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Abstract

:

Face detection is an important problem in computer vision because it enables a wide range of applications, such as facial recognition and an analysis of human behavior. The problem is challenging because of the large variations in facial appearance across different individuals and lighting and pose conditions. One way to detect faces is to utilize a highly advanced face detection method, such as RetinaFace or YOLOv7, which uses deep learning techniques to achieve high accuracy in various datasets. However, even the best face detectors can produce false positives, which can lead to incorrect or unreliable results. In this paper, we propose a method for reducing false positives in face detection by using information from a depth map. A depth map is a two-dimensional representation of the distance of objects in an image from the camera. By using the depth information, the proposed method is able to better differentiate between true faces and false positives. The method proposed by the authors is tested on a dataset of 549 images, which includes 614 upright frontal faces. The outcomes of the evaluation demonstrate that the method effectively minimizes false positives without compromising the overall detection rate. These findings suggest that incorporating depth information can enhance the accuracy of face detection.
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1. Introduction


Face detection algorithms have been developed to automate the process of identifying and locating faces in digital images, driven by the growing demand for such capabilities [1,2,3]. These algorithms have undergone a series of advancements, beginning with knowledge-based methods that relied on human expertise to define the features of a face, followed by feature-invariant approaches that aimed to recognize faces based on their geometrical properties, such as the relative positioning of the eyes, nose, and mouth.



In response to the challenge of face detection, researchers have developed a variety of techniques utilizing both traditional computer vision methods and more contemporary deep learning methods [4,5]. Traditional methods frequently rely on handcrafted features and ensembles of classifiers to detect faces in images. Although computationally efficient, these methods often encounter difficulties with variations in facial appearance and are sensitive to changes in illumination and pose. More recent approaches based on deep learning have shown great promise in overcoming these limitations. These methods use convolutional neural networks (CNNs) trained on large datasets of face images to learn highly discriminative features for face detection. CNNs have the advantage of being able to automatically learn features from data, which can be more robust and generalizable than hand-crafted features. Additionally, CNNs can be trained using large-scale parallel computing, which allows for efficient training of very deep and complex models.



The single-shot detector (SSD) is one of the most renowned face detection systems that employs deep learning [6]. It utilizes a convolutional neural network (CNN) to anticipate bounding boxes and class probabilities for faces in an image. SSDs are celebrated for their ability to deliver high-speed and real-time performance, rendering them ideal for use in applications such as video surveillance and face tracking. Another popular approach to face detection is the multi-task cascade convolutional neural network (MTCNN) [7], which uses a cascade of three CNNs to first identify potential face regions, refine the bounding boxes and facial landmarks, and finally classify the detected faces. MTCNNs have been shown to achieve high accuracy on a range of face detection benchmarks.



Overall, face detection remains a challenging problem due to the wide variations in face appearance and the need for real-time performance. However, the development of deep learning methods has greatly improved the state of the art in face detection and opened up new possibilities for applications that rely on the detection and analysis of faces.



In contrast, template matching methods [5] employ a pre-established template of a face to look for corresponding matches in an image. While these methods can be successful, they have certain limitations. Specifically, the template must be meticulously constructed to accommodate for variations in facial appearance, thereby restricting the efficacy of this approach. Appearance-based methods, also known as holistic methods, have become increasingly popular in recent years. These methods use machine learning techniques to learn the characteristic features of a face from a large dataset of labeled images. Because these methods can learn to recognize faces automatically, they are not limited by the constraints of template matching approaches.



The Viola–Jones algorithm (VJ) [8] was a popular and effective method for detecting objects in images. It was specifically designed for object detection and relied on three techniques: an integral image strategy for the efficient extraction of Haar features, an ensemble called AdaBoost, and an attentional cascade structure. One of the main advantages of the Viola–Jones algorithm was its efficiency, which allowed it to run in real-time on standard hardware. This was achieved through Haar-like features, i.e., simple rectangular shapes that can be calculated quickly and easily. Additionally, the boosting algorithm was effective at reducing false positives, a common issue in detection algorithms. Despite its popularity, the Viola–Jones algorithm had certain limitations. It was not always effective at detecting faces in uncontrolled environments, where it has been known to miss face detections [9]. This is due to the limitations of the Haar-like features utilized by the algorithm, which may struggle to accommodate for variations in lighting and facial expression, or other factors that can influence facial appearance.



To overcome these limitations, several extensions and enhancements to the original Haar-like features have been proposed. These include rotated Haar-like features, which are designed to be more robust to rotation, and sparse features, which are designed to be more efficient to compute. In their research, Markuš et al. [10] integrated a modified version of the Viola–Jones (VJ) method with an algorithm that can detect salient facial landmarks. Meanwhile, Liao et al. [9] introduced a novel feature named scale-invariant NPD and extended the VJ tree classifier to include a deeper quadratic tree structure.



With the advent of deep learning, convolutional neural networks (CNNs) have become increasingly popular for face detection and have shown impressive results in terms of accuracy and speed [11,12,13,14]. These networks are able to learn complex patterns in data and can be trained on large datasets, which has helped improve the performance of face detection algorithms. Additionally, techniques such as transfer learning, which involves using pre-trained CNNs on large datasets and fine-tuning them for specific tasks, have further improved the performance of face detection algorithms. In the context of 2D face detection, deep learning methods have been shown to be effective in detecting faces in images and videos. These methods, such as R-CNN [15] and Deep Dense Face Detector (DDFD) [12], use convolutional neural networks (CNNs) to extract features from images and then classify them using support vector machines (SVMs). These methods have the advantage of being able to handle a wide range of face orientations and sizes without requiring pose or landmark annotations. They have been shown to outperform traditional face detection methods in terms of accuracy and speed.



RetinaFace [16] is a face detection algorithm considered to be a state-of-the-art face detector because it is able to combine high-level and low-level semantic information in order to perform single-shot multi-level face localization. This means that it is able to detect faces in a single stage, using a five-level feature pyramid network (FPN) that allows it to process multiscale feature maps. This improves the detection speed of the algorithm, making it faster and more efficient than many other face detection algorithms.



The use of 3D information in face detection can improve accuracy by providing additional cues about the shape and structure of the face, which can be used to differentiate it more effectively from other objects in the scene. Depth information can also help resolve occlusions, where part of the face may be obscured by another object, by allowing the algorithm to infer the shape of the face behind the occluder.



There are multiple 3D sensors and devices available for face detection, each with its own set of benefits and drawbacks. The Kinect [17] is a popular choice due to its affordability and user-friendliness. However, its performance is limited by the resolution of its depth map and its ability to capture only one depth value per pixel. Advanced sensors such as the MU-2 stereo imaging system [18] and the Minolta Vivid 910 range scanner [19] offer higher-resolution depth maps and more precise depth measurements. Nevertheless, these sensors are usually more expensive and complex to operate.



Overall, the use of 3D information in face detection can significantly improve accuracy, but it also introduces additional challenges and complexities in terms of both hardware and software. As 3D sensing technology continues to advance and become more affordable, it is likely that we will see a more widespread adoption of 3D face detection techniques in various of applications.



Various approaches have been used for face detection using depth images, each with their own strengths and limitations. Some methods, such as [20], rely on comparing pixels in depth images to classify body joints and parts for pose recognition, while others, such as [21], compare square regions for face detection. In [3], a deep-learned approach for 2D images (DeepFace) is combined with a 3D-model-based alignment, which was effective in detecting faces in unconstrained environments. Anisetti et al. [22] used a coarse detection method and a 3D morphable face model for locating faces. Nanni et al. [1] proposed different filtering steps to be applied on information in the Kinect depth map to address the issue of increased false positives when combining different face detectors, they also shared a challenging dataset that contains depth and 2D images, which is used to validate the best-performing system developed in this work. The dataset has 549 samples, including 614 upright frontal faces. The filtering steps adopted in the system decrease the amount of false positives without significantly affecting the detection rate of Retina Face. The paper describes the face detection strategy in Section 2, presents the experiments in Section 3, and provides a summary and notes on future directions in Section 4. The code and dataset used in the paper are available on GitHub at https://github.com/LorisNanni (accessed on 30 December 2022).




2. Materials and Methods


Figure 1 depicts the face detection system that is developed in this work. First, face detection with the face detector RetinaFace is performed on a raw color image (see the top two boxes in Figure 1). RetinaFace selects many candidate regions that contain no faces. Second, the number of false positives is reduced by aligning the depth maps (see the bottom two boxes). By calibrating the color and depth information it is possible to accomplish the alignment, as explained in [23]. Briefly, the depth sample’s positions in 3D space are computed through the intrinsic camera parameters of principal point and focal length of the depth camera. These intrinsic parameters, along with the extrinsic parameters of the camera pair system, are then projected onto 2D space. Next, depth values and color are combined with each sample, as described in Section 2.1. To reduce computation time, we apply this process only to those regions containing the candidate faces. Finally, these regions are filtered (see the box on the right of Figure 1) to remove false positives. This last process is described in Section 2.3.



2.1. Depth Map Alignment and Segmentation


Depth maps and the raw color images are segmented in tandem, similar to the method in [24]. The procedure involves transforming each sample into a six-dimensional vector and then clustering the point set using the mean shift algorithm [25].



Transformation into a six-dimensional vector is accomplished as follows. Samples in the Kinetic depth map are 3D points:    p i  ,   i = 1 , … , N  , where  N  is the number of points. As described in [23], color cameras and the joint calibration of the depth facilitates reprojecting the depth samples. This involves mapping them onto the corresponding pixels in the color image. This process allows each point to be connected to its 3D spatial coordinates (x, y, and z), as well as the RGB color values. However, these representations cannot be directly compared because they exist in completely different spaces. In order to use the mean shift clustering algorithm to extract multidimensional vectors, it is necessary to make all components comparable. To make the color values comparable, they are converted to the CIELAB uniform color space, so colors are represented in a 3D space with lightness (L) values ranging from black (0) to white (100), (a) from green (-) to red (+), and (b) from blue (-) to yellow (+). The purpose of this conversion is to use the Euclidean distance between the color vectors in the mean shift algorithm.



More formally, the algorithm works by considering each scene point’s color information in the CIELAB color space,  c , as a 3D vector:


   p i c  =  [      L  (   p i   )        a  (   p i   )        b  (   p i   )       ]  ,             i = 1 , … , N .  



(1)







The geometry,  g , is defined by each point 3D coordinates as:


   p i g  =  [      x  (   p i   )        y  (   p i   )        z  (   p i   )       ]  ,             i = 1 , … , N .  



(2)







In order to ensure that the scene segmentation algorithm is not affected by the relative scaling of the point-cloud geometry and to ensure that the color distances and geometry are consistent, all components of    p i g    are normalized based on the average standard deviation of the coordinates of the point in three dimensions    σ g  =  (   σ x  +  σ y  +  σ z   )  / 3  , which results in the following vector:


   [        x ¯    (   p i   )          y ¯    (   p i   )          z ¯    (   p i   )       ]  =  3   σ x  +  σ y  +  σ z     [      x  (   p i   )        y  (   p i   )        z  (   p i   )       ]  =  1   σ g     [      x  (   p i   )        y  (   p i   )        z  (   p i   )       ]   



(3)







After normalizing the color information vectors, the final color representation is obtained by taking the average of the standard deviations of the L, a, and b color components:


   [        L ¯    (   p i   )          a ¯    (   p i   )          b ¯    (   p i   )       ]  =  3   σ L  +  σ a  +  σ b     [      L  (   p i   )        a  (   p i   )        b  (   p i   )       ]  =  1   σ c     [      L  (   p i   )        a  (   p i   )        b  (   p i   )       ]   



(4)







After the normalization of the vectors of the color information and geometry, they are combined to produce the final representation  f :


   p i f  =  [            L ¯    (   p i   )          a ¯    (   p i   )          b ¯    (   p i   )                 λ   x ¯           λ   y ¯           λ   z ¯             ]   



(5)







The relative weight of color and geometry in the final segmentation can be controlled using the parameter λ. A lower value of λ assigns more importance to color information, while a higher value of λ emphasizes geometry. For more information on how to automatically determine the optimal value for λ, refer to [24].



The vectors    p i f    are clustered with the mean shift algorithm [25] to segment the sampled scene. Further refinement is possible by removing regions smaller than some thresholds since these regions are usually the result of noise. An example of a segmented image using this method of segmentation is provided in Figure 2.




2.2. Face Detectors: RetinaFace and YOLOv7


RetinaFace [16] is a recent pixel-wise face detection method that, along with box classification and regression branches, applies extra-supervised and self-supervised techniques/learning tasks. The face detector system is able to perform multiple tasks, including predicting a face score, identifying the bounding box around a face, identifying five facial landmarks, and determining the 3D position and correspondence of each pixel on the face. The system’s overall structure is depicted in Figure 3.



RetinaFace is based on three main modules made by a feature pyramid network, the context head module, and the cascade multi-task loss. The first module is composed of a pyramid network that digests the input images by computing five different feature maps, each one at a different scale. These are then used by the context head modules to compute, for each of the feature maps, the multi-task loss described below. The first context head module makes a first bounding box for the anchor, which is fine-tuned by the second context head module to generate a more accurate bounding box.



Feature pyramid levels are computed using ResNet residuals, while the multi-task loss is computed as follows:


  ℒ =  ℒ  c l s    (   p i  ,  p i *   )  +  λ 1     p i *   ℒ  b o x    (   t i  ,  t i *   )  +  λ 2     p i *   ℒ  p t s    (   l i  ,  l i *   )  +  λ 3     p i *   ℒ  m e s h    (   v i  ,  v i *   )   



(6)




where    p i    is the predicted probability that the i-th anchor is a face, while    p i *    is the ground-truth value (1 if it is a face, 0 otherwise);    t i    is a vector with the predicted coordinates for the bounding box of the i-th anchor, and    t i *    is the vector with the coordinates of the real bounding box. The vector    l i    contains the predicted coordinates of the five facial landmarks, while    l i *    is the vector with the coordinates for the five ground-truth facial landmarks. The vector,    v i   , has the 1068 vertices used for the mesh that represents the 3D face, and    v i *    is the corresponding ground-truth. The variables    λ 1   ,    λ 2   , and    λ 3    are loss-balancing parameters.    ℒ  m e s h     is a combination of a vertex loss and an edge loss used to compute a 2D projection of a 3D representation of the face;    ℒ  c l s     is the classification loss for the binary classes of face/not face.    ℒ  b o x     is the regression loss for the bounding box, and    ℒ  p t s     is the regression component used to compute the five facial landmarks.



YOLOv7 is the latest and fastest single-stage real-time object detector in the YOLO family, introduced in July 2022 [26]. It is a fully convolutional neural network (FCNN)-based object detector with three components: Backbone, Neck, and Head. The Backbone extracts features, the Neck collects them, and the Head consists of output layers for final detection. YOLO models are trained to predict the locations and classes of objects with bounding boxes and use non-maximum suppression (NMS) for post-processing. We used YOLO as face detector according to following library (https://github.com/hpc203/yolov7-detect-face-onnxrun-cpp-py, accessed on 30 December 2022).




2.3. Filtering Steps


By leveraging on depth maps it is possible to apply a filtering approach with the aim of removing some false positives, as noted in Figure 4. For some examples of candidate faces that were rejected by the filters, see Figure 4.



2.3.1. Filter Based on Image Size (SIZE)


As previously mentioned, the effectiveness of the filtering process can be further improved by considering the size of the face region identified in the depth map, as suggested in [27]. Starting from the estimation of dimension (   W  2 D   ,    h  2 D    ) of the candidate face in the 2D image, the corresponding 3D physical dimensions in millimeters (   W  3 D   ,    h  3 D    ) can be estimated using the following approach:


   W  3 D   =  W  2 D     d ¯    f x      and    h  3 D   =  h  2 D     d ¯    f y    ,  



(7)







In this equation,    f x    and    f y    are the Kinect camera’s focal lengths, which are calculated using the calibration algorithm described in [23], and   d ¯   is the average depth of the samples within the bounding box of the candidate face region. The estimated 3D physical dimensions (   W  3 D   ,    h  3 D    ) are only accepted if each of them falls within the fixed range of [7.5 cm, 45 cm]. It is worth noting that   d ¯   is the median of the depth samples.




2.3.2. Flatness\Unevenness Filter (STD)


STD [28] extracts flatness and unevenness information from the depth maps: regions with high flatness and unevenness are removed.



STD is a two-step filtering process:



Step 1: Segmentation using the depth map is applied;



Step 2: For each face candidate region, the standard deviation (STD) of the pixels in the depth map that belong to the largest region identified by the segmentation procedure is calculated. If the STD falls outside the range of [0.01, 2.00], that region is rejected.




2.3.3. Segmentation-Based Filtering (SEG and ELL)


SEG and ELL [1] both use different approaches to compare the dimensions of the segmented version of the depth image to a reference shape. In the case of SEG, the comparison is made to the bounding box of the image, while in the case of ELL, the reference shape is an ellipse. These evaluations allow for the comparison of the relative size of the largest area to the entire candidate image in the case of SEG, and for the assessment of the shape (i.e., whether it is elliptical) in the case of ELL (a least-squares criterion is adopted to evaluate the similarity of a region to an elliptical model). Regions that are smaller than 40% of the total area are not considered in the analysis. The score is computed with a “fit_ellipse” function.




2.3.4. Filtering Based on the Analysis of the Depth Values (SEC)


SEC [1] is based on the observation that faces are most commonly located on the top of the body and that the surrounding volume of a face is typically empty. When candidate faces produce a different pattern than expected, it is rejected. To calculate whether the pattern differs from what is expected, the rectangular region that defines a candidate face is enlarged to include the surrounding depth map for further analysis. In this work, the expanded region is partitioned into two regions, RU and RD (see Figure 5). For each region R, a number of pixels    n R    are counted whose depth value    d p    is close to the average depth value of the face   d ¯  , as follows:


   n R  =  |  { p :  |   d p  −  d ¯     |  <  t d  ∧ p ∈ R }  |   



(8)




where    t d    (equals 50 cm here) is the measure of closeness.



The ratio between the two regions,   3 ·  n D   /   n U   , is calculated, and a candidate face will be removed if the ratio drops below a specified threshold,    t r    (   t r  = 0.8   here).






3. Results and Discussion


3.1. Datasets


In our study, we utilized the dataset MERGED proposed in [1], which is obtained by combining the following four datasets: Microsoft Hand Gesture (MHG) dataset, Padua Hand Gesture (PHG) dataset, Padua FaceDec (PFD) dataset, and Padua FaceDec2 (PFD2) dataset. All of these datasets contain colored images of faces captured in unconstrained environments along with their corresponding depth maps. The faces in these datasets are frontal and upright with limited degrees of rotation (with less than ±30°). A summary of features is presented in Table 1.




3.2. Performance Indicators


We report two performance indicators:



	
Detection rate (DR): this metric measures the accuracy of the face detection algorithm by comparing the number of faces correctly detected to the total amount of faces in the dataset. All faces in the dataset have been manually labeled for this evaluation. Let    d l  ,  (   d r   )    be the Euclidean distance between the manually extracted    C l   (   C r   )    positions that are centered left and right, and let      C ′   l   (    C ′   r  )    be the detected centered left and right eye positions. The relative error of detection (ED) is defined as   max  (  d l  ,   d r   ) /   d lr     , where    d  l r     is the Euclidean distance between the expected eye centers. In this work, ED ≤ 0.35 is the value used as a criterion to claim a right eye detection.



	
False positives (FP): this is the number of candidate faces with no face correctly extracted (i.e., incorrect eye detection, having ED > 0.35).







3.3. Experiments


The goal of the first experiment (Table 2) was to compare the detection rates of RetinaFace (https://github.com/elliottzheng/face-detection, accessed on 30 December 2022) and YOLO by adjusting the sensitivity threshold (on the score output of the detector). It will be observed that setting the threshold for increasing the detection rate generates more false positives.



The results obtained by RetinaFace are clearly better than previous face detectors based on handcrafted methods or shallow neural networks (see [1] for details). RetinaFace can still be considered a state-of-the-art face detector.



The second experiment aims to assess the performance of the filtering steps and their combinations. Table 3 presents the results of combining the three face detectors with the filtering steps.



It should be noted that the complexity of the three face detectors is very different: YOLOv7lite has a storage requirement of 3 MB, YOLOv7tiny has a requirement of 31 MB, and RetinaFace (with ResNet backbone) requires 107 MB. The detection time of YOLOv7tiny is 38% higher than YOLOv7lite, and RetinaFace is 243% higher than YOLOv7lite.



The following conclusions can be drawn from the above table:




	
The best trade-off of DR and FP is obtained by RetinaFace (0.5) with the SIZE filter applied. Clearly, SIZE increases the effectiveness of RetinaFace on the test set;



	
The other filters reduce the number of FP but also decrease DR;



	
SIZE permits to reduce FP without a considerable reduction in DR, even when coupled with YOLOv7.








Obviously, the advantage of using depth map information is more pronounced when the effectiveness of the visual sensor is reduced due to darkness, fog, or other reasons that prevent a perfect view of the scene. To highlight this advantage, an additional test was performed in which the visual spectrum images were subjected to a fog filter. The effect was achieved using Gimp’s foggify filter (https://docs.gimp.org/2.8/en/python-fu-foggify.html, accessed on 30 December 2022) with turbulence = 4.0 and opacity 100.



Figure 6 shows an example of perturbed images, while Table 4 shows the results of the same experiment in Table 3 applied to the perturbed images.



In Figure 7 a plot of detection rate vs. number of false positives is reported (by varying the acceptance threshold) for each of the considered approaches: in the first row, results on the original dataset are shown, while the second row reports results from the fog-perturbed dataset. The usefulness of filtering is more evident when considering regions that do not contain faces. Therefore, we define a strong false positive (SFP) as a candidate face that has an ED score greater than 1. In Figure 8, a plot of the detection rate versus the number of strong false positives is presented.



According to the plots in Figure 7 it is clear that the best trade-off between the detection rate and the number of false positives is gained by coupling the face detector with the filtering method named “size”. It happens for all the approaches tested in this paper, but undoubtedly this is more interesting for YOLO since the performance is lower.



The advantages of all the filtering approaches are more evident in the presence of strong false positives, as shown in Figure 8.



As for the choice of basic face detector, obviously it must be dictated by the system requirements: YOLO is faster, but less accurate, while RetinaFace is very accurate but requires more resources and a longer computation time. It is important to note that the most suited application of our idea will be in AR/VR headsets, mainly in portable devices where lightweight networks will be used, at least for the next few years.



Although the proposed approach has only been evaluated using a single dataset, it is believed to be effective in real-world conditions because the MERGED dataset is highly realistic. It includes many images taken in natural settings and features multiple frontal faces, not just a single one, making it more representative of real-world conditions. Moreover, the fog-perturbed version of the dataset makes the benchmark even more difficult.





4. Conclusions


We use two state-of-the-art face detectors called RetinaFace and YOLOv7 and apply a set of filters based on the depth map to improve the accuracy of the detection. We demonstrate that the filters reduce the false positives produced by base method while maximizing the detection rate. Our method for reliable face detection uses information in the depth maps and filters to increase effectiveness, measured as a high detection rate with a lower number of false positives compared with a standalone face detector working on visual spectrum images. This effectiveness was demonstrated on two challenging datasets: the first is the combination of several datasets, including images with different illumination settings, both indoors and outdoors, the second is a fog-perturbed version of the first. Many of the images contain multiple faces, often located in cluttered environments.



Although we used a state-of-the-art face detector, it produced many false positives on our dataset. When a low detection threshold is applied to increase the detection rate, the reported experiments show that the filters based on depth maps are a feasible way to increase the trade-off between detection rate (DR) and false positives (FP) with several state-of-the-art face detectors.



Though it may seem that using a 3D camera is an unnecessary cost for the face detection problem, it must be considered that sensors with a depth map function will be widespread and inexpensive in the near future.
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Figure 1. A general illustration of the proposed face detection approach. First, the input image undergoes a first round of detection RetinaFace (top). Second, segmentation is performed using the depth map of the image (bottom). Finally, the candidate faces undergo a filtering process to select regions with faces (right). 
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Figure 2. Raw color image (left), depth map (middle), and segmentation map (right). 
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Figure 3. RetinaFace detector. 






Figure 3. RetinaFace detector.



[image: Applsci 13 02987 g003]







[image: Applsci 13 02987 g004 550] 





Figure 4. Examples of images rejected by the filtering methods. 
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Figure 5. Example of how the expanded neighborhood of a candidate face region can be partitioned into two regions RU and RD. Region RD, depicted in dark gray, should contain the body. 
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Figure 6. Original images (left), fog-perturbed images (right). 
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Figure 7. Plot of the detection rate vs. number of false positives for the 3 face detectors (RetinaFace, YOLOv7Tiny, YOLOv7Lite). First row: original dataset, second row: fog-perturbed dataset. 
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Figure 8. Plot of the detection rate vs. number of string false positives for the 3 face detectors (RetinaFace, YOLOv7Tiny, YOLOv7Lite) on the original dataset. 
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Table 1. Main characteristics of the datasets.
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	Dataset
	Number

Images
	Number

Faces
	Depth

Resolution
	Color

Resolution
	Difficulty

Level





	MHG
	42
	42
	640 × 480
	640 × 480
	Low



	PHG
	59
	59
	640 × 480
	1280 × 1024
	Low



	PFD
	132
	150
	640 × 480
	1280 × 1024
	High



	PFD2
	316
	363
	512 × 424
	1920 × 1080
	High



	MERGED
	549
	614
	---
	---
	High
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Table 2. Performance (detection rate and false positives) of RetinaFace and YOLOv7.
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Face Detector:

	
RetinaFace

	
YOLOv7Tiny

	
YOLOv7Lite




	
Threshold

	
DR

	
FP

	
DR

	
FP

	
DR

	
FP






	
0.02

	
95.93

	
1152

	
83.06

	
909

	
73.94

	
1491




	
0.2

	
95.93

	
281

	
82.74

	
405

	
73.78

	
427




	
0.5

	
95.93

	
227

	
82.41

	
309

	
73.45

	
305




	
0.9

	
95.60

	
171

	
0.16

	
0

	
0

	
0




	
0.98

	
94.79

	
119

	
0

	
0

	
0

	
0
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Table 3. Performance of face detection methods combined by filtering steps.
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Face Detector:

	
RetinaFace

	
YOLOv7Tiny

	
YOLOv7Lite




	
Threshold

	
Filter

	
DR

	
FP

	
DR

	
FP

	
DR

	
FP






	
0.98

	
None

	
94.79

	
119

	
0

	
0

	
0

	
0




	
SIZE

	
94.63

	
84

	
0

	
0

	
0

	
0




	
SIZE + SEC

	
94.14

	
75

	
0

	
0

	
0

	
0




	
all

	
92.67

	
71

	
0

	
0

	
0

	
0




	
0.5

	
None

	
95.93

	
227

	
82.41

	
309

	
73.45

	
305




	
SIZE

	
95.77

	
111

	
82.08

	
199

	
73.29

	
230




	
SIZE + SEC

	
95.11

	
95

	
81.60

	
180

	
72.96

	
213




	
all

	
93.65

	
85

	
79.80

	
162

	
71.01

	
194




	
0.2

	
None

	
95.93

	
281

	
82.74

	
405

	
73.78

	
427




	
SIZE

	
95.77

	
128

	
82.41

	
229

	
73.62

	
283




	
SIZE + SEC

	
95.11

	
109

	
81.92

	
206

	
73.29

	
254




	
all

	
93.65

	
94

	
80.13

	
179

	
71.34

	
220
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Table 4. Performance of face detection methods combined by filtering steps on the fog-perturbed images.
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Face Detector:

	
RetinaFace

	
YOLOv7Tiny

	
YOLOv7Lite




	
Threshold

	
Filter

	
DR

	
FP

	
DR

	
FP

	
DR

	
FP






	
0.98

	
none

	
79.15

	
93

	
0

	
0

	
0

	
0




	
SIZE

	
78.99

	
66

	
0

	
0

	
0

	
0




	
SIZE + SEC

	
78.66

	
63

	
0

	
0

	
0

	
0




	
all

	
77.36

	
59

	
0

	
0

	
0

	
0




	
0.5

	
none

	
87.46

	
219

	
69.54

	
264

	
59.77

	
274




	
SIZE

	
87.30

	
132

	
69.22

	
186

	
59.61

	
217




	
SIZE + SEC

	
86.64

	
118

	
68.73

	
172

	
59.61

	
201




	
all

	
85.34

	
101

	
67.26

	
153

	
57.98

	
189




	
0.2

	
none

	
88.64

	
321

	
72.15

	
363

	
62.54

	
398




	
SIZE

	
88.27

	
171

	
71.82

	
233

	
62.38

	
289




	
SIZE + SEC

	
87.62

	
149

	
71.34

	
211

	
62.38

	
257




	
all

	
86.32

	
123

	
69.71

	
180

	
60.59

	
234

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Ol

W

@

< gaaeE "






media/file4.png





nav.xhtml


  applsci-13-02987


  
    		
      applsci-13-02987
    


  




  





media/file16.png
700

RetinaFace
SIZE
SIZE+SEC
all

(1))
11:300.
200 F

100

|

0.94
DR

#SFP

100

YoloTiny
—SIZE

| | ———SIZE+SEC

all

02 04

DR

06

08

800

600 }
o5 400 t
*H

200 ¢t

YoloLite
—5SIZE
— SIZE+SEC
all

02






media/file2.png
&

Filtering steps

Size, Flatness,
shape, Depth...
Detected faces

Depth map seg-
mentation

Face detection by
RetinaFace

F'-------------------“

L

-

T -

‘F'-------------------‘ﬁ





media/file5.jpg





media/file3.jpg





media/file1.jpg
Input image Face detection by
RetinaFace

Candidate faces

/" Depth map seg-
mentation

Filtering steps

Size, Flatness,
shape, Depth...

9310

v

Detected faces






media/file7.jpg





media/file10.png
Ru






media/file12.png





media/file9.jpg





media/file0.png





media/file14.png
#FP

#FP

1200
RetinaFace
1000 | |——sIzE
— SIZE+SEC
800 | an
600 |
400 }
D i i
0.93 0.94 0.96
DR
1500
RetinaFace
—giZE
— SIZE+SEC
1000 } a
500 |
D i i
0.8 0.85 0.9
DR

1000

#FP

1000

#FP

400 ¢

YoloTiny

YoloTiny

| | SIZE

— SIZE+SEC
all

0.2 04
DR

1500
YoloLite
——SIZE
—  SIZE+SEC
1000 | a
o
L
H
500 |
u i i
0.4 05 06
DR
1500 |
YoloLite
—SiZE
— SIZE+SEC
all
1000 |
o
L
H
500 |
u i i
0.3 04 05

DR






media/file8.png





media/file11.jpg





media/file6.png
Multi-scale Feature Maps(* 5 scales)

Feature Pyramid Network

_~ Multi-task Loss 2

Cascade Multi-scale Context Head Module (* 5 scales * 2 cascade)





media/file15.jpg





