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Abstract: Accurate extraction of impermeable surfaces is important for assessing land use change
and improving the urban heat island effect. Nighttime light imagery has the advantage of being
efficient and cost effective, providing a new perspective for monitoring and extracting impermeable
surfaces and analyzing urban expansion processes. However, for the vast Karst terrain fragmentation
area located in southwest China, the extraction of impermeable surface information faces many
challenges due to surface landscape fragmentation and nighttime light image resolution. These
challenges include light spillover, oversaturation and limited understanding of spatial links with
surface types at fine scales. This study uses Luojia1-01, NPP-VIIRS, and Flint as remote sensing data
sources to examine the applicability of nighttime light images in extracting impermeable surfaces
from geomorphologically complex areas. The results show that Luojia1-01 data can provide finer
spatial details and more accurate impermeable surface extraction results than NPP-VIIRS and Flint
data. The relative error of extracted area in regions with large topographic relief is higher than that in
regions with flat topographic cuttings. The extraction results of the three images are spatially similar;
however, the overall accuracy is poor, and a single nighttime light image is not the best solution
for obtaining impermeable surface information in large scale terrain fragmentation areas. However,
the integrated application of multi-source light images is a trend for future regional research and
development, and the best way to extract impermeable surfaces in complex terrain areas should be
explored in conjunction with other remote sensing data sources in the future.

Keywords: Luojia1-01; NPP-VIIRS; flint; impermeable surface; karst mountains; geomorphologically
complex area

1. Introduction

Impermeable surfaces are areas dominated by man-made surfaces [1], which mainly
include urban impermeable surfaces and construction sites. Due to the urban sprawl
occurring globally, more and more impervious surfaces are replacing the original per-
meable surfaces [2]. These impervious surfaces affect the evaporation and infiltration
of surface water, alter the absorption and reflection of solar radiation [3], and directly
affect the hydrological cycle, surface temperature, and environmental quality of cities [4].
Therefore, accurate quantification of the percentage of impervious surfaces is important for
understanding the urbanization process, urban hydrothermal cycle, and environmental
detection [5,6].

The traditional method of extracting impervious surfaces obtains information about
impervious surfaces by manually identifying the relevant feature information of remote
sensing graphics and distinguishing different features. This method faces many difficulties
in its implementation in the underdeveloped areas due to the huge workload that requires
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a significant amount of labor effort and can easily cause errors. Furthermore, the extraction
process is long, inefficient, and costly [7]. The rapid development of remote sensing theory
and applications has shown its great potential to achieve understanding of various socioe-
conomic indicators related to human activities, providing a new approach to impermeable
surface mapping [2]. Unlike traditional manual mapping carried out by governments or
international organizations, remote sensing measurements are highly robust against human
error. Moreover, they are very effective and can provide more objective results [8].

The selection of remote sensing data with suitable spectral, temporal, and spatial
characteristics is the first important step in extracting impermeable surfaces using remote
sensing. Previously, Landsat Thematic Mapper (TM) images were mostly applied for imper-
meable surface extraction [9]. Among these images, fine spatial resolution images contain
richer spatial information (e.g., land use and land cover) and image features (buildings
and roads), which facilitate the estimation and mapping of impervious surface extent [10].
Common methods for impervious surface extraction using the TM images include the
normalized vegetation index (NDVI) [11], categorical regression tree (CART) algorithm [9],
linear spectral mixture analysis (LSMA) medium-resolution extraction method [10], artifi-
cial neural networks [12], and impervious surface mapping based on high spatial resolution
images. Landsat imagery can provide rich spectral, spatial, and temporal features. How-
ever, the spectral and spatial features are not sufficient for understanding the surface
coverage type [13] from Landsat images. These images generally have a revisit period of 16
days, but reliable observations for a ground scene are obtained less frequently than 16 days
because of interference from clouds and snow and their shadows. In addition, the Landsat
7 satellite has missing bands in the ETM+ data due to scan line failures. Unreliable observa-
tions caused by clouds, cloud shadows, snow and ice, and stripes limit the availability and
mapping accuracy of multi-temporal Landsat images [14]. Therefore, it is difficult to obtain
multi-year impermeable surface information at large spatial scales using the TM imagery.

With the advent of the Operational Line Scan System (OLS) of the Defense Meteo-
rological Satellite Program (DMSP), nighttime lights were used in various applications.
Elvidge et al. discovered a positive correlation between the degree of impermeability and
light intensity, and demonstrated the applicability of nighttime light data in impermeable
surface detection [15]. Unlike the sensors that detect surface objects based on the reflective
properties of solar radiation, nighttime light images have the appropriate spatial and tem-
poral resolution to detect large spaces of impermeable surfaces and the dynamic process of
impermeable surface expansion [16]. At the same time, impervious surfaces are active areas
of urban development, and the extraction of impervious surfaces from traditional remote
sensing data is not effective for reflecting the social and economic activity of the region.
On the other hand, the brightness of nighttime light data can accurately reflect the urban
expansion level, and the intensity of lights can also reflect the scale of human activities
within the city. Therefore, nighttime light data are more practical than the impervious
surface extracted from traditional remote sensing images [17,18]. Consequently, nighttime
light images have received a significant amount of attention as a new remote sensing data
type [19].

There are five main types of available nighttime light images, which are described as
follows:

The operational line system (OLS) sensor was launched in 1976 via the DMSP satellite. It
is an oscillating scanning radiometer with a strip width of about 3000 km, consisting of
two broad spectral bands [20]. It has a spatial resolution of 30 arc seconds [21]. As the
DMSP-OLS nighttime light imagery is not perturbed by light shadows, it can be used for
characterizing human activities, and is a good data source for dynamic monitoring of urban
land expansion at large urbanization scales [22].
The Suomi national polar partnership (NPP) satellite launched in October 2011 has an
on-board visible infrared imaging radiometer suite (VIIRS) instrument, which is a 22-band
visible/infrared sensor. It has the same strip width as the DMSP, i.e., 3000 km, but a higher
spatial resolution of 15 arc seconds [23]. The VIIRS has fuller in-flight calibration, lower
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detection limits, wider dynamic range, and finer radiometric quantification. Furthermore,
it can provide richer information about human habitation and economic activity compared
to the OLS [24].
As the first dedicated nighttime light satellite, Luojia1-01 has a spatial resolution of
130 m [25], a high radiance quantification of 15 bits, and a wide image frame of
250 km [26]. It provides a new nighttime light dataset with a high resolution and accuracy
for artificial nighttime light variation monitoring [27]. It is seminal for the development
and application of nocturnal remote sensing [28]. Since Luojia1-01 data do not suffer from
saturation and bloom problems [29], Li et al. [30] found that the use of these data resulted
in better impermeable surface extraction compared to using the NPP-VIIRS data.
The existing high-resolution nighttime light data are mainly photographs taken by astro-
nauts on the international space station (ISS) and commercial satellites, such as EROS-B
and JL1-3 [31]. The data obtained from the ISS have a spatial resolution between 5 to 200 m,
while those obtained from the commercial satellites have a resolution of less than 1 m [32].
This category of data has the advantage of fine resolution and multISDectral information.
However, their high price and difficult acquisition have lowered the interest in their usage
for impermeable surface extraction and urban land expansion.
Derived datasets for nighttime lighting: Chen et al. produced a global “NPP-VIIRS-like”
nighttime light dataset having a spatial resolution of 500 m with cross-sensor correction.
These nighttime light data can effectively mitigate the oversaturation and overflow effects of
the original DMSP-OLS data and use both types of data continuously over a time span [33].
Flint, developed by the Chinese Academy of Sciences Remote Sensing Satellite Ground
Station, is the world’s first full sequence global nighttime light annual product based on
the NPP-VIIRS sensor’s monthly nighttime light product. It has a 500 m resolution in
its official version and a 1500 m resolution in its beta4 version. The Flint nighttime light
images smooth out disturbances other than the surface factors and provide higher accuracy,
stability, and ease of use to continuously track human activities on the Earth’s surface [34].
However, the derived datasets have not been widely used in various fields.

Main existing methods for mapping impervious surfaces are as follows:

(1) Threshold segmentation methods that include: the 1© Empirical threshold method,
which is the extraction of urban areas by artificially setting specific thresholds based
on the validation of previous studies [35]; 2©Mutation detection method proposed by
Imhoff et al. [36], which is based on the assumption that urban impervious surfaces
consist of intact patches, and, by gradually increasing the segmentation nighttime
lighting threshold, the obtained polygonal patches represent the urban areas along
the edges. When the segmentation threshold reaches a point where a polygonal patch
breaks up from within, the perimeter of the polygon representing the urban area
suddenly increases. Pixels with values greater than or equal to this threshold are
considered part of the impervious surface area.

(2) Data comparison methods that include: the 1© Statistical Comparison Method, which
uses the impervious surface area statistics released by the government as a reference
and compares the difference between the extracted impervious surface area and
the statistics. A threshold is generated iteratively until the extracted urban area
matches the statistics [37]. 2© Spatial comparison method, which uses high resolution
multISDectral remote sensing data or land use data as auxiliary data to achieve urban
impervious surface information extraction [38].

However, there are still several outstanding problems with the extraction of imperme-
able surfaces using nighttime light imagery. These problems are as follows:

(1) The scale and values of lights can become inconsistent with actual conditions due to
cloud diffraction, moonlight, etc. [39]. This error may be amplified in topographically
fragmented areas, and it becomes impossible to accurately represent the urban mor-
phology of a region [40]. Consequently, there has been considerable discussion on
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the utility of nighttime light imagery in topographically fragmented areas for truly
representing the urban form of complex landscapes.

(2) Topographic conditions strongly influence the spatial distribution of nighttime lights
and human activities. The spatial correlation between nighttime light images and
surface types at fine scales [41] is essential for the application of nighttime light images
for impermeable surface extraction. However, because of the late start of research on
nighttime remote sensing data in China (a study of population change in important
cities in mainland China based on nighttime light data), there are only a few studies on
Karst mountains, and the existing empirical studies mainly analyze their relationships
with various social environments. Meanwhile, in practical applications, “remote
and inaccessible areas” are not perfectly distributed within a specific administrative
area. From a geographical perspective, economic and social development emphasizes
the process and state of achieving or failing to achieve coordinated development of
“people”, “industry”, and “land” in a specific spatial and temporal context [42]. The
socio-economic situation of any region has its own specific geographical background.
The study of the application of nighttime light images should emphasize its usage in
a regional context and not remain limited to a specific administrative area. It should
provide the theory and applications that can be applied to different regions in similar
natural environment backgrounds.

The Karst mountains of southwest China form a typically complex geomorphological
region [43], which, together with the cloudy and rainy climatic characteristics, possibly
renders the impervious surface extracted by night lighting spatially displaced. Therefore,
it is of great significance to analyze the applicability of nighttime light image datasets in
impermeable surface extraction in the southwest Karst mountains. This analysis is relevant
vis-a-vis the application of nighttime light images in impermeable surface extraction for
complex geomorphological regions and the in-depth mining of nighttime light image data.
At the same time, topography and geomorphology are two key environmental factors
governing human use and modification of land resources, which are deeply involved in
the formation and change process of regional land use. Therefore, based on the geomor-
phological characteristics of the Karst mountains, this paper divides the study area into
different geomorphological regions for analysis. Considering the complexity of the types of
geomorphological areas in the Karst mountains and the data availability, three data sources
are used:

(1) Luojia1-01 nighttime light data, which do not have saturation and blooming issues;
(2) NPP-VIIRS nighttime light data, which are the most widely used in current research;

and
(3) “Flint” nighttime light data, which can smooth out disturbances other than surface

factors.

This study analyzes the potential of different nighttime light image datasets for im-
permeable surface extraction in topographically fragmented areas. It contributes to the
extension of the application potential of nighttime light imagery and supports subsequent
research on mitigating urban climate change and reducing the impact of global warming
on humans, which is important for the sustainable development of the region.

2. Materials and Methods
2.1. Overview of the Study Area

The Karst region in southwest China is centered on the Guizhou plateau. It is the
largest and the most concentrated contiguous ecologically fragile mountainous area in
the world. It has an area of more than 55 × 104 km2, which is affected by the Karst
environment, fragile ecological environment, and high occurrence possibility of natural
disasters. Regional socio-economic development is heavily influenced by the landscape
and faces many obstacles. Figure 1 shows that the geographical location of the Guizhou
Province is 103◦36′ E–109◦35′ E, 24◦37′ N–29◦13′ N. Its topography ranges from high in
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the west to low in the east, sloping from the middle to the north, east, and south, with an
altitude range of 130~2990 m and a large drop.
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Figure 1. Geomorphological zoning map of the study area.

2.2. Data Preprocessing
2.2.1. Luojia1-01

The Luojia1-01 nighttime lighting product used in this paper is a data product down-
loaded from the geospatial data cloud (http://www.gscloud.cn/) accessed on 1 August
2018). It has a resolution of 130 m and contains a high amount of noise. Therefore, first, the
data are denoised using a filter in ArcGIS. The effect of light saturation is mitigated by using
the Luojia1-01 data provided by the data distribution website for radiation correction [44],
as follows:

DNi = DN
3
2 × 10−10 (1)

where DN is a number indicating the image value of each pixel, and DNi denotes the
image element value after radiometric correction. The original Luojia1-01 radiance units
given in W-m-2-Sr-1 µm-1 are converted to nanometers as W-cm-2-Sr-1 in order to facilitate
comparison of data from multiple sources.

2.2.2. NPP-VIIRS

The NPP-VIIRS nighttime lighting product is available on the national oceanic and
atmospheric administration’s website (https://www.ngdc.noaa.gov/eog/viirs) accessed
on 1 August 2018. It is a monthly composite nighttime light product with a resolution of
500 m. The negative values in the downloaded NPP-VIIRS images are first eliminated, and,
subsequently, the data are corrected for relative radiation as described in [45].

2.2.3. Flint

Flint nighttime light data are the world’s first full range of Global High Definition (HD)
nighttime light products that are built on the NPP-VIIRS sensor’s monthly nighttime light
products. Compared to the original product, the Flint nightlight data offer greater accuracy,
stability, ease of use, and the ability to describe the distribution of nighttime light brightness
and darkness. In addition, these data describe changes over a five-year period, which can
be used to continuously track human activity on the Earth’s surface. The Flint nightlight
dataset is downloaded from http://satsee.radi.ac.cn/cfimage/nightlight/ accessed on 1
August 2018. The dataset belongs to the beta4 version product with a resolution of 1500 m.
These data correspond to products that have already been processed and, therefore, they
were not pre-processed.

http://www.gscloud.cn/
https://www.ngdc.noaa.gov/eog/viirs
http://satsee.radi.ac.cn/cfimage/nightlight/
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2.2.4. Unified Scale

Thirty uniformly distributed ground control points were manually collected from the
study area boundaries. The three nighttime light images were geometrically corrected
using the Landsat 8 imagery with a uniform spatial coordinate system of WGS1984. The
three corrected Luojia1-01, NPP-VIIRS, and Flint datasets were cropped using ArcGIS
10.2. The images were projected in the Lambert equal area projection coordinate system
and resampled to achieve identical resolutions of 100 m. Figure 2 shows the corrected
images separately. Areas with monthly mean NDVI > 0.9 and NDVI < 0.1 are excluded as
uninhabited areas [43,44].
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2.2.5. Other Data

The impervious surface data were obtained from [46]. Reference to data on the
classification of landform types exists in [44].

2.3. Research Methodology
2.3.1. Impermeable Surface Extraction

Unlike regions with flat topography, the Karst mountains have a broken topography.
Furthermore, the distribution of impermeable surfaces is affected by rugged topography,
land resources, transportation, ethnic culture, and other factors. The spatial distribution
pattern of impermeable surfaces varies significantly [47] and, consequently, large errors can
occur if the impermeable surfaces are extracted according to a uniform standard. Therefore,
prior to the extraction, the study area is first classified according to the type of landform:
Karst fault basins, Karst gorges, Karst plateaus, Karst troughs, crested depressions, and
non-Karst landforms.

The implementation of the mutation detection method [42] relies only on the features
present in the nighttime lighting data itself and exhibits a minor dependence on other
conditions, e.g., built-up area, actual built-up area image data, etc. At the same time, the
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extraction results are more accurate compared to the empirical threshold method. Therefore,
this study uses the mutation detection method to extract impermeable surfaces from the
Karst topographically fragmented areas. The specific steps of the extraction method are
as follows:

(1) The ROI module of ENVI is used to extract queue values for light segmentation.
(2) The polygonal patches representing the urban areas are gradually reduced along the

edges while the segmentation nighttime light threshold is gradually increased.
(3) When the segmentation threshold reaches a certain point, the polygon patch breaks

up from inside and its perimeter representing the urban area suddenly increases.
This is the threshold point for extracting the impermeable surface area. The pixels
whose values are greater than or equal to the threshold are considered as part of the
impermeable surface area.

2.3.2. Accuracy Verification

In this paper, the impermeable surfaces are extracted in the form of an image. The
extraction accuracy is verified by calculating the coefficient of determination (R2), root
mean square error (RMSE), and systematic error (SE) [48] for 200 sample points of images
per region. The R2 and SE can be used to measure the systematic error and the goodness of
fit of the simulated impervious surface coverage values with respect to the true coverage
values, respectively. The RMSE is highly sensitive to very large or small errors in a set
of measurements, and can effectively reflect the precision of the measurements [49]. The
expressions for calculating R2, RMSE and SE are as follows:

R2 = 1− ∑N
i=1 (x1 − xi)

2

∑N
i=1 (x1 − x2)

2

RMSE =

√
∑N

i=1 (xi − x1)
2

N

SE =
∑N

i=1(x− xi)

N
where x is the impervious surface estimate, x1 is the true impervious surface value, x2 is the
mean of the true impervious surface value, and N is the sample size. The smaller the values
of RMSE and SE, the smaller the impervious surface estimation error. Values of SE > 0 and
SE < 0 mean that the impervious surface is overestimated and underestimated, respectively.

The error in extracting the impervious surface area is obtained as follows:

relative error =
xi − x

x

where x and x1 are the estimated and true impervious surface areas, respectively.

3. Results
3.1. Impermeable Surface Extraction
3.1.1. Impervious Surface Extraction Results

Figure 3 shows the variation in extraction queues and the corresponding impervious
surface patch perimeters for each dataset under different geomorphological partitions. The
curves in the figure demonstrate that the polygon perimeter of the urban area gradually
decreases as the segmentation threshold increases gradually. When the threshold increases
to a certain queue value, the polygon perimeter starts to increase and then decreases
gradually. This queue value is the optimal threshold point for extracting the impervious
surface of the city.
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Figure 4 shows the impermeable surfaces extracted from six different geomorphologi-
cal divisions in the Karst Mountains based on Luojia1-01, NPP-VIIRS, and Flint nighttime
light images, using the queues shown in Figure 3. The extracted surfaces are compared
with the real impermeable surfaces. Overall, the results extracted using the three nighttime
light images exhibit similar spatial patterns.
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values; (e) variation of perimeter of Karst Gorge built-up area patches extracted from NPP-VIIRS with
different queue values; (f) variation of perimeter of Karst Gorge built-up area patches extracted from
Flint with different queue values; (g) variation of perimeter of Karst Plateau built-up area patches
extracted from Luojia1-01 with different queue values; (h) variation of perimeter of Karst Plateau
built-up area patches extracted from NPP-VIIRS with different queue values; (i) variation of perimeter
of Karst Plateau built-up area patches extracted from Flint with different queue values; (j) variation
of perimeter of Karst Trough Valley built-up area patches extracted from Luojia1-01 with different
queue values; (k) variation of perimeter of Karst Trough Valley built-up area patches extracted from
NPP-VIIRS with different queue values; (l) variation of perimeter of Karst Trough Valley built-up area
patches extracted from Flint with different queue values; (m) variation of perimeter of Karst Fracture
Basm built-up area patches extracted from Luojia1-01 with different queue values; (n) variation of
perimeter of Karst Fracture Basm built-up area patches extracted from NPP-VIIRS with different
queue values; (o) variation of perimeter of Karst Fracture Basm built-up area patches extracted
from Flint with different queue values; (p) variation of perimeter of Non-karst Landscapes built-up
area patches extracted from Luojia1-01 with different queue values; (q) variation of perimeter of
Non-karst Landscapes built-up area patches extracted from NPP-VIIRS with different queue values;
(r) variation of perimeter of Non-karst Landscapes built-up area patches extracted from Flint with
different queue values.

A comparison of the impermeable surfaces extracted from different data sources shows
that the impermeable surfaces extracted from Luojia1-01 for the landform types other
than the Karst fracture basins overlap more closely with the actual impermeable surfaces.
The NPP-VIIRS images have higher spatial similarity to the Flint images. However, the
impermeable surface patches extracted from the former type of images are highly separated.
Furthermore, the extracted impermeable surface shows a poor spatial overlap with respect
to the actual impermeable surface. The processed Flint dataset can effectively complement
the detailed and missing information within the nighttime lighting data. Consequently,
the impervious surface patches extracted from the Flint data are complete and highly
aggregated but have blurred boundaries.
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Figure 4. Ratio between the impervious surface extracted from different nighttime lighting data and
the actual impervious surface. (a) Impervious surface and actual impervious surface of the Crested
Depressions extracted from Luojia1-01; (b) Impervious surface and actual impervious surface of the
Crested Depressions extracted from NPP-VIIRS; (c) Impervious surface and actual impervious surface
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surface of the Crested Depressions extracted from Flint; (d) Impervious surface and actual impervious
surface of the Karst Gorge extracted from Luojia1-01; (e) Impervious surface and actual impervious
surface of the Karst Gorge extracted from NPP-VIIRS; (f) Impervious surface and actual impervious
surface of the Karst Gorge extracted from Flint; (g) Impervious surface and actual impervious surface
of the Karst Plateau extracted from Luojia1-01; (h) Impervious surface and actual impervious surface
of the Karst Plateau extracted from NPP-VIIRS; (i) Impervious surface and actual impervious surface
of the Karst Plateau extracted from Flint;(j) Impervious surface and actual impervious surface of the
Karst Trough Valley extracted from Luojia1-01; (k) Impervious surface and actual impervious surface
of the Karst Trough Valley extracted from NPP-VIIRS; (l) Impervious surface and actual impervious
surface of the Karst Trough Valley extracted from Flint; (m) Impervious surface and actual impervious
surface of the Karst Fracture Basm extracted from Luojia1-01; (n) Impervious surface and actual
impervious surface of the Karst Fracture Basm extracted from NPP-VIIRS; (o) Impervious surface and
actual impervious surface of the Karst Fracture Basm extracted from Flint; (p) Impervious surface and
actual impervious surface of the Non-karst Landscapes extracted from Luojia1-01; (q) Impervious
surface and actual impervious surface of the Non-karst Landscapes extracted from NPP-VIIRS;
(r) Impervious surface and actual impervious surface of the Non-karst Landscapes extracted
from Flint.

3.1.2. Impermeable Surface Density Extraction Results

Next, the impervious surface extraction accuracy at different Impervious Surface
Density (ISD) values for the three nighttime lighting data are compared. This is carried
out by classifying the extraction results for cities with different geomorphological types
in the study area into five categories based on the ISD values: 0 ≤ ISD < 0.2 (low density),
0.2 ≤ ISD < 0.4 (low to medium density), 0.4 ≤ ISD < 0.6 (medium density), 0.6 ≤ ISD
< 0.8 (medium to high density), and 0.8 ≤ ISD ≤ 1 (high density). Figure 5 shows the
results of the impervious surface density distribution obtained from the three data types. It
can be observed that the results tend to be consistent in terms of the spatial distribution
of the high-density impervious surface distribution. Furthermore, all the results form
a high-density impervious surface concentration area centered on the central city. The
high-density impervious surface area extracted from the Flint data in Karst gorge and
crested depressions is significantly higher than that extracted from the NPP-VIIRS and
Luojia1-01 data. Meanwhile, the impervious surface density extracted from the NPP-VIIRS
and Flint data in this area is significantly higher than that extracted from the Luojia1-01
data. The impervious surface density obtained from the Luojia1-01 data in the crested
depressions and Karst plateau is considerably lower than that obtained from the NPP-VIIRS
and Flint data. The impervious surface densities extracted from the Karst trough valley
and non-Karst landscapes nighttime light data are similar, indicating that the impervious
surface densities in flat and contiguous terrain are less affected by the resolution.

3.2. Impermeable Surface Accuracy Verification
3.2.1. Spatial Accuracy of Impervious Surfaces

Based on the impervious surface results obtained from the Luojia1-01, NPP-VIIRS,
and Flint data, a total of 150 verification samples were randomly selected in each of the
aforementioned six different geomorphological zones. These samples were compared with
the actual impervious surface vector data. The impervious surface within each sample was
vectorized using ArcGIS to obtain the true scale of each impervious surface and compared
with the impervious surface results extracted from the three types of nighttime lighting
image data. Figure 6 compares the spatial accuracy of the impervious surfaces obtained
from the Luojia1-01, NPP-VIIRS, and Flint data. Overall, the impervious surface extraction
accuracy was poor for all three data types. In addition, the use of a single nighttime
light data source was not suitable for obtaining impervious surface information in large
scale topographically fragmented areas. For the Karst plateau, impervious surfaces were
extracted with the highest accuracy from the VIIRS/DNB data, while the urban impervious
surfaces were extracted with a considerably higher accuracy from the Luojia1-01 data than
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the NPP-VIIRS and Flint data for the remaining five landscape types. This high accuracy is
indicated by high R2 values and low RMSE and SE values.
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The above results suggest that the Luojia1-01 data are more suitable for extracting
impervious surfaces in topographically fragmented areas than the NPP-VIIRS and Flint
data. The SEs of all three data sources are greater than zero for all landscape types, except
for the impervious surface extracted from the Luojia1-01 data in Karst plateau. This
indicates that the use of Luojia1-01 data causes underestimation in the Karst plateau and
overestimation in the rest of the density range, while the use of both NPP-VIIRS and Flint
data leads to overestimation in all landscape types. This phenomenon is mainly caused by
the low resolution of the NPP-VIIRS and Flint data and the outward spillover of the data
itself, which results in overestimation of the impervious surface.

3.2.2. Impervious Surface Area Error

Figure 7 shows the relative error between the extracted and actual impervious surfaces
for different landform types. Statistically, the impervious surface area extracted from the
Luojia1-01 nighttime light image is more accurate than the actual impervious surface area.
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Furthermore, the impervious surface extracted using the NPP/VIIRS nighttime light image
does not contain any information about the rest of the landform types, except for the Karst
fracture basin. The impervious surface extracted using the Flint nighttime light images is
the least accurate as it is significantly larger than the actual impervious surface area.
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It can be gathered from the results of the different landform types that the errors in the
extraction of the impermeable surfaces using the three nighttime light images in the Karst
gorge and Karst fracture basin landform types are higher than those in the other flat and
contiguous areas. This indicates that the topography influences the application of nighttime
lighting, with the error in extracting impervious surface area in broken topography regions
being significantly higher than that in flat and contiguous topography regions. The use
of NPP-VIIRS images results in a lower impervious surface area error for the Crested
Depressions (error = −16.31%) and Karst Trough Valley (error = −17.55%). The use of
Flint images resulted in the least errors for impervious surface area extraction for Karst
Trough Valley (error = 154.00%), Non-Karst Landscapes (error = 171.89%) and Karst Plateau
(error = 187.84%). This indicates that the Luojia1-01 data provide a greater advantage in ex-
tracting impervious surface in economically developed, light-concentrated, and contiguous
areas, while the NPP-VIIRS and Flint images are more influenced by topography than the
Luojia1-01 images for impervious surface extraction.

4. Discussion and Conclusions
4.1. Discussion
4.1.1. Accuracy Analysis

Overall, the Luojia1-01 data provided finer spatial details and more accurate impervi-
ous surface extraction results due to spatial resolution. The extraction results obtained with
the three nighttime light images showed similar spatial patterns: (1) The impervious surface
of the remaining landform types extracted using the Luojia1-01 data exhibited a higher
degree of overlap with the actual impervious surface. (2) The impervious surface patches
extracted using the NPP-VIIRS showed a high degree of separation. (3) The extraction of
impervious surface patches using the Flint data demonstrated a complete and high degree
of aggregation. However, the extracted impervious surfaces contained blurred boundaries.
The results of the extraction of impervious surface densities in the flat topography and
economically developed areas were less sensitive to image resolution.

In terms of the spatial accuracy of the extraction results, the Luojia1-01 data were more
accurate than the NPP-VIIRS and Flint data. However, the accuracy of impervious surface
extraction was poor with all three data types. Furthermore, the extraction of impervious
surfaces using only nighttime light data was not effective for obtaining impervious surface
information in areas with large scale topographic fragmentation. The results with the
Luojia1-01 data were underestimated in the Karst plateau and overestimated in the rest of
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the density range, while the results with both NPP-VIIRS and Flint data were overestimated
in all landscape types. This behavior was mainly caused by the low resolution of the NPP-
VIIRS and Flint data, and the overestimation of impervious surface due to the overflow of
values from the data itself.

4.1.2. Error Analysis and Insights

In terms of the relative error of the extracted area, the error in the application of
nighttime lighting was significantly higher in areas with broken terrain than in areas with
flat and contiguous terrain. In addition, the errors in the extraction of impervious surface
area statistics were considerably higher in the Karst gorge, Karst plateau, and Karst fracture
basin landform types than in other areas with a flat terrain. The Luojia1-01 data provided a
greater advantage in extracting impervious surface from economically developed and light
concentrated areas, while the extraction of impervious surfaces from the NPP-VIIRS and
Flint data was influenced more by topography than the Luojia1-01 data.

The results showed that the application of nighttime light images to impervious sur-
faces was affected by topography, and the impervious surface extraction had poor accuracy.
The single use of nighttime light data to extract impervious surfaces was not effective
for obtaining impervious surface information in large scale topographic fragmentation
areas. At the same time, the extraction of impermeable surfaces in cities with a fragmented
topography and a small economic scale showed that the extraction accuracies of different
nighttime light images were significantly different. The reasons for this phenomenon may
include the following:

(i) Climatic conditions in the Karst mountains themselves. The cloudy and rainy climatic
characteristics of the Karst mountains can easily bias the collected light data due to
factors such as cloud cover, pollutants, and other light sources [44].

(ii) Zone modelling approach. There are complex reasons that affect the construction of
impermeable surfaces in reality, including topography, social, economic and ecological
aspects, etc. More complex factors should be considered in actual modelling, and
using only geomorphology as the standard zoning approach may not be suitable for
different types of nighttime light data.

Therefore, the integration of nighttime light image data with a variety of remote
sensing data should be studied in detail in the future. This study can develop a highly
accurate nighttime light image dataset, as well as investigate the interaction between
various natural, social, and economic elements [45]. At the same time, it is necessary in
the next stage of research to combine other remote sensing data sources, such as stone
desertification data, NDVI, etc., to explore the best way for extracting impermeable surfaces
in topographic fragmentation areas. Alternatively, other zoning methods can be used to
analyze the nighttime light data of the topographic fragmentation areas in combination
with different remote sensing data sources to accurately extract impermeable surfaces. The
aforementioned steps are crucial to the monitoring of urban morphological changes.

Generally speaking, nighttime lights vary considerably over the course of a year and
require data from at least a year or multiple years for comparison. However, the number
of available data periods is small due to the short launch time of Luojia1-01. At the same
time, due to the cloudy and rainy conditions in the Karst mountains, the only image with a
minimum number of clouds among the available data periods is the one used in this paper.
Therefore, additional multi-period data sources are needed in the future study to confirm
the reliability of the conclusions presented in this paper.

4.1.3. Comparison with Existing Studies

In this study, impervious surfaces corresponding to different landform types in topo-
graphic fragmentation areas were extracted, and the results of the study contributed to
the nighttime light images. First, the extraction queues of the three data showed that the
accuracy of the three images in extracting the spatial extent of impervious area initially
increased and then decreased with the increase in DN threshold value. The highest extrac-
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tion accuracy based on Luojia1-01 also appeared in the larger range of DN values. This
indicated that the Luojia1-01 data could provide finer spatial details compared to other
data sources, which was consistent with the results of a previous study [50].

Second, comparing the extraction results obtained using Luojia1-01, NPP-VIIRS, and
Flint nighttime lighting data demonstrated that the impermeable surfaces of three different
types of cities extracted using the Flint data in topographic fragmentation areas showed
the smallest error. However, the high spatial resolution of the Luojia1-01 image rendered it
more sensitive to environmental changes compared with the lower resolution NPP-VIIRS
and Flint images. Consequently, the impervious surface extraction from the Luojia1-01 data
in topographically flat areas showed more errors in terms of omission and biased extraction
results. On the other hand, the area of impervious surface extracted in topographically
broken areas was larger than the actual impervious surface area. However, remote urban
cores could be identified better using the Luojia1-01 data. In contrast, the impermeable
surface extracted using the NPP-VIIRS data was more complete, which was consistent with
the findings presented in [45].

Third, unlike the findings of previous studies, nighttime light imagery of topograph-
ically fragmented areas was less affected by light spillover and oversaturation effects,
possibly due to cloudy conditions, monitoring time, etc. The only exception to this behavior
was exhibited by Flint images. This behavior was inconsistent with our initial hypothesis
that the spillover effects would be severe for nighttime light imagery of topographically
fragmented areas. In previous studies that compared the application of different nighttime
light imagery data sources, a few experts considered the Flint nighttime light data that
could smooth out surface factors. However, in this study the impermeable surface extracted
from the Flint nighttime light data was heavily influenced by over-saturation and had poor
accuracy. This dataset needs to be further explored in subsequent studies to explore its
potential applications.

Fourth, this study found that the impervious surface density extracted at different
resolutions in the topographically flat and contiguous area was less affected by the res-
olution. At the same time, the extraction results from the three datasets tended to be
consistent in spatial distribution in terms of high-density impervious surface distribution
and formed a high-density impervious surface aggregation area centered on the central
city. This is an area that has not been considered in previous studies, and the correlation
between impervious surface density and topography should be analyzed further to provide
theoretical support for the application of nighttime lighting.

Fifth, the mutation detection method used in this study extracts impermeable surfaces.
In the process of extracting impermeable surfaces of Karst canyons using NPP-VIIRS
data, the queue value 88 was selected as the queue point; however, a small increase in
perimeter occurred after DN = 91. We reviewed the relevant literature and did not find any
explanation for this phenomenon. We hypothesize that the specific reason may be due to
the fragmentation of Karst canyon topography, which causes two peaks in the extraction
process. This may be a novel finding in this paper, and a more detailed analysis of this
finding is needed in subsequent studies.

4.2. Conclusions

The analysis of the applicability of nighttime light image datasets in the extraction of
impermeable surfaces in the southwest Karst mountains is of great importance for their
use in topographically fragmented areas and the in-depth mining of nighttime light image
data. This study used Luojia1-01 nighttime light data, NPP-VIIRS nighttime light data, and
Flint-derived nighttime light data to divide the study area into different geomorphological
regions for analysis. It further investigated the potential of different nighttime light image
datasets for impermeable surface extraction in terrain fragmentation areas. This work
can contribute to the subsequent extension of the application potential of nighttime light
imagery, supports research to reduce the impact of global warming on humans, and is
important for achieving sustainable development of the region.
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