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Abstract: Short-term load forecasting is an important prerequisite for smart grid controls. The
current methods are mainly based on the convolution neural network (CNN) or long short-term
memory (LSTM) model to realize load forecasting. For the multi-factor input sequence, the existing
methods cannot obtain multi-scale features of the time series and the important parameters of the
multi-factor, resulting in low accuracy and robustness. To address these problems, a multi-scale
feature attention hybrid network is proposed, which uses LSTM to extract the time correlation of
the sequence and multi-scale CNN to automatically extract the multi-scale feature of the load. This
work realizes the integration of features by constructing a circular network. In the proposed model,
a two-branch attention mechanism is further constructed to capture the important parameters of
different influencing factors to improve the model’s robustness, which can make the network to
obtain effective features at the curve changes. Comparative experiments on two open test sets show
that the proposed multi-scale feature attention mixture network can achieve accurate short-term load
forecasting and is superior to the existing methods.

Keywords: load forecasting; multi-scale; deep learning; two-branch attention

1. Introduction

With the arrival of the new energy era, there has been a sharp increase in demand for
load use, and the characteristics of load fluctuations have also changed. To ensure the safety
and efficiency of the power system, the role of load forecasting is becoming increasingly
important. Short-term load forecasting is utilized to forecast the load value for the next
day or several consecutive days. Its forecasting results can be used for economic load
dispatching, equipment maintenance, water, heat and electricity coordination, and more.
Improving load forecasting accuracy will help ensure a balance between power supply
and demand, and improve the economy of economic dispatching and power generation
equipment utilization. With the continuous advancement of smart grid data acquisition
technology, the dimension of load characteristics is becoming larger, and the volatility and
nonlinearity of load are becoming stronger. All of these factors increase the difficulty of
load forecasting [1].

Short-term power loads show strong randomness and volatility due to various factors
such as climate, economic, and residential electricity consumption behavior. This increases
the difficulty of load forecasting [2]. Currently, short-term load forecasting methods can be
classified into three categories: mathematical statistics-based forecasting models, traditional
machine learning-based forecasting models, and deep learning-based forecasting models.
Load forecasting based on mathematical–statistical models includes multiple linear regres-
sion, Kalman filter, exponential smoothing method, and more [3]. Mathematical–statistical
models have a clear statistical relationship between time, load, influencing factors, and past
time load. The mathematical–statistical model is simple, and its prediction speed is fast.
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However, only simple and smooth time series can be suitable for this prediction method.
For complex nonlinear load series, random factors can destroy the original prediction
criteria of the model, leading to inaccurate prediction results [4].

In traditional machine learning models, support vector regression (SVM), fuzzy sys-
tems, decision trees (DT), and linear regression (LR) are commonly used to predict power
consumption [5–8]. Bogomolov et al. [9] developed an improved random forest algorithm
for weekly power prediction, while Yaslan et al. [10] developed a hybrid model that
combined mode decomposition and support vector regression for power consumption
prediction. Aasim et al. [11] proposed a hybrid model combining wavelet transform (WT)
and support vector machine (SVM) for power load estimation. Barman et al. [12] proposed
a regional mixed STLF model that used SVM and the grasshopper optimization algorithm
to estimate appropriate model parameters for load forecasting. Sulaiman et al. [13] pro-
posed a hybrid method based on empirical mode decomposition and extreme learning
machine (ELM) to predict residential load based on smart meter data and compared it with
traditional machine learning models to verify its effectiveness. Chen et al. [14] proposed
a short-term prediction algorithm based on the optimized ELM algorithm. Tang et al. [7]
built a forecasting algorithm based on the fuzzy system. Malekizadeh et al. [15] used the
fuzzy neural model to predict the hourly load distribution before the day. The model took
into account the time distribution of temperature, and the parameters of the model do not
need to be set in advance. Li et al. [16] proposed a meta-learning algorithm for automatic
distribution systems. The algorithm included three parts: extraction of features, preparation
of model parameters, and online recommendation of models. Machine learning models
perform well on simple datasets, but due to the collinearity of the independent variables of
power consumption, these models have insufficient power consumption prediction ability.
In addition, with the increase of data, these models usually have the problem of over-fitting.

With the vigorous research into deep learning for image recognition and speech
recognition [17–21], deep learning technology has been introduced into load forecasting. At
present, there are mainly two kinds of prediction models based on CNN and the long LSTM
model. Sadaei et al. [22] proposed a load short-term prediction algorithm based on the fuzzy
method and convolution neural network. It used the deep learning CNN model to extract
relevant important parameters and fuzzy logic to represent the one-dimensional time series.
Niu et al. [23] qualitatively analyzed the multi-energy load relationship, screened the
influencing factors of load prediction based on data-driven analysis, and proposed a new
multi-energy load prediction algorithm based on the CNN-BiGRU algorithm. A prediction
model using LSTM was proposed by Wang et al. [24], in which autocorrelation graph was
used for extracting hidden features. Hong et al. [25] proposed a hybrid convolutional
neural network (CNN) with cascaded networks to forecast the daily peak load, and tested
it with data from Taiwan. This method was superior to the traditional model. Haque
et al. [26] proposed a regularized deep neural network method for short-term power
load forecasting of commercial buildings and used it to forecast the power load of two
commercial buildings in Virginia (30 min and 24 h ago). Moradzadeh et al. [27] proposed
a Bi-LSTM network for short-term load forecasting. In Moradzadeh’s work, the feature
of time series was extracted by the multi-directional LSTM model, which improved the
multi-dimensional expression ability of the time series features. Jiang [28] proposed a
new multi-behavior LSTM model with bottleneck characteristics. This model combined
the prediction behavior and weekly features by applying the bottleneck technology to the
energy management system. Chen et al. [29] proposed a new deep residual network for
load prediction. The network proposed a new deep residual network to address the issue of
vanishing and exploding gradients in neural networks and to improve forecasting accuracy.
Jiang et al. [30] introduced a hybrid multi-task and multi-information fusion deep learning
algorithm that takes into account short-term and long-term behavioral rules to achieve
load forecasting. Similarly, the authors of [31,32] developed deep learning models, but they
faced challenges in modeling the temporal and spatial characteristics of power data.
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At present, the outstanding methods are mainly based on the deep learning model,
which can automatically obtain the characteristics of the time series. However, the existing
methods based on CNN are difficult to obtain the temporal correlation of the time series,
and the existing models do not consider the multi-time scale characteristics of the load
series. Although LSTM can extract temporal correlation, its feature extraction ability is
weak. In addition, the importance of various factors affecting load power is different, and
the existing methods do not distinguish these factors, which also affects the accuracy of
prediction. In this paper, a multi-scale feature attention mixture network model (MFAMNet)
was constructed to realize load forecasting, which makes full use of the time information
and introduces the LSTM network into the model to extract the time correlation of the
sequence. The multi-scale convolution neural network (CNN) is used to automatically
extract the multi-scale features of the load, and a lot of information will not be lost in
the dimensionality reduction. In addition, this paper constructs a two-branch attention
mechanism to capture the important parameters of different influencing factors to improve
the ability of the network for extracting effective features. The experimental results on two
open test sets show that the proposed MFAMNet is superior to the existing SOTA load
prediction methods.

2. Methods

This work proposes a mixture network combining CNN and LSTM, and adds attention
mechanism and multi-scale mechanism to the hybrid model. The network can make full
use of the ability of convolution neural networks to extract spatial features, long-term
memory networks to extract time features, multi-scale convolution to achieve multi-scale
feature extraction of time series, realizing the important expressions of different features
through attention mechanisms.

CNN and LSTM are both important methods for time series analysis [33]. The CNN
algorithm can effectively extract the spatial features of data in a very abstract way [34]. One-
dimensional convolution of the convolution neural network can obtain the spatial structural
characteristics of the sequence, i.e., the shape characteristics of the sequence, which can
help improve the accuracy of prediction. The LSTM network can extend the temporal
characteristics and process data with sequential characteristics. Therefore, combining
the advantages of CNN and LSTM can form a new method that gives full play to their
respective strengths. In this paper, the multi-scale feature attention mixture network model
(MFAMNet) is obtained by combining the two networks to fully utilize temporal and
spatial characteristics. The specific framework of the network is shown in Figure 1.

As shown in Figure 1, the data are first sent into the LSTM module, multi-scale
convolution module, LSTM module, and residual attention module, and the operation is
cycled three times. Then, the model selects the output of the first LSTM module and the
residual attention module in each cycle and feeds them into a one-dimensional convolution.
Finally, all the results are added to obtain the predicted results. The purpose of this structure
is to enable the network to fully extract the features of multi-scale time series and make
the network more capable of feature expression. This multi-level circular structure can
extract the multi-level characteristics of the load, i.e., it effectively retains the temporal
dependent features of the shallow-level load sequence and also obtains the deeper-level
load characteristics. The network reshapes the multi-layer features through the attention
mechanism and integrates them with the features at all levels, which greatly improves the
diversity and effectiveness of network features, and can effectively express the phenomenon
of load climbing and load shock. In particular, the extraction of data features of load peaks
can be more sufficient, which is conducive to improving the ability of the network to
conduct load forecasting. For household loads, the peak of the load often exists for a short
time, so how to obtain the effective characteristics of the load peak will become particularly
important, while in the traditional network, it is easy to ignore the features of the load peak
because the proportion of the load peak in the whole sequence is too low.
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Figure 1. Structure diagram of the proposed model.

2.1. Multiscale Convolution Module

The convolution kernels in the traditional residual cell are the same sizes, which makes
it impossible for the convolution layer to “observe” the load data from multiple scales,
and it is difficult to obtain richer input features. To solve this problem, this paper adopts
multi-scale convolution. The multi-scale structure of the backbone network is shown in
Figure 2.

1×1 Conv

3×1 Conv

5×1 Conv

c 1×1 Conv

1×1 Conv

3×1 Conv

5×1 Conv

c 1×1 Conv

Figure 2. Structure diagram of multi-scale convolution.

The multi-scale convolution module has four branches in total. The first branch uses
1 × 1 convolution. The 1 × 1 convolution can increase the dimension and reduce the
number of feature channels and uses a small amount of computation to increase the linear
transformation and nonlinear transformation of features, so as to improve the expression
ability of the network and improve the accuracy of load prediction. In the second branch,
the original input and the input of the first branch are added and then convolved by 3× 1
convolution, which is equivalent to two feature changes. In the third branch, the original
input and the input of the second branch are added and then convolved by 5× 1, and then
the outputs of the three branches are spliced on the channel dimension. After that, the
concatenated result is dimensionally reduced through the 1× 1 convolution module, so that
it has the same number of channels as the original input. Finally, we add the output and
the original input to obtain the final output. The specific calculation formula is as follows:

f1 = f 1×1( fin), (1)

f2 = f 3×1( fin + f1), (2)
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f3 = f 5×1( fin + f2), (3)

fout = fin + f 1×1(C( f1 + f2 + f3)), (4)

where fin is the initial input data, fout is the output feature, f 1×1(·) a one-dimensional
convolution with 1× 1, f 3×1(·) a one-dimensional convolution with 3× 1, f 5×1(·) a one-
dimensional convolution with of 5× 1, C(·) refers to the operation of stacking data on
the channel dimension. The multi-scale convolution obtains multi-scale features of the
load series and multi-scale features of other relevant information (including temperature,
humidity, rainfall, etc.).

2.2. Dual-Branch Attention Module

In order to obtain a more powerful network and enable the network to give more
important weight to important features, the dual-branch attention mechanism method is
proposed in the residual unit, as shown in Figure 3, which enhances the network’s learning
ability of load characteristics from the channel level.

Full 

connection
Sigmoid1D-CNN

Average 

pooling

Full 

connection
Sigmoid1D-CNN

Maximum 

pooling

Full 

connection
Sigmoid1D-CNN

Average 

pooling

Full 

connection
Sigmoid1D-CNN

Maximum 

pooling

Figure 3. Structure diagram of the dual-branch attention module.

Firstly, the global average pooling and the global maximum pooling layer are used to
compress the feature image from the spatial perspective, and the two-dimensional channel
is transferred to a real number, which represents the global receptive field to some extent,
representing the response to the global information of the feature channel. Then it is
sent into the full connection layer, one-dimensional convolution, and sigmoid function,
respectively. After that, we multiply the two results with the original data and add them
together to obtain the final output. The specific calculation formula is as follows:

g1 = sigmiod(g1×1(FC(M(gin)))), (5)

g2 = sigmiod(g1×1(FC(A(gin)))), (6)

gout = g1 × gin + g2 × gin, (7)

where gin is the input feature, gout is the output feature, M(·) is global maximum pooling,
A(·) is global average pooling, FC(·) is full connection layer, g1×1 a one-dimensional
convolution with 1 × 1, sigmiod(·) is the sigmoid function. The attention mechanism
proposed will re-calibrate the rich features. The two-branch attention module can obtain
the importance of each feature, and then enhance the useful information and suppress the
information that is not important to the task according to the importance, which can also
improve the ability of network load forecasting.

3. Results

This paper used AEP [35] and IHEPC [36] datasets to verify the proposed model.
The AEP dataset includes 29 different characteristic parameters, such as temperature,
wind speed, humidity, and electrical energy consumption. Data were collected from
wireless sensors in indoor and outdoor environments. Outdoor data included temperature,
humidity, pressure, and visibility. Indoor temperatures were collected from different
locations, including the kitchen, living room, laundry, office, bathroom, etc. This dataset
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collected load data within 4.5 months at 10-min intervals. The IHEPC dataset recorded
the electricity consumption of French households at minute intervals between 2006 and
2010. The dataset included nine parameters, including the date, current intensity, voltage,
total active power, total reactive power, time, and three sub-parameters. Among them,
total active power and total reactive power were the current average power per minute, in
kilowatts; the average voltage was in volts; the current total current intensity is in amperes.
The three sub-parameters represent the power consumption of the kitchen, laundry, air
conditioner, and electric water heater, respectively.

3.1. Data Preprocessing

Because the neural network is very sensitive to data distribution, we first optimized the
input energy consumption data before training the model. We used the data preprocessing
strategy to remove outliers and missing values, and standardized the input data. We
evaluated the model on AEP and IHEPC datasets. On the AEP dataset, we standardized the
energy consumption data to limit the data distribution to a specific range. The mathematical
expression of the standardized transformation operation is as follows:

Y =
X− µ

σ
, (8)

where X represents the actual input data, µ is the mean value, and σ is the standard devia-
tion. Each data characteristic value is converted through the min–max scaling operation.
The mathematical expression of the min–max scaling operation is as follows:

Y =
X− Xmin

Xmax − Xmin
, (9)

where Xmin and Xmax are the minimum and maximum values of the features in the dataset
respectively. The input of a deep learning network requires a specific size, so the original
training and test sequences are processed using sliding. As shown in Figure 4a, the
overlapping sliding method is used to increase the number of training samples. Assuming
the length of the training sequence is z, a sliding window with a length of n and a step
size of u (u < n) is used to slide along the original sequence and obtain z−n

u + 1 training
samples. Similarly, as shown in Figure 4b, the non-overlapping sliding mode is used for
sampling. Assuming the length of the test sequence is h, h

n test samples are obtained.
Here, m represents the start of sliding, n represents the size of the sliding window (i.e., the
dimension of the network input), and m : m + n− 1 represents the start of sliding to the
end of the sequence.

S
lid

e

…

…

Training sample

S
lid

e

…

…

Training sample

S
lid

e

…

…

Training sample

S
lid

e
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S
lid
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Figure 4. Schematic diagram of sliding input. (a) Overlap sliding; (b) Non-overlapping sliding.
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In this paper, MSE, MAE, RMSE, and MAPE indicators are used for performance
evaluation. The mathematical expressions of the three indicators are as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi), (10)

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (11)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (12)

MAPE =
1
N

N

∑
i=1
|yi − ŷi

yi
|, (13)

where yi is the label data and ŷi is the predicted data. The model was trained by GeForce
RTX 2080Ti GPU, equipped with an Intel i5-processor, 64 GB-RAM, and the Ubuntu-system.
The model was built based on the Python framework, and the Adam optimizer was used
for gradient update.

3.2. Evaluating on AEP Dataset

In order to verify the effectiveness of this method, this paper compares various load
forecasting methods, including linear regression (LR), ARMA, BP neural network, SVR, de-
cision tree (DT), CNN, LSTM, Resnet, STLF [12], ELM [14], CN-Fuzzy [22], MB-LSTM [28],
MIFnet [30], and Transformer [37]. The above methods include the classic forecasting
model and the SOTA load forecasting model recently proposed.

According to the characteristics of the AEP dataset, 23 time series features, such
as energy use, T1-T9, RH1-RH9, the temperature outside, pressure, humidity outside,
and wind speed were used as the input of the network, and the total predicted load
consumption was used as the output. In the comparative experiment, we used the grid
search method to fine-tune the hyperparameters of each related method. In addition, some
related methods disclosed their optimal hyperparameter settings, and we borrowed the
optimal hyperparameter settings of these methods. Due to the large number of input
feature dimensions, the importance of the feature is inconsistent. For example, we found
that the temperature feature has a greater impact on the results, and the visibility feature
has a smaller impact on the prediction results.

Therefore, the assignment of the importance of the feature is particularly important
for the accuracy of the prediction results. Table 1 shows the comparison results between
this method and the other 14 methods. These 14 methods include the regression method,
traditional machine learning method, and the latest deep learning method for load forecast-
ing. From the four indicators, the method based on deep learning is obviously superior
to the regression method and traditional machine learning method. Traditional machine
learning methods are prone to over-fitting when facing large sample data, resulting in poor
generalization effect, which affects the prediction accuracy. The regression-based method is
the worst in MSE and MAE indicators, but it performs better in MAPE indicators. With the
two methods, LR and ARMA, the error is large in the area with large load consumption,
but the area with load consumption that is close to 0 performs stably, which lowers the
overall mean absolute percentage error.
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Table 1. Performance comparison of different methods on the AEP dataset.

Method MSE MAE RMSE MAPE

LR 0.62 0.56 0.79 0.18
ARMA 0.57 0.62 0.76 0.17

BP 0.54 0.46 0.73 0.21
SVR 0.59 0.51 0.77 0.25
DT 0.60 0.55 0.77 0.26

CNN 0.38 0.47 0.62 0.19
LSTM 0.43 0.42 0.66 0.18

STLF [12] 0.29 0.34 0.54 0.18
ELM [14] 0.53 0.48 0.73 0.21

Resnet 0.33 0.36 0.57 0.12
CNN-Fuzzy [22] 0.31 0.35 0.56 0.14
MB-LSTM [28] 0.28 0.31 0.53 0.12

MIFnet [30] 0.28 0.34 0.53 0.11
Transformer [37] 0.26 0.34 0.51 0.13

Without MCM 0.25 0.34 0.50 0.12
Without DAM 0.24 0.35 0.49 0.11

MFAMNet 0.20 0.27 0.45 0.08

For load forecasting, slight fluctuations in the forecast near the load usage of 0 will lead
to a sharp increase in error indicators, but users will not be sensitive to these fluctuations.
In general, the accurate prediction of load peaks will be beneficial to users, which is also
the role of load forecasting. It can be seen from the results that although the prediction
accuracy of the CNN method and LSTM method is better than the traditional machine
learning model, the overall accuracy is not high, lower than the improved models CNN-
Fuzzy, MB-LSTM and MIFnet. In addition, the Transformer network can effectively process
time series data, and the overall performance is due to the existing methods. In order to
show the effectiveness of this method more clearly, we conducted ablation experiments.
The results show that the MCM structure and DAM module can effectively improve the
accuracy of prediction.

Figure 5 shows the comparison between this method and some deep learning methods.
Because the prediction effect of the regression method and traditional machine learning
method is not good, these methods are not drawn in the comparison chart. It can be seen
from Figure 5 that the method in this paper fits the load curve very well and has the best
effect. This is because this method can achieve multi-scale feature extraction, and can use
the channel attention mechanism to assign the importance of 23 features, improving the
effectiveness and accuracy of prediction. The LSTM method can effectively extract the
temporal correlation, but from the experimental results, it is easy to have a prediction peak,
i.e., it is easy to have a higher load prediction at the actual load peak, and the algorithm
prediction inertia is large. The prediction accuracy of the CNN method at load change
is not high. The existing improved methods CNN-Fuzzy and MIFnet have significantly
improved compared with LSTM and CNN.

Figure 6 shows the comparison of ablation experiments. From the results of the
ablation experiments, it can be seen that the prediction accuracy of the two-branch attention
mechanism model at the time series mutation is better than that of the network without the
attention mechanism. As can be seen from Figure 6, when there is no attention mechanism,
the prediction results fluctuate greatly and the prediction inertia is large, resulting in the
prediction results at the wave peak often being larger than the actual values. In addition, the
multi-scale convolution module can effectively improve the accuracy of model prediction.
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(a) (b)

Figure 5. Prediction performance of various time series prediction algorithms and our proposed
model on the AEP dataset. (a) The first comparative test sample on the AEP dataset; (b) The second
comparative test sample on the AEP dataset.
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Figure 6. Comparison of the ablation experiment results.

3.3. Evaluating on IHEPC Dataset

In this paper, the features of global_active_power, global_reactive_power, voltage,
global_intensity, sub_metering_1, sub_metering_2, and sub_metering_3 in the IHEPC
dataset are used as the input feature and predict the future active power. Table 2 shows the
comparison results between the proposed MFAMNet method and the other 14 methods. It
can be seen from Table 2 that the MFAMNet method proposed in this paper is obviously
superior to the existing methods. Compared with Table 1, the MSE, MAE, and RMSE
indicators in Table 2 are significantly reduced. This is due to the frequent use of load in
AEP datasets and the low power consumption in most time intervals in IHEPC datasets,
which lowers the MSE, MAE, and RMSE indicators. Similarly, since the power consumption
of most time areas of the IHEPC dataset is very small, the MAPE index of LR, ARMA is
improved. In addition, from the perspective of ablation implementation, the two modules
proposed in this paper greatly improve the prediction accuracy of the model.

Figure 7 shows the prediction comparison between the method in this paper and
the existing methods. It can be seen from the results that the differences between the
method in this paper and the label data are very small. LSTM is highly volatile. Although
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LSTM can extract temporal features, its ability to express multi-dimensional features is
limited. Several improved deep learning networks performed well and can make up for
the shortcomings of traditional deep learning methods. The Transformer model is built
based on attention, so it improves the feature expression ability of the network to a certain
extent. In general, the MFAMNet method proposed in this paper can effectively predict the
peak load, and the effect is due to all other methods.

Table 2. Performance comparison of different methods on the IHEPC dataset.

Method MSE MAE RMSE MAPE

LR 0.17 0.32 0.41 0.19
ARMA 0.16 0.30 0.40 0.18

BP 0.21 0.34 0.46 0.23
SVR 0.14 0.32 0.37 0.27
DT 0.16 0.32 0.40 0.28

CNN 0.18 0.34 0.42 0.19
LSTM 0.25 0.37 0.50 0.19

STLF [12] 0.17 0.31 0.41 0.23
ELM [14] 0.22 0.35 0.47 0.23

Resnet 0.17 0.34 0.41 0.18
CNN-Fuzzy [22] 0.16 0.30 0.40 0.18
MB-LSTM [28] 0.15 0.28 0.39 0.17

MIFnet [30] 0.14 0.26 0.37 0.15
Transformer [37] 0.15 0.25 0.39 0.18

Without MCM 0.14 0.26 0.37 0.17
Without DAM 0.15 0.25 0.39 0.16

MFAMNet 0.11 0.23 0.33 0.11

(a) (b)

Figure 7. Prediction performance of various time series prediction algorithms and our proposed
model on the IHEPC dataset. (a) The first comparative test sample on the IHEPC dataset; (b) The
second comparative test sample on the IHEPC dataset.

4. Discussion

From the experimental results of the two datasets, the method in this paper is superior
to some existing deep learning methods in each index. For areas with large changes in the
load curve, the method in this paper is obviously superior to the existing methods. This
also shows the effectiveness of this method for load trend feature extraction. In addition,
from the results of ablation, the two-branch attention mechanism can well put the attention
of feature extraction at the point of a sudden change of load curve, which is conducive to
the network to catch the sudden change trend of load. The existing Transformer methods
also perform well in load forecasting, because Transformer itself is a network based on
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attention mechanisms, so it performs well in load curve forecasting. Although the method
based on LSTM can extract temporal correlation features, the prediction effect is not as
good as the attention mechanism correlation network. In addition, multi-scale convolution
enriches the characteristics of the load series through the convolution operations of different
convolution cores, and encodes and decodes the characteristic information of interest in the
load series from a global perspective, thus improving the performance of load forecasting.

5. Conclusions

In this work, we propose a hybrid network model to predict the electricity consump-
tion of residential buildings based on the attention mechanism. The model is mainly
composed of CNN and LSTM combined with attention mechanisms. CNN is used to
extract the spatial characteristics of input data, and LSTM is used to extract the temporal
correlation of time series. The attention optimization module is used to optimize the feature
expression of the network, which can effectively realize the importance assignment of
multi-dimensional features. The multi-scale feature module can further extract the multi-
dimensional features of the time series and improve the feature expression ability of the
model. We tested the model on two open datasets, AEP and IHEPC, to verify the effec-
tiveness of our proposed algorithm. Considering the nonlinear distribution of input data,
we first standardize it through data preprocessing operation to limit the data distribution
to a certain range. The sequence samples are constructed by sliding windows. Through
experiments on AEP and IHEPC test sets, this paper compares 14 different methods, in-
cluding the regression method, traditional machine learning method, and the latest deep
learning method, and verifies the effectiveness of our proposed method. Compared with
the existing sequence prediction methods, our method has excellent performance and can
achieve accurate prediction of residential building electricity consumption.
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