Value 
n—splits  10 
n—repeats 3 
Random state 1 

Table 6. Hyperparameter tuning for KNN model. 

Parameter Value 
n—neighbors 5 
Metric Euclidian 
Sample weight None 

The customized hyperparameter tuning for the DT model is shown in Table 7, where 
the max. depth value was set to 4, and the max. leaf-node value was set to 7. Finally, Table 

Figure 10. Total number of reference points for each dataset (small, medium, and large).

For validation purposes, the RSS datasets were divided into two subsets: 70% training
subset and 30% testing subset, where the training subset is used to train the ML model, and
the testing subset is employed to test the localization accuracy.

Table 4. General statistics on the RSS datasets.

RSS Dataset # of rp Density
(rp/m2) Time Training Size Testing Size

Small dataset 68 0.422 65 m 47 21
Medium dataset 126 0.782 132 m 88 38
Large dataset 194 1.216 197 m 135 59

m: meter.

4.4. Hyperparameter Tuning for ML Models

A hyperparameter is a parameter of an ML model which is required to be set before
starting the training process. Hyperparameter tuning is essential for any ML process, as a
good choice of hyperparameters can make the model succeed in meeting the desired metric
values. Therefore, this section presents the hyperparameter tuning for each ML model after
considering several experiments. Table 5 presents the customized hyperparameter tuning
for the LR model, where the number of splits was set to 10, and the number of repeats
was set to 3. On the other hand, the customized hyperparameters for the KNN model is
presented in Table 6, where the number of neighbors is equal to 5, and the metric distance
function was set to Euclidian.

Table 5. Hyperparameter tuning for LR model.

Parameter Value

n—splits 10
n—repeats 3
Random state 1

Table 6. Hyperparameter tuning for KNN model.

Parameter Value

n—neighbors 5
Metric Euclidian
Sample weight None

The customized hyperparameter tuning for the DT model is shown in Table 7, where
the max. depth value was set to 4, and the max. leaf-node value was set to 7. Finally, Table 8
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presents the customized hyperparameter tuning for the RF model, with a max. depth of 4,
n—estimators value of 1, and the min. sample split was set to 20.

Table 7. Hyperparameter tuning for DT model.

Parameter Value

Max. depth 4
Max. leaf nodes 7

Table 8. Hyperparameter tuning for RF model.

Parameter Value

Max depth 4
n—estimators 1
Min. sample split 20

5. Experimental Results

This section discusses the results obtained from employing four tailored ML models
on three different RSS datasets with various density distributions of reference points. For
evaluation purposes, we assessed the following metrics for each ML model:

1. Mean absolute error (MAE): this refers to the magnitude in difference between the
prediction of an observation and the actual value of that observation. The MAE is
calculated as follows:

MAE =
1
N ∑

∣∣∣Y − Y
∣̂∣∣ (1)

where N refers to the total number of reference points (test points), Y refers to the
actual reference point, and Yˆ refers to the estimated location.

2. Standard deviation of MAE: this metric offers a general insight about the developed
model. The MAE shows the performance of the ML model, whereas the standard
deviation of the MAE shows how efficient the ML model is on the whole dataset.

3. Average localization error (ALE): this refers to the difference between the predicted
2D coordinates and the real 2D coordinates (x and y). Therefore, we estimated the
localization accuracy for the estimated locations through calculating the difference
between the estimated location (xe − ye) and the actual location (xr − yr), according
to the following formula:

LocAcc =

√
(xe − xr)

2 + (ye − yr)
2 (2)

First, the MAE is assessed for the four ML models using the three different RSS
fingerprint datasets. Figure 11 presents the MAE metric for the four ML models using
the three datasets (small, medium, and large). As noticed, the LR model offers the best
MAE results for the three RSS datasets with an average of 2.2 m, whereas the DT model
offers almost the worst MAE results for the three RSS datasets. On the other hand, the RF
and KNN models offer reasonable average MAE results compared to the LR model. The
obtained detailed results for the tailored MAE model with each single dataset are shown in
Table 9.

The KNN model offers the best MAE results with the large RSS dataset, whereas the
RF model achieves the worst MAE score. The LR and DT models came in second and third
place, respectively. As noticed below, the decision tree models achieve better MAE results
compare to the LR models; this is because that the DT model supports non-linearity data
values, such as the issue with the RSS fingerprint dataset. On the other hand, the KNN
model achieves a much better MAE score than the LR one, as the KNN is a parametric
model. The DT model is faster than the KNN model in real-time scenarios; however, the
KNN model achieves a better MAE score compare to the DT model.
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Figure 11. The MAE results for 4 localization methods using the 3 RSS datasets.

Table 9. MAE results for the 4 tailored ML models using 3 different datasets.

Small Dataset Medium Dataset Large Dataset

LR 2.300 2.300 2.295
RF 2.839 2.686 2.733
KNN 2.720 2.289 2.110
DT 3.097 3.046 2.971

Second, the standard deviation of the MAE was assessed. Figure 12 shows the stan-
dard deviation of MAE for the four ML models when adopted with the three different
RSS fingerprint datasets. The large RSS fingerprint dataset offers a high mean absolute
deviation for almost all of the four ML models, and this indicates that many of the predicted
coordinate values are spread out further from the mean. On the other hand, the small
RSS dataset offers the minimum standard deviation of the MAE for the four ML models,
and this reveals that most of the predicted coordinate values are close to the mean, as the
predicted distance from each coordinate value to the mean is small. In addition, Table 10
presents the detailed standard deviation of the MAE results for the four ML models with
the three different datasets.
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Table 10. Standard deviation of MAE results for the 4 tailored ML models using 3 different datasets.

Small Dataset Medium Dataset Large Dataset

LR 0.543 0.253 0.276
RF 0.699 0.386 0.358
KNN 0.459 0.370 0.254
DT 0.927 0.662 0.642
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Third, the localization error was assessed for each ML model using the three RSS
fingerprint datasets. For instance, Figure 13 presents the average localization error for each
ML model through the adoption of three different RSS fingerprint datasets. As presented
below, the KNN model offers the best localization accuracy when adopted with the large
RSS dataset, with an average localization error of (1.4 m). On the other hand, the RF model
offers the worst localization accuracy with an average of (4.6 m) using the small RSS dataset,
whereas the LR and RF models offer reasonable localization accuracy of 2.10 and 2.00 m,
respectively, using the small RSS dataset.

However, according to the obtained localization accuracy, the large RSS dataset offers
the best average localization accuracy compared to the small and medium RSS datasets,
and this refers to the fact that the number of reference points is greater in the large RSS
dataset, which assists the ML model to train on sufficient cases. Table 11 presents the
detailed average localization error in meters when employing the four ML models with the
three different datasets.
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Table 11. Average localization error (in meters) for the 4 tailored ML models using 3 different datasets.

Small Dataset Medium Dataset Large Dataset

LR 2.10 3.65 2.75
RF 2.00 2.80 4.60
KNN 2.50 2.21 1.40
DT 3.06 3.30 3.08

For more evaluation analysis, the trained KNN model was tested in another indoor
testbed that is presented in Figure 14, which is a study room located in the IIRC lab with a
dimension of 14.1 × 3.92 m2 and consists of a number of desks and chairs. A total number
of four reference nodes were distributed in the corners of the study room, and a single
mobile node (target node) was employed for the validation process.
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Figure 14. The actual structure of the study room.

For evaluation purposes, 20 different testing-points were positioned. Then, the RSS
values were collected from each test point and fed into the tailored KNN model in order to
perform localization estimation. The localization error was estimated through measuring
the difference between the estimated and actual coordinates. As presented in Figure 15,
the localization error was estimated for 20 test points, with an average localization error of
1.5 m.
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On the other hand, the localization accuracy was analyzed for the developed system
in this paper and the recent AI-based fingerprinting approaches. Table 12 presents a
comparison between the developed fingerprinting localization approach that is based
on the tailored KNN ML model and the recently developed ML-based fingerprinting
localization approaches. As discussed above, most of the recently developed systems were
validated through simulation experiments. In addition, the average localization error was
0.3–6 m. However, the developed system in this paper was practically validated through
real experiments conducted in two different indoor environments, where the average
localization error was around 1.4 m.

Table 12. A comparison between the developed fingerprinting localization approach and recent
AI-based localization systems.

Research Work Experiment Testbed Localization Error (Meter)

[25] Simulation experiments 2 m

[26] Real experiments using the CC2530 ZigBee
nodes 1.7 m

[27] Simulation experiments—MATLAB 0.3 m
[28] Simulation 2.5 m
[31] Simulation through real datasets 4 m
[32] Simulation experiments 6 m
[33] Simulation experiments 5 m
[34] Simulation experiments 4.5 m
This work Real experiments—ZigBee Series 2 nodes 1.4 m
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6. Discussion

The radio frequency (RF) propagation channels in indoor WSN-deployment environ-
ments are commonly affected by shadowing due to the obstructions caused by natural and
man-made obstacles. Therefore, triangulation-based localization systems offer efficient
localization accuracy in outdoor environments (clean space) [36–38] but usually fail in
indoor environments with the existence of walls and obstacles.

In general, RSS-based localization systems are easy to deploy, low in cost, and do not re-
quire complicated devices to achieve the positioning function. A device-free fingerprinting-
based localization system is proposed in this paper with the investigation of adopting
tailored ML algorithms to enhance the localization accuracy for indoor environments. Sev-
eral research works considered RSS-based localization systems as range-based; however, in
our approach, the RSS values are collected from stationary sensor nodes with no require-
ment of attaching additional sensors/devices to each reference node or mobile node [39].
Therefore, the developed system in this paper can be considered a range-free localization
approach.

In this work, the positioning accuracy was further analyzed for both approaches,
triangulation and fingerprinting. Therefore, two different experiments were conducted in
the IIRC lab through implementing a triangulation approach to compare the localization
accuracy with the obtained accuracy from the developed fingerprinting system. Through
real experiments, the average localization error for the triangulation system was around
(5.2 m); this refers to the structure of the IIRC lab, where the walls, obstacles, and objects
existed. Figure 16 shows the localization accuracy results for 10 test points, conducted in
the IIRC lab through deploying both the KNN and triangulation approach. As noticed, the
KNN-based localization system achieves better localization accuracy than the traditional
triangulation system in indoor environments.
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On the other hand, there are several RSS–fingerprint datasets available online with
diverse size and accuracy. For instance, the UJIINdoorLoc dataset [40], which consists of
21,048 records, covered three buildings, where the RSS values were collected from 520
different wireless access points (WAPs). The provided dataset is efficient for object localiza-
tion using simulation studies. However, this dataset is inefficient in real experiments, as it
requires a large number of reference nodes (WAPs) to be deployed in the area of interest,
which is not valid in several localization scenarios. Therefore, this paper presents reliable
and various RSS–fingerprint datasets with three different intensity levels of reference points,
which are based on four reference nodes (four WAPs) and can benefit both simulation and
practical studies.

Therefore, as noticed earlier, ML approaches have enhanced the localization accuracy
of fingerprinting localization systems. Unlike the developed systems in [25,27,28,32–34]
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which mainly focused on simulated experiments, we developed a real-time localization
system using low-power consumption and low-cost sensor nodes (XBee Series 2 chips),
where the developed system was tested in real indoor environments with different types of
obstacles. In general, real experiments offer reliable and accurate results for the problems of
indoor localization, as walls, obstacles, and dynamic objects affect the process of estimating
the location of target nodes.

The presented research works in the literature [26,30,31] offer reasonable localization
accuracy with an average of 1.7–6 m. However, the presented positioning system offers an
accurate localization accuracy with 1.4 m, and this proved that the proposed fingerprinting
localization system is efficient in indoor environments. Moreover, the developed stationary
and mobile target nodes are simple, low in cost, and small in size, with no requirement of
extra complicated sensor devices to accomplish the positioning phase, and can be attached
to any object in a reliable manner.

As presented earlier in Table 3, increasing the number of reference points will increase
the time required for manually gathering the RSS values from the allocated reference
points. For instance, the time required to collect RSS values from 65 reference points is
approximately 65 min, whereas 126 reference points requires 132 min, and finally the
194 reference points requires 197 min. Hence, collecting more reference points will increase
the training and testing accuracy, increasing the localization accuracy. However, additional
labor and cost are required to accomplish the offline phase, which may be unavailable in
certain scenarios.

On the other hand, this paper investigates the impact of reference point density on
localization accuracy. The results obtained from three different sizes of the RSS datasets
with various reference point density values were analyzed and discussed. As a result, the
medium and large density values offer high localization accuracy compared to the small
RSS fingerprint dataset. However, the time required to accomplish the offline phase for the
medium and large density values are longer than the small density environment.

7. Conclusions and Future Work

In this paper, the focus was on the field of WSN-based positioning systems using finger-
printing and ML models, and four different ML models were investigated to accomplish the
positioning task. As a result, the KNN model offered the best localization accuracy (1.4 m).
In addition, the impact of reference point density on localization accuracy was investigated,
and it was found that the environment with high reference points offers high localization
accuracy. Moreover, three different real RSS fingerprint datasets were constructed in order
to allow the researchers and developers to develop an efficient localization and tracking
system for indoor WSN environments. For future works, the implementation of DL models
will be considered, and several experiments will be conducted in different environments
to improve the localization accuracy in indoor environments, and an autonomous robot
system based on a robot operating system (ROS) will be employed in order to gather the
reference points from the area of interest in a fast and reliable manner.
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