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Abstract: The iron and steel industry is a pillar industry of the national economy in many countries
and is also a source of high energy consumption and pollution gas emissions. In addition to the eco-
nomic aspect, there have been increasing concerns over how to minimise the negative environmental
impact and enhance the awareness of social responsibility for iron and steel enterprises. Therefore,
this study proposes an intelligent scheduling system for addressing the supplier selection problem
by considering sustainable scheduling (SS) (ISS-AFLCSS) to achieve maximised benefits of logistics
costs, carbon emission and fatigued driving for the Chengsteel Company. In the ISS-AFLCSS, first, a
multiobjective mathematical optimisation model is formulated. Second, this study proposed a hybrid
approach using an improved genetic algorithm (GA) to optimise multiple objectives of scenarios
and adopting the technique for order preference by similarity to an ideal solution (TOPSIS) method
with the analytic hierarchy process (AHP) to precisely optimise and select a best-ideal scenario. The
results confirm that the proposed ISS-AFLCSS can provide accurate guidance in practicing SS for
managers of enterprises.

Keywords: sustainable scheduling; supplier selection problem; hybrid approach; generic algorithm;
analytic hierarchy process; technique for order preference by similarity to an ideal solution

1. Introduction

With the United Nations declaring sustainable development goals for the 2030 agenda,
an increasing number of countries are developing their economies and striving to improve
the ecological environment by adopting novel technology and recyclable materials. Umar
et al. [1] proposed that the leading cause of environmental degradation is the current
unsustainable production and consumption patterns. To address this critical issue, the
Chinese central government formulated several regulations and policies to embed them
into the 14th Five-Year Plan to guide native industries to achieve the goals of sustainable
development. Chengsteel, as an iron and steel enterprise in China, has attempted to reduce
logistical costs and carbon emissions, and prevent fatigued driving by addressing the
supplier selection problem (SSP) in practicing sustainable scheduling (SS). Several studies
also have emphasised that SS cannot focus only on economic and environmental issues and
must simultaneously consider social considerations to achieve balanced development of
the three dimensions of economy, the environment, and society [2,3].

SS refers to the accomplishment of production tasks through control based on pro-
duction plans and scheduling while reducing environmental damage, conserving energy
and natural resources, promoting the profitability of enterprises and enhancing employee
health, community and product safety [4,5]. Focusing on the environmental perspective,
Raileanu et al. [6] emphasised that energy scheduling is the key pillar for sustainable
manufacturing, even if production is only a small part of the whole life cycle of the product.
Kong et al. [7] considered that in industries practicing SS, SS can be evaluated through three
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indices: environmental impact, production efficiency and cost. Duan et al. [8] believed that
SS, as an important part of green manufacturing, is able to reduce the cost and emission of
greenhouse gases. Moreover, taking the angle of the production plan and scheduling for
launching sustainable development goals, Hongyu et al. [9] clarified that the concept of SS
needs to be further comprehended from economic, environmental and social aspects.

To achieve sustainable development goals, previous studies have introduced the
concept of sustainability-oriented scheduling in a growing variety of processes to reduce
pollution and carbon emissions [10,11]. Lu et al. [12] considered reducing the energy
consumption problem in sustainable parallel-machine scheduling based on a hybrid meta-
heuristic algorithm. Shi et al. [13] regarded energy consumption and carbon emissions
as sustainability indicators in a kind of sustainable hybrid flow shop scheduling with a
dynamic scheduling method based on variable priorities. Moreover, to promote under-
standing of the SS concept, studies have started to pay attention to the three dimensions
of SS in manufacturing enterprises. Lu et al. [2] considered the multiobjective problem of
minimizing makespan, negative social impact and total energy consumption in distributed
permutation flow-shop scheduling with a knowledge-based multiobjective memetic op-
timisation algorithm. Gong et al. [3] adopted a nondominated ensemble fitness ranking
algorithm to optimise the multiple objectives of minimizing makespan, labour cost and
green production-related factors of sustainable flexible job-shop scheduling. Recent studies
have attempted to achieve the maximum economic, environmental and social benefits by
optimising multiple objectives in practicing SS. However, few studies generate a deeper
discussion on the mutual influencing interrelationship of the three dimensions of SS.

From the perspective of SS demands and multiobjective optimisation, the aforemen-
tioned studies proposed hybrid algorithms to address the multistage composite scheduling
problem. In addition, genetic algorithm (GA) optimisation has been widely utilised to solve
SS problems [12]. Kong et al. [7] proposed a novel sustainable hybrid flow shop scheduling
model considering machine characteristics and developed an improved GA to resolve
this model. Yao et al. [14] adopted GA to solve the sustainable electric vehicle scheduling
problem with multiple vehicle types in public transport based on a given multivehicle-type
timetable. To dynamically generate the prescheduling and rescheduling solutions of a
sustainable hybrid flow shop, a GA-based dynamic scheduling optimisation with variable
priorities is proposed [13]. In addition, for multiobjective SS problems, the literature has
mostly adopted hybrid methods with GA. Zhang [10] established a multiobjective GA with
a tabu-enhanced iterated greedy local search strategy to resolve SS problems. Previous
studies have mostly focused on improving model accuracy by the modified GA to optimise
multiple objectives in the economic and environmental aspects of SS. However, few studies
have addressed multiobjective problems in three dimensions of SS by GA. Therefore, this
study utilises an improved GA to optimise multiobjective scenarios in three dimensions to
address the SSP by considering SS. After that, this study adopts decision-making analysis
methods to further accurately optimise and select an ideal scenario.

The purpose of this study is to propose an intelligent scheduling system for addressing
the SSP by considering SS (ISS-AFLCSS) to achieve balanced development of the economy,
environment, and society of SS. The main contributions of this study are presented as
follows: (1) generate a deeper analysis and discussion on the balance relations of the
three dimensions of SS; (2) propose a hybrid approach using an improved GA to optimise
multiple objectives of scheduling scenarios and adopt the TOPSIS method with AHP to
further precisely optimise and select a best-ideal scenario; and (3) under every electricity
consumption strategy, selecting a corresponding optimal scheduling scenario of electric and
fuel vehicle combinations can provide precise guidance for enterprise managers. The next
section is a literature review, including the theoretical background, proposed methods and
solved problems. The model is constructed in Section 3. The proposed hybrid method and
the framework for solving the model are described in Section 4. The case information and
analysis results are presented in Section 5. A more detailed discussion of the analysis results
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is provided in Section 6. The conclusions, important findings, limitations and possible
future research directions are summarised at the end of the paper.

2. Literature Review

This section provides the background of SS and a review of the proposed methods
and measures and SSP for enhancing the understanding of SS.

2.1. Sustainable Scheduling

SS is generally regarded as the production of goods and services that do not pollute,
conserve energy and natural resources, are economically viable, protect the safety and
health of workers, communities and consumers, and meet public expectations [15]. SS,
as the core part of sustainable production, is beginning to attract increasing attention.
In a review of SS literature, Akbar et al. [16] extend SS to consider more sustainability
indicators, especially in the social responsibility of enterprises, to assist many companies
in achieving sustainability improvement in scheduling problems. Moreover, considering
that most previous studies on SS have mainly focused on the problems of traditional
workshop scheduling, Duan et al. [8] shifted to explore the SS for equipment manufacturing
enterprises with high energy consumption and high pollution, e.g., large-scale factories
with multiple heterogeneous processes. Prado et al. [17] introduced life-cycle management
into shop-floor scheduling as a performance measurement system for enterprises to realise
SS. Fathollahi et al. [18] merged the concept of the triple bottom line with production
systems to expand several new ideas for research in terms of developing optimisation
models and algorithms for SS. However, the interaction and facilitation of the criterion of
practicing SS are rarely mentioned in previous studies.

At present, most studies of SS focus on economic and environmental issues.
Prado et al. [17] considered the makespan, profit margin, energy consumption and pol-
lution air emissions of economic and environmental dimensions in the constructed SS
model. Duan et al. [8] solved the problem of high energy consumption and high environ-
mental pollution in the SS of large marine power components. Lu et al. [12] optimised
the objectives of completion time and energy consumption in a rubber manufacturing
enterprise by practicing SS. In addition, an increasing number of studies have considered
the three dimensions of economy, environment and society of SS. Abedini et al. [5] pre-
sented a metric-based model to systematically and holistically evaluate the sustainability
of production schedules based on all three pillars of the triple bottom line. Based on most
previous studies on SS problems emphasizing the balance between the economy and the
environment, Lu et al. [19] considered noise pollution as an important social issue and
harmful to human health. Hongyu et al. [9] construct a model of the sustainable, flexible job
shop scheduling problem to optimise the makespan, energy consumption, and ergonomic
risk simultaneously. In summary, the simultaneous consideration of the three kinds of
criteria of economy, environment and society in launching SS is an increasing concern.

With the increasing demands of customer customisation and small orders, different
types of shop scheduling are widely used in manufacturing industries. Therefore, how
to solve shop-scheduling problems to achieve the goal of SS has become a general focus
of attention in the academic field. Lu et al. [19] proposed a mathematical model in terms
of the sustainable shop scheduling problem and solved the model with a novel hybrid
multiobjective gray wolf algorithm. Li et al. [20] adopted a genetic algorithm (GA) to solve
a mixed-integer linear programming model of remanufacturing job shop scheduling to
reach SS. Coca et al. [21] employed the nondominated sorting genetic algorithm-II (NSGA-
II) and NSGA-III algorithms to evaluate the sustainable multiple objectives of a flexible
job shop manufacturing system. In addition, some studies have focused on sustainable
logistics scheduling problems. Chargui et al. [22] constructed a multiobjective mixed-
integer programming model in terms of sustainable truck scheduling in a rail-road physical
internet cross-docking hub and addressed optimising objectives by two multiobjective
hybrid metaheuristic algorithms. Gong et al. [23] adopted the concept of SS to establish a
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resource-scheduling simulation model that can assess the effects of the number of service
workers, the charging pile replacement policy and the charging pile maintenance times
on charging station revenues. Furthermore, SS is more widely applied in production
operation scheduling. Lee et al. [24] proposed a deep reinforcement learning method for
injection mold production scheduling to launch the SS. Huang et al. [25] attempted to
globally optimise the sustainability of production scheduling in aluminum furnace hot
rolling sections. To meet the demands of small series productions and individual articles,
Fülöp et al. [26] established a genetic production system similar to the SS problem of a
discrete product assembly plant.

2.2. SSP

The SSP is a procurement decision problem that consists of the definition of meth-
ods and models for analyzing and measuring the performance of a group of suppliers in
order to improve the competitiveness of the customer. Recent studies show significant
interest in artificial intelligence-based models for solving SSP. To solve a multi-criteria SSP,
Luan et al. [27] proposed a hybrid algorithm of GA and ant colony optimisation (ACO).
Zhang et al. [28] adopted an improved genetic algorithm combined with the Bayesian ap-
proach to quantify the evaluation indicators of green suppliers, which solves the problems
of the traditional methods of information occlusion and an unreasonable selection scheme.
Ehtesham et al. [29] integrated sustainable supplier selection and optimisation of sustain-
ability performance indicators in a supply chain network to establish a mixed-integer linear
programming model solved by multi-objective genetic and multi-objective particle swarm.
In an uncertain environment, a new multi-objective model is developed for both supplier
selection and order allocation operations considering incremental discount [30]. Compared
with multi-criteria decision-making methods to address SSP, GA is able to provide a higher-
quality solution [31]. Therefore, this study adopts GA to solve mathematical models for the
multiple purchasing problem.

Fatigued driving is the most important affecting traffic and transportation safety. To
prevent fatigued driving, China’s Road Traffic Safety Law stipulates that drivers of transport
vehicles who drive for more than four hours without stopping or for less than 20 min
will be fined six to twelve points. Statistics show that 30–45% of accidents are directly or
indirectly caused by fatigued driving [32]. Therefore, research on fatigued driving has
always been of great concern to scholars. Zhou et al. [33] believed that the traditional
real-time fatigue monitoring method may cause delays during the transition period from
highly automated driving to manual control. To overcome the defect that electroencephalo-
gram fatigue detection is susceptible to environmental noise and other external factors,
Wang et al. [34] proposed a driving fatigue detection method based on a multinonlinear
feature fusion strategy. Savaş et al. [35] proposed a behavioural model for monitoring
the characteristics of drivers’ eyes and mouth, which is used to judge the driver’s fatigue
level according to the changes in the characteristics monitored. Xiao et al. [36] proposed a
driver fatigue state detection method based on a densely connected convolutional network.
Zheng et al. [37] proposed a new method combining integrated empirical mode decom-
position with power spectral density to explore new electroencephalogram features for
driving fatigue detection. In recent years, most studies have concentrated on monitoring
and predicting fatigued driving.

2.3. Structured Decision-Making Methods

The same structured methods are proposed by the literature [38]. In the literature, an
improved GA is used to obtain a set of optimal customer load management, sorted from
the best to the worst, using an integration of AHP and TOPSIS as multi-criteria decision-
making methods. In addition, similar structured methods are proposed in the following
literature. Marchetti et al. [39] constructed a new hybrid model that combines TOPSIS
with GA to investigate the extreme performances of the Brazilian rail cargo system. The
multiobjective optimisation based on non-dominated sorted genetic algorithm II is used
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for optimising the machining parameters to produce a set of non-dominated solutions, and
the multi-attribute decision-making method using TOPSIS and AHP is used to select the
optimum machining parameters from the non-dominated solutions [40].

3. Mathematical Model

The purpose of this section is to provide a mathematical model for the multis-supplier
decision problem with hard time windows (MSDP-HTW). The multiobjective of the model
includes the transportation cost (TC), utilizing the cost of vehicles, carbon emissions and
rest time of drivers.

3.1. Model Development

The mathematical model strives to reach the aim of the minimum TC under the
condition of meeting the material demand with the optimal configuration of the production
scheduling system. Before a scheduling plan is carried out, the data of orders, time
windows, material inventory of each supplier, vehicles, roads and other information are
collected. In the model (as shown in Figure 1), D = (V, F, E) is defined as a directed
graph. where V = N ∪ P represents a set of network nodes. N is the set of SSs, and P is
a node of FS. The arc set B is defined as B = {(i, j), i ∈ N, j ∈ P}. Each arc corresponds
to a transportation route between FS and SS. F represents a set of fuel vehicles, and E
represents a set of electric vehicles. For a production scheduling plan, there are h SSs that
will be selected as material suppliers to serve FS. The transportation facility for materials
includes two types of electric vehicles and fuel vehicles. In addition, electric vehicles and
fuel vehicles have different fixed costs and carrying capacities.
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Figure 1. A schematic diagram of the framework for the supplier and factory.

3.2. Model Formulation

In the mathematical model, this study comprehensively considers TC, the number of
electric vehicles (NEVs) and fuel vehicles used, carbon emissions and the rest time of drivers
under time window constraints. It is assumed that fuel vehicles can have the capacity
of continuously working and that electric vehicles need to recharge while continuously
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working during a period of time. Every transportation of a vehicle is a full load. In addition,
no carbon emissions are produced by electric vehicles. If the number of combinations of
electric and fuel vehicles cannot meet the transportation demand of materials within the
time windows in a production cycle, production scheduling needs to add the number of
vehicles until the transportation task is completed within each time window. Each supplier
needs to provide an inventory of material in a production cycle. The purchase plan and
transportation plan are drawn up in terms of each supplier’s material inventory. The
notations used to develop the mathematical model are summarised in Table 1.

Table 1. Meaning of the symbols.

Sets

N Set of supplier storage
E Set of electric vehicles
F Set of fuel vehicles
W Set of time windows
Sv Set of vehicles

Parameters
i Index for supplier storage, i ∈ {1, 2, . . . , N}
e Index for electric vehicle, e ∈ {1, 2, . . . , E}
f Index for fuel vehicle, f ∈ {1, 2, . . . , F}
w Index for time window, w ∈ {1, 2, . . . , W}
v Index for the vehicle, v ∈ {1, 2, . . . , Sv}
c Ton-kilometer TC

dij Distance from supplier i to factory storage
si Material storage of supplier storage i
Ce Utilizing cost of electric vehicle e
C f Utilizing cost of fuel vehicle f
E f Carbon emissions of ton-km transportation of fuel vehicle

Qe, Q f Carry capacity of electric vehicle e and fuel vehicle f
Ae, A f Constants

best Best rest time for driver of electric vehicle between continuous working
Te Time per charge of electric vehicle e
Tc Time of a scheduling cycle

Cwt Continuous working time of electric vehicle driver
Lt Loading time of vehicle
V Velocity of vehicle

[Sw Ew] Start time Sw and end time Ew of wth time window
M Minimum total volume of transportation

Smax maximum number of electric and fuel vehicles
RestTime Rest time electric vehicle driver is required to between continuous working

Dw Quantity demand of material of wth time window
Eem Endurance mileage of electric vehicle e
Cq Carbon quota allocated to the factory storage

Variables
xi 1 if supplier storage i is selected, otherwise 0
ye 1 if e is selected to transport, otherwise 0
yn

iv 1 if v is selected to transport for i at nth, otherwise 0
y f 1 if f is selected, otherwise 0

Sem Sustained mileage of electric vehicle e transportation
qe 1 if Eem ≤ Sem, otherwise 0
De Transportation distance of electric vehicle e
Ne Charging NEV e
Tnv Time of the nth departure of vehicle v from the factory storage
Anv Time of the nth arrival at the factory storage of vehicle v from supplier storage
Trw

e transportation volume of electric e during the wth time window
Trw

f transportation volume of electric f during the wth time window
Art Actual rest time of electric vehicle driver between continuous working
Se Number of used electric vehicles
S f Number of used fuel vehicles
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3.2.1. Analysis of the TC

In a production scheduling cycle, the demand quantity of a kind of material has
a minimum low level. The primary purpose of production scheduling is to realise the
minimum TC under the demand quantity of a kind of material. The objection function of
TC is as follows:

f1 = min ∑N
i=1 cxidijsi (1)

3.2.2. Analysis of the Number of Vehicles Used

Electric vehicles can reduce carbon emissions (RCEs) in vehicle scheduling systems
and provide rest time for drivers while electric vehicles are being recharged. In addition,
electric vehicles have a lower fixed cost and lower carrying capacity than fuel vehicles.
Therefore, in a production scheduling activity, optimising the combination number of
electric and fuel vehicles cannot only reduce the comprehensive cost of vehicles and carbon
emissions but also relieve the fatigue of drivers in high-intensity production operations
under the condition of meeting production demand on time.

The comprehensive cost of vehicles used in a production cycle can be expressed
as follows:

f2 = min ∑F
f=1 ∑E

e=1(yeCe + y f C f ), (2)

3.2.3. Analysis of Carbon Emission Reduction

Electric vehicles have no harmful exhaust emissions and produce zero air pollution.
The tonnage mileage of electric vehicles used is regarded as the tonnage mileage of fuel
vehicles that can be converted into carbon emissions. Therefore, the reduction quantity of
carbon emissions of electric vehicles used is presented as follows:

f3 = max ∑E
e=1 yeDeQeE f , (3)

3.2.4. Analysis of the Rest Time of the Driver

The driver of a material transportation vehicle is a high-intention and high-risk oc-
cupation. The rest time provided for drivers needs to be considered during continuous
long-term working. The driver of the electric vehicle can obtain rest time when the vehicle
used is being recharged. In the model, the rest time of each driver is the average value of
the recharge time of all-electric vehicles used during continuous working time. Equation
(4) expresses the minimal rest time of drivers. Equation (5) expresses the best rest time of
drivers, and Equation (6) expresses the maximal rest time of drivers.

f4 = min
∣∣∣(∑E

e=1 yeTeNe/ ∑E
e=1 ye)(Cwt/Tc)− RestTime

∣∣∣, (4)

f5 = min
∣∣∣(∑E

e=1 yeTeNe/ ∑E
e=1 ye)(Cwt/Tc)− best

∣∣∣, (5)

f6 = max
∣∣∣(∑E

e=1 yeTeNe/ ∑E
e=1 ye)(Cwt/Tc)− RestTime

∣∣∣, (6)

3.2.5. Constraints

The constrain functions are as follows:

Anv = Tnv + 2xiyn
ivdij/V + Lt ∀ i ∈ N; v ∈ Sv, (7)

0 ≤ (Anv − Sw)(Ew − Anv) ∀ w ∈W; v ∈ Sv (8)

M ≤∑N
i=1 xisi, (9)

max ∑E
e=1 ye + min ∑F

f=1 y f ≤ Smax, (10)

Ae = Qe ∀ e ∈ E (11)
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A f = Q f ∀ f ∈ F (12)

Dw ≤∑E
e=1 yeTrw

e + ∑F
f=1 y f Trw

f ∀ w ∈W, (13)

qe = 1 ∀ e ∈ E (14)

RestTime ≤ (∑E
e=1 yeTeNe/ ∑E

e=1 ye)(Cwt/Tc), (15)

Cq ≤∑E
e=1 yeDeQeE f , (16)

Constraint (7) is a time logic constraint for a vehicle completing a transportation task.
Constraint (8) specifies that the time of any vehicle arriving at the factory storage must meet
the demand corresponding to the time window. Constraint (9) indicates the minimum trans-
portation quantity of a kind of material. Constraint (10) prohibits the maximum NEVs and
fuel vehicles. Constraint (11) is the full load constraint for electric vehicles. Constraint (12)
is the full load constraint for fuel vehicles. Constraint (13) specifies the minimum quantity
demand of a kind of material during the wth time window. Constraint (14) determines
that if the sustained mileage of an electric vehicle is greater than the endurance mileage
of the electric vehicle, the vehicle needs to be recharged in time. Constraint (15) expresses
that the average recharging time of each electric vehicle during the continuous working
time is not lower than RestTime. Constraint (16) expresses the lowest amount of reducing
carbon emissions.

4. Method Design

To solve the proposed MSDP-HTW model, a hybrid method is designed to obtain a
high-quality scheduling scenario in this section. In this study, a three-stage optimisation
hybrid method based on the GA algorithm, AHP and TOPSIS is introduced. The calculation
process of the hybrid method designed in this study is shown in Figure 2. The Iteration
represents the current number of iterations, and Max is the largest number of iterations in
Figure 2.

4.1. The Improved GA Algorithm

The improved GA algorithm is designed to find the optimisation strategy of the
selected location. When considering the storage quantity of material and the TC of each
supplier, the improved GA can eventually seek the approximate optimisation combination
of suppliers to realise the lowest TC under a certain total material demand. In addition,
different combinations of electric vehicles and fuel vehicles at the constraints on hard
time windows will provide different scheduling strategies. However, the improved GA
algorithm can further find an approximate optimisation strategy of the location selected
under any different number combination of electric vehicles and fuel vehicles.

The basic steps of finding the optimal location selected by the improved GA algorithm
are presented as follows:

Step 1. Generating the initial population
This study adopts a binary system as the method of gene coding. A randomly gen-

erated 0 or 1 is put into each gene position of a chromosome. “1” in the chromosome
indicates that the supplier storage is selected in the gene position. All of the “1” in a chro-
mosome represents a combination of selected supplier storages. Random generation of a
chromosome is shown in Figure 3. where positions 1, 3, 7 and 8 represent the corresponding
number of supplier storages that are selected. In addition, randomly generating multiple
chromosomes makes up a population.
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Step 2. Scheduling vehicles
First, the minimum NEVs are set so that the average charging time of each electric

vehicle during the continuous working time is not less than RestTime. If the initial minimum
NEVs cannot meet the RestTime demand, the NEVs are increased until the average charging
time is greater than or equal to RestTime. Similarly, electric vehicles complete transportation
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tasks at all time windows, and an increasing number of NEVs meet the RestTime demand
for drivers.

Second, gradually increasing the number of fuel vehicles and scheduling all vehicles
until meeting the demand of all hard time windows and completing a purchase and
transportation plan of a production cycle.

Step 3. Selection operator
According to the selected suppliers on a chromosome, calculate the material transporta-

tion quantity and select the chromosome meeting the lower demand of the transportation
quantity plan. In addition, calculate the total TC of every selected chromosome in terms of
transportation distance and TC of each vehicle. Finally, the selected chromosome is saved
as the offspring population.

Step 4. Crossover and variation operators
Selected chromosomes by crossover and variation operators produce the new chro-

mosomes as the offspring population. Calculate the total transportation quantities of the
new chromosomes; if the total transportation quantity meets the lowest demand quantity
plan of material, the new chromosome will be the offspring population. The crossover
and variation operators are repeated after calculating the total transportation until a new
population is produced as the next generator.

Step 5. Calculate objective values
The offspring population is repeated to perform Step 1 to Step 4 until the maximum

number of iterations is completed. Saving the combination NEVs and fuel vehicles, the
optimisation TCs, supplier combination strategies, the average rest times and the reduced
amount of carbon emission.

Step 6. Increasing the Number of Fuel Vehicles (NFVs)
Increase one vehicle at a time, repeating Steps 1 to 5 and outputting the different

scheduling scenarios until the total number of NEVs and NFVs is equal to Max.

4.2. The AHP Method

Through improved GA optimisation, we obtain different scheduling scenarios with
TC, carbon emissions and rest time of drivers under different number combinations of fuel
vehicles and electric vehicles. Therefore, the different number combinations of fuel vehicles
and electric vehicles affect the economic, environmental, and social benefits of SS. Based
on the comprehensive benefit of the location selected and production supply system, this
subsection established a three-level evaluation index system to confirm the weight of each
indicator, as shown in Table 2.

Table 2. Benefit evaluation index system of SS.

Objective Layer Criteria Layer Indicator Layer Unit

Comprehensive Benefit
Economic Benefit

Fuel Vehicle Quantity
Electric Vehicle Quantity

TC CNY
Environmental Benefit Carbon Emission kg

Social Benefit Rest Time min

4.2.1. Construct Judgment Matrix

The judgment matrix is the core of the AHP. For the same evaluation target, the
relative importance of each specific index is often different. To address this problem,
through pairwise comparison of the different indexes, judgment matrix A is constructed.
The element aij in judgment matrix A =

(
aij
)

n×n is the comparative value of the relative
importance of the index in row i to the index in column j, which is determined by experts
in related fields according to the nine-stage scale method (as shown in Table 3). n is the
number of evaluation indicators.
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Table 3. Judgment matrix scales.

Scales Implication

1 Two factors are equally important
3 One factor is slightly more important than the other
5 One factor is significantly more important than the other
7 One factor is strongly more important than the other
9 One factor is extremely important over the other

2, 4, 6, 8 The median of the two adjacent judgements above

4.2.2. Calculate the Weight of Indexes

Each column of the judgment matrix is normalised:

aij =
aij

∑n
i=1 aij

, i, j = 1, 2, · · · , n (17)

Calculate the average value of each row of judgment matrix A:

wi =
∑n

j=1 aij,

n
, i = 1, 2, · · · , n (18)

where, wi is the weight value of the ith row. Therefore, the weight formula of indicators is
shown as follows:

W =
[
w1 w2 · · · wn

]
(19)

4.2.3. Consistency Check

The consistency ratio (CR) was used to test the logical consistency of the judgment
matrix, which was calculated as follows:

CI =
λmax − n

n− 1
(20)

CR =
CI
RI

(21)

In Formula (20), CI is the consistency test index. λmax is the maximum eigenvalue of
the judgment matrix. In Formula (21), RI is a random consistency index of the judgment
matrix. If CR < 0.1, the comparison matrix has satisfactory consistency. Otherwise, the
judgment matrix needs to be reconstructed until the consistency test is satisfied.

4.3. The TOPSIS Method

After the indicator value of each scheduling scenario are obtained through improved
GA, and each indicator weight value is obtained through the AHP method, this subsec-
tion employs the TOPSIS method for dimensionless processing and assigning weight to
indicators to rank all scheduling scenarios.

The TOPSIS method, also known as the approximate ideal solution ranking method,
is a common method in multiobjective decision analysis. First, a positive ideal solution and
a negative ideal solution are established. Second, the distance between each scheduling
scenario and the positive and negative ideal solutions can be calculated. The positive ideal
solution and negative ideal solution correspond to the maximum and minimum values of
the standardised evaluation index. If a scheduling scenario is closest to the positive ideal
solution and farthest from the negative ideal solution, the scheduling scenario has the most
satisfactory objective values. In the study, the closer the scheduling scenario is to the ideal
solution, the higher the comprehensive benefit of sustainable scheduling will be.
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4.3.1. Dimensionless Processing of Index

The dimensionless processing formulas of index are as follows:

bij =
xij −mj

Mj −mj
(22)

bij =
Mj − xij

Mj −mj
(23)

bij = 1−
∣∣xij − dbest

∣∣
max

{∣∣Mj − dbest
∣∣} (24)

where in Formula (22), xij is the actual value of the index. In Formula (23), bij is the
standardised value of the positive index. In Formula (20), bij is the standardised value of
the negative index. In Formula (24), bij is the standardised value of the intermediate index.
Mj is the maximum value of the jth index, and mj is the minimum value of the jth index.
dbest is the best value in the jth index.

The matrix B is obtained after the scheduling scenarios are dimensionless,

B =
(
bij
)

m×n =


b11 b12
b21 b22

· · · b1n
· · · b2n

...
...

bm1 bm2

...
...

· · · bmn

 (25)

Calculate the weighted normalised matrix V, V = B×W,

V =


v11 v12
v21 v22

· · · v1n
· · · v2n

...
...

vm1 vm2

...
...

· · · vmn

 (26)

4.3.2. Identify Positive and Negative Ideal Solutions

Positive ideal solution:

V+ =
(
V+

1 , V+
2 , · · · , V+

n
)

(27)

V+
j = max

{
v1j, v2j, · · · , vmj

}
(28)

Negative ideal solution:

V− =
(
V−1 , V−2 , · · · , V−n

)
(29)

V−j = min
{

v1j, v2j, · · · , vmj
}

(30)

4.3.3. Calculate the Distance from Each Scheduling Scenario to the Positive and Negative
Ideal Solutions

Formulas of ideal solutions calculated are as follows:

D+
i =

√
∑n

j=1

(
vij −V+

j

)2
, (31)

D−i =

√
∑n

j

(
vij −V−j

)2
, (32)



Appl. Sci. 2023, 13, 3035 13 of 23

4.3.4. The Closeness Degree of the Ideal Solution

Formula of the closeness degree calculated of the ideal solution is as follows:

Ci =
D−i

D+
i + D−i

(33)

4.4. Proposed Analytical Procedures

The analytical procedures of the proposed method design are summarised in
this subsection.

4.4.1. Collecting Parameters and Data of the Mathematical Model

The collection of parameters and data includes the following four parts: Vehicle
information: the number, carrying capacity, loading and unloading time, velocity, utilizing
cost, TC of electric and fuel vehicles; carbon emissions of ton-km transportation of fuel
vehicle; endurance mileage and charging time of the electric vehicle. Applier data: distance
between each applier storage and factory storage; material inventory of each applier.
Factory parameters: time windows; carbon quota; minimum transportation quantity; the
best rest time, the shortest rest time and the longest rest time of electric vehicle drivers are
required between continuous working.

4.4.2. Obtaining Scheduling Scenarios under Different Vehicle Combination Conditions

First, setting parameters of a minimal number combination of electric and fuel vehicles
to meet the demand of time windows and inputting data into the GA algorithm program
designed for the mathematical model under the constraint of Equations (7)–(15), and output
scheduling scenario of the objective combination of Equations (1)–(6). Second, gradually
increase the number of electric and fuel vehicles and repeat the step first. After that, screen
out the scheduling scenarios that meet the constraint of Equations (15) and (16).

4.4.3. Calculating Index Weights

Firstly, construct the index system of benefits evaluation of production scheduling
and the corresponding judge matrix. Secondly, calculate the weight value of each index
according to Equations (17) and (18) and establish the weight vector Equation (19). Thirdly,
conduct consistency checks according to Equations (21) and (22).

4.4.4. Evaluating Scheduling Scenarios

First, according to Equations (23) to (24), the indicators of scheduling scenarios are
dimensionless to generate the result of Equation (25). Second, calculate the weighted
normalised matrix V according to Equation (26). Third, identify positive and negative
ideal solutions according to Equations (27)–(30). Fourth, calculate the distances from each
scheduling scenario to the positive and negative ideal solutions according to Equations
(31) and (32) and the closeness degree from each scheduling scenario to the ideal solution
according to Equation (33). Finally, output optimal scenarios according to the closeness
degree of each scheduling scenario.

5. Analytical Results

The detailed information and analytical results of a real-world case study are intro-
duced in this section.

5.1. Case Information

The presented ISS-AFLCSS was applied to the case for production scheduling opera-
tion in Chengsteel Company from Hebei Province, China. With the proposed 2030 Agenda
for Sustainable Development, sustainable development is regarded as the primary objective
of the production and program of the Chengsteel Company. Chengsteel’s focus is gradually
shifting from the core of economic benefit in the past to the comprehensive consideration
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of the economy, the environment and society today. As the birthplace of comprehen-
sive development and utilisation technology of vanadium-titanium magnetite in China,
Chengsteel is located in a mountainous area and vehicles have become the main means of
transportation for local raw materials. Recently, the company introduced electric freight
vehicles as a comprehensive benefit of consideration in production scheduling. From an
economic point of view, electric vehicles will lead to some economic losses compared to
fuel vehicles. However, from the perspective of sustainable development of the company,
it is necessary to make a scientific and objective evaluation of the introduction of electric
vehicles. Therefore, based on the project, this study discusses the economic, environmental
and social comprehensive benefits of vehicles from the macro perspective of SS.

All the data and information are from the production scheduling collection of the
pre-iron production system in the Chengsteel Company. Table 4 provides information on
the vehicle parameters. Table A1 is supplier information. Table A2 shows three different
electricity consumption policies, and Table A3 establishes three different time window
strategies for vehicle transportation according to the electricity consumption policy. In
addition, the best rest time of an electric vehicle driver between continuous working is
25 min, the shortest rest time is 20 min and the longest time is 30 min.

Table 4. Vehicle parameters.

Parameters Electric Vehicle Fuel Vehicle

Total number 30 25

Loading time (min) 5 5
Unload time (min) 5 5

Carrying capacity (t) 5 10
TC (CNY/t) 9 9

Velocity of vehicle (km/h) 30 30
Carbon emission (kg/t·km) 0 0.473

Endurance mileage (km) 100 Infinite
Charging time (min) 30 0
Utilizing cost (CNY) 500,000 450,000

Transportation quantity (t) ≥9000
Cq (kg) 400

5.2. Outputting Scheduling Scenarios

The improved GA algorithm outputs different optimisation results under three kinds
of time windows. Under the time window without consideration of peak to valley, the
minimum number combination is electric vehicles number 25 and fuel vehicles number
10, which could meet the demands of the time window and rest time. With the number
gradually increasing of electric and fuel vehicles, when the number combination is electric
vehicles number 30 and fuel vehicles number 15, the number of vehicles reaches the
maximum value. If increasing the number of vehicles again, the number combination
will not meet the demand for the rest time of electric drivers. Therefore, Table 5 shows
51 scheduling scenarios with feasible number combinations of vehicles. In a similar way,
Table 6 shows 10 scheduling scenarios by avoiding sharp periods, and Table 7 shows
four scheduling scenarios by avoiding sharp and peak periods under different number
combinations of vehicles.
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Table 5. Scheduling scenarios without consideration of peak to valley.

Scenario NFVs NEVs TC Rest Time RCE Purchase Strategy
1 10 25 332,550 27.6 551.20 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
2 11 25 311,490 27.6 580.84 0, 1, 0, 0, 1, 1, 0, 1, 0, 1
3 12 25 311,850 24.0 564.72 0, 1, 0, 0, 1, 1, 0, 1, 0, 1
4 13 25 395,550 26.4 609.96 0, 1, 0, 0, 0, 1, 0, 0, 1, 1
5 14 25 351,360 30.0 596.96 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
6 15 25 330,120 30.0 571.48 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
7 16 25 369,450 30.0 609.44 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
8 17 25 331,830 27.6 563.16 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
9 18 25 361,620 30.0 593.84 1, 1, 0, 0, 1, 1, 0, 1, 0, 0

10 10 26 291,960 21.9 573.56 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
11 11 26 370,080 24.2 587.08 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
12 12 26 323,550 25.4 598.52 0, 1, 1, 0, 0, 1, 0, 1, 0, 0
13 13 26 330,300 20.8 611.00 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
14 14 26 331,020 27.7 633.36 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
15 15 26 357,660 28.8 711.88 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
16 16 26 363,690 26.5 564.72 0, 1, 1, 0, 0, 0, 0, 1, 0, 1
17 17 26 358,920 21.9 667.16 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
18 18 26 332,640 23.1 569.40 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
19 19 26 358,020 21.9 603.72 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
20 10 27 292,320 23.3 588.64 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
21 11 27 292,230 21.1 568.88 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
22 12 27 323,370 21.1 593.32 0, 1, 1, 0, 0, 1, 0, 1, 0, 0
23 13 27 349,740 30.0 640.64 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
24 14 27 349,020 30.0 616.72 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
25 15 27 374,670 20.0 587.08 0, 1, 1, 0, 1, 0, 0, 1, 0, 0
26 16 27 351,180 30.0 599.56 1, 1, 1, 0, 0, 1, 0, 0, 0, 0
27 17 27 369,270 23.3 626.08 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
28 18 27 365,220 27.8 577.72 0, 1, 1, 0, 0, 0, 0, 1, 0, 1
29 10 28 361,350 30.0 685.88 0, 1, 1, 0, 0, 0, 0, 1, 0, 1
30 11 28 323,010 21.4 621.92 0, 1, 1, 0, 0, 1, 0, 1, 0, 0
31 12 28 330,660 20.4 657.28 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
32 13 28 387,360 30.0 661.96 0, 1, 1, 0, 0, 1, 0, 1, 0, 1
33 14 28 386,370 22.5 783.12 1, 1, 0, 1, 0, 1, 0, 1, 0, 0
34 15 28 331,650 27.9 639.08 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
35 16 28 352,260 30.0 618.28 1, 1, 1, 0, 0, 1, 0, 0, 0, 0
36 17 28 369,540 20.4 621.40 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
37 10 29 350,820 30.0 717.08 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
38 11 29 350,010 30.0 696.80 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
39 12 29 369,360 27.9 695.76 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
40 13 29 351,630 25.9 659.36 1, 1, 1, 0, 0, 1, 0, 0, 0, 0
41 14 29 386,820 23.8 644.80 0, 1, 1, 0, 0, 1, 0, 1, 0, 1
42 15 29 364,230 24.8 614.64 0, 1, 1, 0, 0, 0, 0, 1, 0, 1
43 16 29 373,410 25.9 664.56 0, 1, 1, 0, 1, 0, 0, 1, 0, 0
44 8 30 361,170 25.0 704.08 1, 1, 0, 0, 1, 1, 0, 1, 0, 0
45 9 30 340,740 30.0 691.08 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
46 10 30 394,650 25.0 735.28 0, 1, 0, 0, 0, 1, 0, 0, 1, 1
47 11 30 330,660 22.0 713.44 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
48 12 30 355,860 24.0 794.04 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
49 13 30 356,400 21.0 769.08 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
50 14 30 361,530 29.0 725.40 1, 1, 0, 0, 1, 1, 0, 1, 0, 0
51 15 30 349,920 20.0 591.24 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
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Table 6. Scheduling scenarios avoiding sharp periods.

Scenario NFVs NEVs TC Rest Time RCE Purchase Strategy

1 20 20 339,030 24.0 451.36 0, 1, 1, 0, 0, 1, 0, 1, 0, 0
2 21 20 381,600 22.8 479.96 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
3 22 20 397,170 24.0 439.92 0, 1, 0, 0, 0, 1, 0, 0, 1, 1
4 23 20 395,620 24.0 447.72 0, 0, 1, 0, 1, 1, 0, 1, 0, 1
5 20 21 354,060 25.2 475.28 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
6 21 21 354,960 25.2 460.72 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
7 20 22 354,960 30.0 487.24 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
8 22 23 377,100 30.0 540.28 1, 1, 0, 0, 1, 1, 0, 1, 0, 0
9 24 23 294,480 26.1 402.80 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

10 20 24 339,030 25.0 527.80 0, 1, 1, 0, 0, 1, 0, 1, 0, 0

Table 7. Scheduling scenarios avoiding sharp and peak periods.

Scenario NFVs NEVs TC Rest Time RCE Purchase Strategy

1 20 20 345,780 25.0 423.28 0, 1, 1, 0, 1, 0, 0, 0, 0, 1
2 21 20 389,970 30.0 665.60 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
3 20 21 345,600 22.9 430.56 0, 0, 1, 1, 1, 0, 0, 1, 0, 1
4 21 23 393,660 32.9 492.96 0, 1, 1, 1, 1, 0, 0, 0, 0, 0

5.3. Calculating Index Weights

First, construct the judge matrix of the indicator layer (as shown in Table A4). Calculate
the weights of the indicator layer and judge the consistency (as shown in Table A5). Where
CI = 0.0435, RI = 0.52 and CR = 0.0836 < 0.1.

Second, construct the judge matrix of the criteria layer without consideration of peak
to valley (as shown in Table A6). Calculate the weights of the indicator layer and judge the
consistency (as shown in Table A7), where CI = 0.0269, RI = 0.52 and CR = 0.0517 < 0.1.
In the same way, construct respectively judge matrixes of the criteria layers and judge the
consistencies by avoiding sharp periods and avoiding peaks and sharp periods.

5.4. Optimising Scheduling Scenarios

First, the indicators of the scheduling scenarios are processed without dimension.
Second, the weighted normalised matrix of the criteria layer is calculated. Third, the
distances from each scheduling scenario to the optimal solution and worst solution are
calculated, and the closeness degree from each scheduling scenario to the optimal solution
is calculated. Table 8 shows the distances from each scenario to the optimal solution and
worst solution without consideration of peak to valley and closeness degree. Table 9 shows
the distances from each scenario to the optimal solution and the worst solution, avoiding
the sharp period and closeness degree. Table 10 shows the distances from each scenario
to the optimal solution and the worst solution, avoiding sharp and peak periods and
closeness degrees.

Therefore, the optimised scheduling scenario could be obtained, which corresponds
to the minimum value of the closeness degree of all scheduling scenarios under each type
of time window. In Table 8, the optimised scheduling scenario is the 49th under the time
windows without consideration of peak to valley. In Table 9, the optimised scheduling
scenario is the 10th under the time windows of avoiding a sharp period. In Table 10, the
optimised scheduling scenario is the fourth under the time windows of avoiding the peak
and sharp periods.
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Table 8. Distances from each scenario to optimal and worst solutions without consideration of peak
to valley and closeness degree.

Scenario Distance of
Optimal Solution

Distance of Worst
Solution Closeness Degree Order

1 0.4802 0.1077 0.1832 46
2 0.4563 0.1143 0.2003 43
3 0.4591 0.1477 0.2434 41
4 0.4771 0.1094 0.1865 45
5 0.5000 0.0748 0.1301 47
6 0.5172 0.0532 0.0933 50
7 0.5154 0.0767 0.1295 48
8 0.5236 0.0557 0.0962 49
9 0.5382 0.0548 0.0924 51
10 0.3780 0.2437 0.3920 28
11 0.4067 0.1813 0.3083 36
12 0.3935 0.1824 0.3167 35
13 0.3793 0.2380 0.3855 29
14 0.4007 0.1673 0.2945 37
15 0.3892 0.2296 0.3711 32
16 0.4714 0.1103 0.1897 44
17 0.3903 0.2315 0.3723 31
18 0.4576 0.1599 0.2590 40
19 0.4474 0.1823 0.2895 38
20 0.3275 0.2840 0.4645 21
21 0.3482 0.2957 0.4592 23
22 0.3386 0.2799 0.4526 25
23 0.3691 0.2202 0.3736 30
24 0.3927 0.1968 0.3338 34
25 0.3821 0.2553 0.4006 26
26 0.4197 0.1681 0.2860 39
27 0.3693 0.2130 0.3658 33
28 0.4373 0.1402 0.2427 42
29 0.2850 0.3277 0.5348 18
30 0.2646 0.3453 0.5661 16
31 0.2355 0.3596 0.6042 13
32 0.3253 0.2743 0.4575 24
33 0.2110 0.4015 0.6555 8
34 0.3148 0.2698 0.4615 22
35 0.3654 0.2371 0.3936 27
36 0.3176 0.2921 0.4790 20
37 0.2353 0.4086 0.6346 9
38 0.2507 0.3870 0.6068 12
39 0.2296 0.3713 0.6180 10
40 0.2364 0.3560 0.6009 14
41 0.2487 0.3369 0.5752 15
42 0.2854 0.3186 0.5275 19
43 0.2544 0.3224 0.5590 17
44 0.1520 0.4824 0.7604 5
45 0.2378 0.4653 0.6618 7
46 0.1297 0.4687 0.7832 4
47 0.1119 0.4893 0.8138 3
48 0.0880 0.5139 0.8538 2
49 0.0619 0.5045 0.8907 1
50 0.2080 0.4307 0.6744 6
51 0.2689 0.4164 0.6076 11
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Table 9. Distance from each scenario to optimal and worst solution and closeness degree avoiding
sharp periods.

Scenario Distance of
Optimal Solution

Distance of Worst
Solution Closeness Degree Order

1 0.2643 0.2959 0.5282 7
2 0.2079 0.3901 0.6523 3
3 0.3036 0.2667 0.4677 9
4 0.2960 0.2841 0.4898 8
5 0.1989 0.3593 0.6437 4
6 0.2320 0.3247 0.5833 6
7 0.2258 0.3808 0.6278 5
8 0.1858 0.5035 0.7305 2
9 0.5042 0.1345 0.2106 10
10 0.0767 0.5046 0.8680 1

Table 10. Distance from each scenario to optimal and worst solution and closeness degree avoiding
peak and sharp periods.

Scenario Distance of
Optimal Solution

Distance of Worst
Solution Closeness Degree Order

1 0.4496 0.1566 0.2583 3
2 0.2657 0.4006 0.6013 2
3 0.5436 0.1832 0.2520 4
4 0.1009 0.5701 0.8497 1

6. Discussion

The main findings are presented in the following subsections, which contain the
theoretical and managerial implications.

6.1. Theoretical Implications

From the concept of SS, achieving objectives of SS refers to not affecting economic
interests to save energy and reduce greenhouse gas emissions while increasing employees’
job satisfaction. Table 4 shows that utilizing electric vehicles is able to achieve zero carbon
emissions and provides rest time for drivers, but the cost of an electric vehicle is slightly
higher than that of a fuel vehicle, and the carrying capacity is lower than that of a fuel
vehicle. This means that the introduction of electric vehicles will increase logistics costs
but can reduce carbon emissions to improve the environment while increasing employees’
job satisfaction. In addition, by addressing the SSP, two benefits coming from optimised
TC and exceeding the carbon quota are able to compensate for the economic loss. In addi-
tion, from a long-term perspective, the use of electric vehicles to improve drivers’ work
satisfaction can reduce traffic accidents, promote physical fitness, and increase produc-
tivity to promote economic benefits. Therefore, the above analysis results confirm that
discussing the importance of practicing SS only from the economic dimension or from
the economic and environmental dimensions can lead to one-sided conclusions, and the
integrated consideration of the interrelationship of the three dimensions of SS can achieve
balanced development.

6.2. Managerial Implications

Table 5 shows that in a scheduling cycle, optimising the purchasing strategy of ma-
terials by addressing the SSP can reduce the logistical cost for the Chengsteel Company.
For example, the optimal purchasing strategy of scenario No. 1 (as shown by the orange
background) is an optimised combination of suppliers No. 1, 2, 5, 6, and 10 without con-
sideration of peak to valley. The advantage of the optimal purchasing strategy is that the
company has no need to invest capital and equipment but can deduce logistics costs by con-
sidering the material storage and transportation distance of suppliers. Similarly, the same
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results can be drawn from Tables 6 and 7. Therefore, the proposed ISS-AFLCSS through
improved GA for addressing SSP achieved the approximate minimal transportation cost of
every scenario to realise the idea of the Chengsteel company practicing SS.

Table 8 shows that the best ideal scheduling scenario is the 49th (as shown by gray
background) by the TOPSIS method with AHP optimising and selecting, and Table 5 shows
the corresponding indicator values of the 49th scheduling scenario without consideration of
peak to valley (as shown by gray background). Compared with all scheduling scenarios, the
NEVs of the 49th scenario are the largest to confirm that the economic benefit is regarded as
the primary consideration to compensate for the peak electricity loss. In addition, the RCE
of the 49th scheduling scenario is third, and the rest time of the driver is only slightly higher
than the standard break time of the Chinese driver continuously working interval of 20 min.
The analytical results show that the rest time of drivers is the final consideration because
drivers can, on average, distribute transportation tasks over 24 h under time windows
without consideration of peaks to valleys. Therefore, for the company during the time
windows, the economic benefit is the primary consideration, RCE is the second, and the
rest time of the driver is the last consideration.

As shown in Table 9, the best ideal scheduling scenario is the 10th scenario (as shown
by gray background), and Table 6 shows the corresponding indicator values while avoiding
a sharp period (as shown by gray background). From Table 6, it can be seen that the
economic benefit is still the first, the RCE reaches second in all scheduling scenarios, and
the rest time of the driver is the third, but the best break time becomes 25 min because the
working time is to avoid a sharp period of using electricity. Therefore, the above analysis
results confirm that the optimal scheduling scenario with avoiding peak periods further
pays more attention to environmental and social aspects to attempt to achieve a balance of
benefit in the three dimensions of economy, the environment and society of the SS.

In addition, in Table 10, the best ideal scheduling scenario is fourth (as shown by gray
background), and Table 7 shows the corresponding indicator values while avoiding sharp
and peak periods (as shown by gray background). Table 7 shows that the rest time of the
best ideal scheduling scenario becomes the first compared with all scheduling scenarios,
the RCE is still the second, and the economic benefit becomes the third. This is because
during the time windows when sharp and peak periods are avoided, drivers have to work
at night most of the time and need more rest time. On the other hand, during the time
windows when sharp and peak periods are avoided, there are significant cost benefits for
subsequent operations. Therefore, under the condition of avoiding sharp and peak periods,
the best-ideal scheduling scenario suggests that Chengsteel company should pay more
attention to the importance of social aspects and finally consider economic aspects.

In summary, ISS-AFLCSS provided different ideal scheduling scenarios for the Cheng-
steel Company according to three kinds of time windows. First, ISS-AFLCSS, through an
improved GA for addressing the SSP, achieved the approximate minimal transportation
cost of every scenario. Second, a set of the best-ideal scheduling scenarios is selected
from all scheduling scenarios for the Chengsteel Company. For the best-ideal schedul-
ing scenario without consideration of peak to valley, economic benefit is regarded as the
first consideration, and environmental benefit should be regarded as the second. For the
best-ideal scheduling scenario under the condition of avoiding a sharp period, Chengsteel
Company is supposed to consider a balanced benefit of the three dimensions. Finally, for
the best-ideal scheduling scenario under the condition of avoiding sharp and peak periods,
the drivers’ job satisfaction is the most important consideration. Therefore, decision-makers
of the Chengsteel Company can adopt different scheduling scenarios according to different
conditions to obtain the maximised comprehensive benefits in practicing SS.



Appl. Sci. 2023, 13, 3035 20 of 23

7. Conclusions

The United Nations created the Sustainable Development Goals in 2015. To achieve
these goals, an increasing number of educational institutions and researchers are striving
to introduce SS to the production and manufacturing industries. However, few studies
have generated a deeper discussion on the balance relationship of the three dimensions of
economy, the environment and society in practicing SS. This factor has caused deviation
in the theoretical application of SS. To further promote understanding of the concept of
the SS, this study proposed an ISS-AFLCSS according to a real-world case to analyse the
mutual influence relationship in the three dimensions of the SS. The analysis and discussion
results confirm that the concept of SS can be further understood by fully considering the
interrelationship of the three dimensions to balance development.

This study makes three contributions. First, this study thoroughly analyzed and
discussed a balanced relationship in the three dimensions of the SS. Second, this study pro-
posed a hybrid method using an improved GA to optimise multiple objectives of scenarios
and adopting the TOPSIS method with AHP to optimise and select an optimal scenario
according to the corresponding time windows. Third, the research results confirm that
the established ISS-AFLCSS is able to provide a set of the best-ideal scheduling scenarios
under the conditions of different electricity utilisation strategies for Chengsteel to achieve
balanced economic, environmental and social development.

Although this research strives to fill the gaps of previous studies, there are still some
limitations. Because of space limitations, this study only discusses the three dimensions
of economic, environmental and social indicators of SS and lacks index evaluation. In
addition, we made a sensitivity analysis in terms of the number of vehicles, and the
change in number would affect the weight in AHP. However, we didn’t make other types of
sensitivity analysis. In the next step of research in this field, this study will generate a further
analysis of these issues. On the other hand, the iron and steel industry is characterised by
high energy consumption and high pollution gas emissions. According to reports, 52%
of energy consumption and 36% of pollution gas emissions in industrial processes are
attributed to manufacturing activities [11,41]. Therefore, the iron and steel industry has
great potential to deducing energy consumption and pollution gas emissions, and this
study hopes that all parts of society pay more attention to this field to strive to accelerate
the goals of the 2030 Agenda.
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Appendix A

Table A1. Supplier information.

No. 1 2 3 4 5 6 7 8 9 10

Material
inventory (t) 1800 3000 3600 600 900 1200 2400 1500 2400 1200

Distance (km) 3 1 2 8 4 1 6 3 5 2
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Table A2. Peak to valley management of electricity.

Period Time Window

sharp period 19:00–21:00
[1140–1260]

Peak period 8:00–11:00
[480–660]

13:00–19:00
[780–1140]

21:00–22:00
[1260–1320]

Low period 11:00–13:00
[660–780]

22:00–24:00
[1320–1440]

24:00–8:00
[480–1440]

Table A3. Time windows.

Without consideration of peak to valley
0–60 200–260 560–600 780–840 1000–1060 1250–1310 1360–1400

Avoid sharp period
0–60 200–260 560–600 780–840 1000–1060 1360–1400

Avoid sharp and peak period
0–120 240–360 660–780 1320–1440

Table A4. Judge matrix of indicator layer.

Indicator Layer NFVs NEVs TC

NFVs 1 1/4 3
NEVs 4 1 5

TC 1/3 1/5 1
Sum 5.33 1.45 9.00

Table A5. Weight of indicator layer.

Indicator Layer NFVs NEVs TC w

NFVs 0.19 0.17 0.33 0.2311
NEVs 0.75 0.69 0.56 0.6651

TC 0.06 0.14 0.11 0.1038

Table A6. Judge matrix of criteria without consideration of peak to valley.

Criteria Layer Economic Benefit Environment Benefit Social Benefit

Economic Benefit 1 2 2
Environmental Benefit 1/2 1 2

Social Benefit 1/2 1/2 1
Sum 2.00 3.50 5.00

Table A7. Weight of criteria layer without consideration of peak to valley.

Criteria Layer Economic Benefit Environmental Benefit Social Benefit w

Economic Benefit 0.50 0.57 0.40 0.4905
Environmental

Benefit 0.25 0.29 0.40 0.3119

Social Benefit 0.25 0.14 0.20 0.1976
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