
Citation: Heričko, T.; Šumak, B.

Exploring Maintainability Index

Variants for Software Maintainability

Measurement in Object-Oriented

Systems. Appl. Sci. 2023, 13, 2972.

https://doi.org/10.3390/

app13052972

Academic Editor: Vito Conforti

Received: 9 February 2023

Revised: 20 February 2023

Accepted: 23 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Exploring Maintainability Index Variants for Software
Maintainability Measurement in Object-Oriented Systems
Tjaša Heričko * and Boštjan Šumak

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia
* Correspondence: tjasa.hericko@um.si; Tel.: +386-2-220-7298

Abstract: During maintenance, software systems undergo continuous correction and enhancement
activities due to emerging faults, changing environments, and evolving requirements, making this
phase expensive and time-consuming, often exceeding the initial development costs. To understand
and manage software under development and maintenance better, several maintainability measures
have been proposed. The Maintainability Index is commonly used as a quantitative measure of
the relative ease of software maintenance. There are several Index variants that differ in the fac-
tors affecting maintainability (e.g., code complexity, software size, documentation) and their given
importance. To explore the variants and understand how they compare when evaluating software
maintainability, an experiment was conducted with 45 Java-based object-oriented software systems.
The results showed that the choice of the variant could influence the perception of maintainability.
Although different variants presented different values when subjected to the same software, their
values were strongly positively correlated and generally indicated similarly how maintainability
evolved between releases and over the long term. Though, when focusing on fine-grained results
posed by the Index, the variant selection had a larger impact. Based on their characteristics, behavior,
and interrelationships, the variants were divided into two distinct clusters, i.e., variants that do not
consider code comments in their calculation and those that do.

Keywords: software maintenance; maintainability measurement; Maintainability Index; software
metrics; object-oriented software; Java

1. Introduction

Software maintenance is a phase in the software life cycle that refers to modifications
of a software system after delivery, aiming to provide support to the system [1]. During this
phase, software evolves continuously through post-delivery enhancement and correction
activities, including the identification and correction of faults, the improvement of software
related to new functional and non-functional requirements, and the adaptation of software
to changes in the environment [1,2]. According to existing studies [2–4], software mainte-
nance is characterized as a highly cost-consuming phase in the software life cycle, as it has
been estimated that up to 70% of time and resources related to a software project are allot-
ted for maintenance activities. Hence, software maintenance is considered an important
topic in software engineering research and practice. Aiming to understand and manage
software under development and maintenance better, many research efforts have been
focused on measuring maintainability, a software quality factor that refers to the degree
of effectiveness and efficiency of software to be modified, to correct faults, improve with
respect to alterations in the requirements, and adapt to changes in the environment [1,5].
Thus, measuring the maintainability of a software system can estimate the ease with which
the system can be maintained.

Maintainability is an external quality attribute. Hence, it requires being measured and
quantified indirectly while relying on internal attributes that can be measured from software

Appl. Sci. 2023, 13, 2972. https://doi.org/10.3390/app13052972 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13052972
https://doi.org/10.3390/app13052972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0410-7724
https://orcid.org/0000-0001-5535-3477
https://doi.org/10.3390/app13052972
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13052972?type=check_update&version=2

Appl. Sci. 2023, 13, 2972 2 of 36

directly [6]. In addition, several different definitions and understandings of maintainability
in the context of a software system’s quality exist in the literature [6,7], resulting in a variety
of measures and models defined to aid software practice and research with measuring and
quantifying software maintainability. In the early 1990s, the Maintainability Index was
proposed, a quantitative single-valued indicator of software maintainability [8]. A higher
value of the Index indicates higher maintainability, which suggests that the software is
easier to maintain, whereas a lower value of the Index indicates lower maintainability,
which suggests that the software is more difficult to maintain. The Index is calculated by
taking into account software characteristics that are believed to impact the maintainability.
For example, the original three-metric Maintainability Index is computed by considering
three traditional size and complexity software metrics extracted from source code—the
Halstead’s Effort metric, the Cyclomatic Complexity metric, and the Lines of Code metric—
metrics that reflect the mental effort required to maintain software, the complexity of the
code, and the size of the software [8,9]. In the last three decades, several variants of the Index
were defined in an effort for the Index to better capture the maintainability characteristics of
software, to ease calculation, or to provide results in a clearer manner [8–17]. The variants
differ mainly based on the different emphases on the software characteristics derived
from the code, which is reflected by the selection of the software metrics included in the
equation and/or coefficients of the polynomial equation for computing the Index. Yet, all
of them have the same objective—to indicate maintainability, i.e., the ease of software to be
maintained on the basis of a software system’s code.

In the last few decades, the object-oriented paradigm has emerged as one of the most-
widely used paradigms for modeling and developing software. Consequently, the maintain-
ability of object-oriented software has become a significant topic of interest for both software
researchers and practitioners. Although concerns regarding the appropriateness of the
Index for object-oriented languages have been expressed because the measure was initially
proposed for systems developed in procedural programming languages [15,18–21], the In-
dex is frequently used in maintainability research for object-oriented software. For instance,
the Index is used for monitoring the maintainability of a software system over time to ensure
high-quality software products, to guide and support software-related decision-making
processes or characterize the software’s maintainability evolution [10,22–27], to explore the
relationship between maintainability and design or code metrics [14–16,20,28,29], to detect
technical debt [30], and recently, the Index has been used as a measure of maintainability in
various machine learning prediction models [31–35].

As discussed above, several variants of the Index exist and are often used interchange-
ably. This is also the case with the aforementioned studies, as the choice of the variant
used for the maintainability measurement of object-oriented software varies across them.
Naturally, it is to be expected that maintainability assessment based on different variants
computed using different equations may yield different results when subjected to the same
software. The main advantage of the Index as a single-value measure of maintainability is
its ability to be able to compare software in the context of others [9,36], either to its previous
versions or to completely different systems. Hence, besides possible differences in the
value of different Index variants when applied to measure the maintainability of a single
software, it is important to determine how the use of different Index variants influences
the relationship between the maintainability of several different software. If the results of
Index variants would prove to be significantly different, this could mean that decisions and
conclusions based on the chosen variant might be different if another variant was utilized
for maintainability assessment instead. Contrariwise, if the results of variants are shown to
be similar, this could indicate that the choice of the variant does not significantly affect the
end results. This has not been researched previously; thus, these assumptions cannot be
verified without proper empirical investigations.

The objectives of this work were twofold: first, to highlight distinct variants of the
Maintainability Index employed to measure maintainability in object-oriented systems
and assess the results of variants when applied to measure the maintainability of the same

Appl. Sci. 2023, 13, 2972 3 of 36

subject software; second, to research the results of the variants when applied to measure
the maintainability of a software system to compare the system with other systems.

To meet the above-specified objectives, the following two research questions (RQs)
were formulated:

RQ1 How do different Maintainability Index variants perform when utilized for the
maintainability measurement of a single object-oriented software system?

RQ2 How do different Maintainability Index variants perform when utilized for the
maintainability measurement of an object-oriented software system in the context of
other systems?

RQ2.1 How do different Maintainability Index variants perform when utilized for
maintainability measurement between different software systems?

RQ2.2 How do different Maintainability Index variants perform when utilized for
maintainability measurement between versions of the same software system?

An experiment was conducted on data collected from the source code of 45 open-
source software systems based on the Java programming language. For 42 software systems,
only the last released version was included in the experiment, while for the remaining
3 systems, all versions from the release history were included. The Maintainability Index
variants were computed from software metrics extracted from the code of each system
by the JHawk tool. To answer RQ1, an evaluation and analysis of the gathered data were
performed for one version of each included software system, focusing on the differences be-
tween the Index variants. To answer RQ2, the results were analyzed from two perspectives:
between versions of the same software system, where three software systems with their
versions were considered, and between different software systems, where the last version
of each included software system was considered.

In summary, the key contributions of this paper are: (1) a review of Maintainability
Index variants utilized for maintainability measurement in object-oriented software; (2) an
empirical investigation on how Maintainability Index variants perform when utilized
for the maintainability measurement of a single object-oriented system; (3) an empirical
investigation on how Maintainability Index variants perform when utilized for the maintain-
ability measurement of an object-oriented software system in the context of other systems,
i.e., other versions of the same software system and completely different software systems.

The rest of the paper is structured as follows. Section 2 provides the background
on object-oriented software maintainability measurements needed to follow this paper.
Related work is reviewed and discussed in Section 3. Section 4 presents and explains
the experiment’s procedure. The experiment results are reported in Section 5. The paper
continues by analyzing and discussing the obtained results in Section 6. Finally, Section 7
provides conclusions and outlines possible related open research topics and areas.

2. Background
2.1. Object-Oriented Software

The object-oriented paradigm is one of the dominant programming paradigms for
modeling and developing software. Programming languages, designed mainly for object-
oriented programming, namely Java, C#, and Python, are currently widely used and
adapted by organizations and software developers [37,38]. Due to the emerging use of
object orientation in the last few decades, concerns regarding the effective measurement
and management of maintainability in object-oriented software have been raised. Object
orientation as a style of constructing software differs in several ways from other program-
ming paradigms, for instance the procedure-oriented paradigm. It is based on the notion
of objects as self-contained units that have an identity, state, and behavior [39,40]. Object-
oriented design concepts, in particular encapsulation, inheritance, and polymorphism,
can affect software quality characteristics, including maintainability [40,41]. Hence, in the
paper, we only focused on maintainability measures originally proposed for object-oriented
software. Additionally, we included measures that were later adopted, tested, and accepted

Appl. Sci. 2023, 13, 2972 4 of 36

to be capable of analyzing software using the object-oriented programming paradigm
as well.

2.2. Maintainability Measurement in Object-Oriented Software Systems

The maintainability of a system is a software quality factor that reflects the ease with
which a system can undergo various modifications in the software maintenance phase [5],
namely corrective, preventive, adaptive, additive, and perfective [1]. Providing insight into
the maintainability of software helps to gain a better understanding of the software and its
ability to be corrected or enhanced. This consequently helps to determine maintenance costs,
time, and effort, to manage and plan software and software-related resources efficiently,
and to identify areas for improvement [9,36]. Since the maintainability of software is
an external quality attribute that cannot be measured directly, various maintainability
measures and models are being employed for measuring maintainability [6].

To quantify the software maintainability of any system with a single value, Oman
and Hagemeister [8] proposed the Maintainability Index. The Index is given as a poly-
nomial expression based on software metrics that describe the characteristics of software.
The polynomial was constructed through a series of experiments using regression analysis.
Subjective assessment of the maintainability evaluated by software practitioners main-
taining the code of selected subject software systems was used as the dependent variable
and software metrics extracted from the code of the subject software as independent vari-
ables. The researchers identified the smallest set of easily obtained source code software
metrics with which the software maintainability can be estimated reasonably accurately.
Hence, with the constructed regression equation, the Index can be calculated for any
software based on software size and complexity metrics extracted from source code [8,9].
The resulting single value indicates the maintainability of that system. A software system
with a value of the Index below 65 is considered to have low maintainability, a value
between 65 and 85 medium maintainability, and a value above 85 high maintainability.
Thus, in general, a high value of the Index represents higher software maintainability,
whereas a low value of the Index represents lower maintainability [42]. The Maintainability
Index was originally proposed and validated based on observations and adaptations on
a small set of software systems developed in procedural programming languages. As a
result, researchers [15,18–21] have highlighted a number of potential limitations of the
Index when applied to the object-oriented paradigm: (1) the coefficients in the formula
for the computation of the Index were obtained using regression analysis on software
developed in C and Pascal, which might have different maintainability characteristics than
current object-oriented programming languages, such as Java; (2) the Index only considers
traditional software metrics and omits object-oriented metrics related to cohesion, coupling,
polymorphism, and inheritance, which are considered as important characteristics of object-
oriented software; (3) threshold values for distinguishing between low, medium, and high
maintainability were not validated for object-oriented software. Despite these concerns,
the Index has reached general acceptance and is frequently used in maintainability research
for object-oriented software. Studies conducting literature reviews on software maintain-
ability [6,7,43–45] report that the Index is one of the most-commonly used measure of
maintainability. In addition, the Index is widely adopted in practice as the calculation of the
Index is available within development environments, e.g., Visual Studio [12], as well as in
popular metrics collection tools, e.g., JHawk [46], Radon [47], CMT++, and CMTJava [48].

Another measure of software maintainability is the change metric defined by Li and
Henry [49]. This measure estimates maintainability by counting the number of code lines
changed per class, where a line change can be an addition or a deletion. The authors further
investigated the relationship between a set of metrics collected from code (two size metrics
and several object-oriented metrics) and maintainability, showing that maintenance effort
can be predicted from the selected metrics. A high value of the change metric represents
low maintainability, while a low number represents high maintainability [6].

Appl. Sci. 2023, 13, 2972 5 of 36

Malhotra and Khanna [50] and Elish et al. [51] defined software maintainability in the
form of class-level change proneness. It represents the possibility that a change, i.e., ad-
dition, deletion, or modification, occurs in a source code of a class after the release of a
software system. Maintainability change proneness is quantified as a binary metric: its
value is “Yes” if the change occurs or “No” if the change does not occur [6].

Furthermore, researchers have proposed several maintainability measurement and
prediction models based on capturing maintenance performance with cost, time, or effort
spent in the maintenance process [3,52–55]. Granja-Alvarez et al. [3] proposed a model for
estimating maintenance costs based on the time required to perform maintenance actions.
The estimated maintenance cost is computed as the sum of the costs of three maintenance
actions, namely understanding, modifying, and testing. Bandi et al. [52] validated an
approach to predicting the time consumed to execute maintenance tasks using the design
complexity of a system, measured by the following three object-oriented design complexity
metrics: Interaction Level, Interface Size, and Operation Argument Complexity. Larger
quantities of maintenance costs or time spent indicate lower maintainability, while smaller
quantities of costs or time spent indicate higher maintainability [6]. Fioravanti and Nesi [53]
presented a model for adaptive maintenance effort estimation of object-oriented systems,
where effort spent is computed as the sum of effort spent due to understanding, addition,
and deletion of the source code. To estimate the maintenance effort of each operation,
several metrics were considered, among which class complexity and size metrics proved to
be the most-suitable. Another model for estimating adaptive maintenance effort, based on
the number of lines of code changed or the number of operators changed, was proposed
by Hayes et al. [54]. De Lucia et al. [55] proposed an effort estimation model for corrective
maintenance, where effort is calculated using the size of the system to be maintained and the
number of three distinct types of maintenance tasks. The resulting effort metric measures
the actual effort spent in each phase of the maintenance process (e.g., define, analyze, design,
produce, or implement phase) or in the whole maintenance period for corrective activities.
For both corrective and adaptive maintenance effort, a low measurement of effort represents
high maintainability, whereas a high measurement indicates low maintainability [6].

Another way of assessing maintainability is based on the subjective evaluation of
software systems by experts [56–59]. In this case, maintainability is expressed on an ordinal
scale using expert opinion, for instance as poor, average, good, and very good [56], or as
very low, low, medium, high, and very high [57,58], or as very easy, easy, medium, high,
and very high [59].

2.3. Maintainability Index Variants

With extensive use of the Maintainability Index in software research and practice,
the Index has been fine-tuned over time to better represent the maintainability characteris-
tics of software systems, to ease the calculation, or to aid the interpretation of the results.
This resulted in several defined variants of the Index. The key differences between the
variants lie in the selection of the software metrics used and/or the amount of influence
the selected software metrics have on maintainability.

The original three-metric Maintainability Index (further referred to as MIorig.) pro-
posed by Oman and Hagemeister [8] is defined as:

MIorig. = 171− 3.42× ln(aveE)− 0.23× aveV(g)− 16.2× ln(aveLOC) (1)

where aveE is the average Halstead’s Effort per module, aveV(g) is the average Cyclomatic
Complexity per module, and aveLOC is the average Lines of Code per module. Besides the
three-metric Index that captures the size and complexity aspects of the code, Oman and
Hagemeister [8] proposed a four-metric Maintainability Index that additionally includes
a self-explanatory aspect of the code. This was included in the equation by capturing
the quantity of comments in the source code in a way that the presence of comments is
considered to improve maintainability. The comment part of the equation first included
the average Number of Lines of Comments per module. This metric was later criticized

Appl. Sci. 2023, 13, 2972 6 of 36

as being too heavily skewed by large comment blocks, which has the potential to increase
the value of the resulting Index excessively. Thus, to mitigate this thread of the Index
being overly sensitive to comments, a more subtle Index variant was proposed using a
ratio between comment lines and code lines instead of an absolute number of comment
lines in the code [8–10]. The original four-metric Maintainability Index (MIorig.(CM)) with
the comment part, which limits the impact comments can have on maintainability, is
calculated as

MIorig.(CM) = 171− 3.42× ln(aveE)− 0.23× aveV(g)− 16.2× ln(aveLOC)

+50× sin(
√

2.4× perCM)
(2)

where aveE is the average Halstead’s Effort per module, aveV(g) is the average Cyclomatic
Complexity per module, aveLOC is the average Lines of Code per module, and the addi-
tional perCM is the average Percent of Lines of Comments per module. Due to criticisms
regarding the non-monotonic nature of the Halstead’s Effort metric, the Index was later
reconstructed using Halstead’s Volume metric instead since the difference between the
two was not found to be statistically significant [9,10]. This resulted in the improved
three-metric Maintainability Index (MIimpr.) calculated as

MIimpr. = 171− 5.2× ln(aveV)− 0.23× aveV(g)− 16.2× ln(aveLOC) (3)

where aveV is the average Halstead’s Volume per module, aveV(g) is the average Cyclomatic
Complexity per module, and aveLOC is the average Lines of Code per module. Again,
the reconstructed Index was also proposed with the comment part [9,10], resulting in the
improved four-metric Maintainability Index (MIimpr.(CM)) defined as

MIimpr.(CM) = 171− 5.2× ln(aveV)− 0.23× aveV(g)− 16.2× ln(aveLOC)

+50× sin(
√

2.4× perCM)
(4)

where aveV is the average Halstead’s Volume per module, aveV(g) is the average Cyclo-
matic Complexity per module, aveLOC is the average Lines of Code per module, and the
additional perCM is the average Percent of Lines of Comments per module. A study by
Revilla [60] revealed that there is a strong correlation between Lines of Code and Halstead’s
Volume, as well as between Lines of Code and Cyclomatic Complexity. Based on these
findings, Najm [11] substituted Halstead’s Volume part and the Cyclomatic Complexity
part in the Index equation with the respective calculations of these two parts using Lines of
Code, which allows quicker and easier computation of the Index. The author built upon
the improved Index and proposed the Maintainability Index computed using only Lines of
Code (MILOC) as follows:

MILOC = 171− 5.2× ln(45× aveLOC− 428)− 0.23× (0.22× aveLOC− 1.9)

−16.2× ln(aveLOC)
(5)

where aveLOC is the average Lines of Code per module. The JHawk product introduced
two additional Index variations that use the Number of Statement metric instead of the
Lines of Code metric. The former is believed to be a better measure of software size than
the latter [13]. Thus, the JHawk three-metric Maintainability Index (MIJH) is calculated as

MIJH = 171− 5.2× ln(aveV)− 0.23× aveV(g)− 16.2× ln(aveNOS) (6)

where aveV is the average Halstead’s Volume per module, aveV(g) is the average Cyclomatic
Complexity per module, and the substituted aveNOS is the average Number of Statements

Appl. Sci. 2023, 13, 2972 7 of 36

per module. Again, the Index was also defined with the comment part, resulting in the
JHawk four-metric Maintainability Index (MIJH(CM)) as follows:

MIJH(CM) = 171− 5.2× ln(aveV)− 0.23× aveV(g)− 16.2× ln(aveNOS)

+50× sin(
√

2.4× perCM)
(7)

where aveV is the average Halstead’s Volume per module, aveV(g) is the average Cyclomatic
Complexity per module, aveNOS is the average Number of Statements per module, and
perCM is the average Percent of Lines of Comments per module. The results of the presented
Indices range from an unbounded negative number to 171. For the result of the Index to be
bound between 0 and 100, which provides a clearer and more useful interpretation, Visual
Studio derived an Index variant based on the improved Index with the sole difference of
using a shifted scale [61]. The Maintainability Index defined by Visual Studio (MIVS) is
calculated as

MIVS = max
(

0, 100
171− 5.2× ln(aveV)− 0.23× aveV(g)− 16.2× ln(aveLOC)

171

)
(8)

where aveV is the average Halstead’s Volume per module, aveV(g) is the average Cyclomatic
Complexity per module, and aveLOC is the average Lines of Code per module.

Each of the presented variants represents a slightly different approach to measuring
maintainability by capturing different software-related characteristics. Table 1 provides a
summary of the software metrics required to compute each variant and the corresponding
software aspects that these metrics measure. As for measuring code complexity, both Hal-
stead’s Effort and Halstead’s Volume measure computational complexity, while McCabe’s
Cyclomatic Complexity measures logical complexity. Lines of Code and Number of State-
ments measure software size. Percent of Lines of Comments measures the self-explanatory
nature of the code base through documentation, i.e., code comments.

Table 1. The inclusion of software metrics for the computation of Index variants and software aspects
the metrics measure.

Computational Complexity Logical Complexity Software Size Code Documentation

Maintainability
Index Variant

Halstead’s
Effort

Halstead’s
Volume

McCabe’s Cyclomatic
Complexity

Lines of
Code

Number of
Statements

Percent of Lines of
Comments

MIorig. X X X
MIorig.(CM) X X X X
MIimpr. X X X
MIimpr.(CM) X X X X
MILOC X
MIJH X X X
MIJH(CM) X X X X
MIVS X X X

Mark “X” is used to indicate the inclusion of a software metric for the computation of a specific Index variant.

Besides the above-presented Index variants, several others were proposed in the
literature incorporating other software metrics that measure additional software aspects,
e.g., cohesion and coupling; yet, they are not widely used. Misra [16] proposed the Index
based on design/code-level metrics, including the average Method Size, Program Length,
Control Density, Depth of Inheritance Tree, and Method Hiding Factor. Kaur and Singh [14]
proposed the Index using package metrics, namely size, complexity, cohesion, and nesting
metrics. Kaur et al. [15] proposed two Indices based on object-oriented metrics, such as
Lack of Cohesion in Methods, Message Passing Coupling, Response for a Class, Weighted
Method per Class, Number of Commands, Number of Constructors, and Number of Cyclic

Appl. Sci. 2023, 13, 2972 8 of 36

Dependencies. Madhwaraj [17] proposed the Index using the object-oriented Martin’s
metrics suite, where Distance From the Main Sequence, Afferent Coupling, Number of
Concrete Classes, and Efferent Coupling are needed for computation. The author also
proposed the Index using the object-oriented Chidamber and Kemerer metrics suite, where
Coupling Between Objects and Response For a Class are considered for computation.

The evolution of the initially proposed Maintainability Index into numerous vari-
ants has resulted in a varying usage of Index variants in the context of maintainability
assessment. This issue has already been noted by systematic literature reviews conducted
in the research field [43,45]. The most widely used variants and their example usage in
the literature regarding object-oriented software are summarized in Table 2. The table
highlights that different Index variants are used across the research community, while using
software based on various object-oriented programming languages. The Index variants
are used for several purposes, including maintainability monitoring [10,22–27,62], explo-
ration of the relationship between maintainability and software metrics [14–16,20,28,29,63],
characterization of architectural design patterns in view of maintainability [64–66], investi-
gation of the impact of community patterns on software maintainability [67], technical debt
detection [30], and machine-learning-based fault, change proneness, and maintainability
trend prediction [31–35].

Table 2. Overview of studies using different Index variants.

Maintainability
Index Variant

Example Study
Using the Variant

Programming Language of Object-Oriented
Software Systems Used in the Study

MIorig. [10] C++
[34,64] Java

MIorig.(CM) [10] C++
[14,20] Java

MIimpr. [27] C#
[22] C++
[15,27,29,33,63,67,68] Java
[67] Python

MIimpr.(CM) [16] C++
[28] Java
[65] Python

MILOC [26] C#

MIJH [31,32,62] Java

MIJH(CM) [31,32] Java

MIVS [23,26,66] C#
[24,25,35] Java
[30] Python

3. Related Work

In the literature, the Maintainability Index has been used as a measure of maintain-
ability extensively researched from various perspectives. Although numerous measures
have been proposed in the literature for assessing software quality factors, few studies have
focused on comparing the Index with other maintainability or software quality measures.
A complete overview of related studies is presented in Table 3.

Appl. Sci. 2023, 13, 2972 9 of 36

Table 3. Overview of related studies.

Study Compared Software Mea-
sures Comparison Objective Subject Software

Systems Research Findings

Kaur and Singh [14]
Maintainability Index
(MIorig.(CM)), proposed
maintainability metric

Validating a new measure
Releases of three
Java software sys-
tems

N/A

Kaur et al. [15] Maintainability Index
(MIimpr.), change metric

Evaluating the maintain-
ability prediction power
of the Index for object-
oriented software on the
class level

Two releases of
a Java software
system

There is a slight inverse
relationship between the
measures

Kencana et al. [26] Maintainability Index
(MIVS, MILOC)

Comparing the Index cal-
culations from two frame-
works on a software and
component level

A C# software sys-
tem

The difference between
calculations is negligible

Madhwaraj [17]
Maintainability Index
(MIimpr.(CM)), proposed
maintainability metric

Validating a new measure
Releases of four
Java software sys-
tems

N/A

Misra [16]
Maintainability Index
(MIimpr.(CM)), proposed
maintainability metric

Validating a new measure Fifty C++ software
systems N/A

Najm [11]
Maintainability Index
(MIimpr.), proposed main-
tainability metric

Validating a new measure Six C++ software
systems N/A

Papamichail and
Symeonidis [25]

Maintainability Index
(MIVS.), proposed main-
tainability metric

Validating a new measure
Three releases of
a Java software
system

N/A

Sjøberg et al. [19]

Maintainability Index
(MIimpr.(CM)), two code
smells (Feature Envy, God
Class), a set of structural
metrics, system size met-
rics, maintenance effort

Investigating the consis-
tency of software mainte-
nance metrics at the system
level

Four Java software
systems

The measures are not
mutually consistent for
evaluating maintainabil-
ity

Strečanský et al. [30]
Maintainability Index
(MIVS), SIG method,
SQALE analysis

Comparing methods
for software technical
debt identification on the
between-release level

Releases of twenty
Python software
systems

The Index and SIG
method show more simi-
larity, while the Index and
SQALE analysis show less

N/A = not applicable.

Some studies have compared the Index with alternative software quality measures
with the aim of assessing existing measures. Sjøberg et al. [19] researched consistency at
a software system level among a set of software maintenance measures, including the
Maintainability Index, code smells, structural metrics related to coupling, cohesion, size,
and inheritance, software size metrics, and maintenance effort measured by the time spent
on a maintenance task and the number of changes completed in the course of the task on
the subjected software systems. The empirical research on four functionally equivalent
web-based systems, primarily implemented in the Java programming language, revealed
that these measures are not mutually consistent for evaluating maintainability. The inverted
value of the Index had the highest positive correlation with the inverted value of the Depth
of Inheritance Tree metric (rs = 1), coupling measure (rs = 0.8), and Feature Envy code
smell type (rs = 0.8). It had the highest negative correlation with the inverted value of
the cohesion measure (rs = −1), Lines of Code metric (rs = −0.6), and maintenance effort
measured by the average hours spent on the maintenance task (rs = −0.6). Kaur et al. [15]

Appl. Sci. 2023, 13, 2972 10 of 36

compared the Maintainability Index with the change metric by calculating the differences
between individual classes of two versions of an open-source software written in Java.
The results showed a low negative correlation (r = −0.32), suggesting a slight inverse
relationship between the measures. Kencana et al. [26] compared the Maintainability Index
calculation used in Visual Studio from two different frameworks; from built-in Code Metric
Analysis and the Microsoft CodeLens Code Health Indicator extension. An experiment on
a C# software system demonstrated a negligible difference between calculations. Strečan-
ský et al. [30] compared three techniques for software technical debt identification, namely
the Maintainability Index, SIG method, and SQALE analysis, on releases of 20 open-source
Python libraries. The results showed that each method gives a slightly different perception
of how technical debt evolves. The Index and SIG method show more similarity regarding
trends of technical debt changes between releases (rMed. = 0.67), while the Index and SQALE
analysis show less (rMed. = 0.57).

Some studies have compared the well-established Maintainability Index variant with
alternative software quality measures with the aim of validating new measures. Kaur and
Singh [14] compared their proposed maintainability metric with the original four-metric
Maintainability Index. Najm [11] compared the proposed metric with the improved three-
metric Maintainability Index. Misra [16] and Madhwaraj [17] compared their proposed
maintainability metric with the four-metric improved Maintainability Index. Papamichail
and Symeonidis [25] compared the proposed maintainability evaluation with the Maintain-
ability Index defined by Visual Studio.

Although there are some similarities with the existing work, the lack of a comprehen-
sive approach to comparing multiple variations of the Index makes our work the first of
its kind in the field. Firstly, our study differs in the inclusion of multiple commonly used
Index variants in the comparison, while most studies, except for [26], did not include more
than one variant. Instead, they focused on the comparison with other software measures.
This limitation of the current works prevents the works from presenting a clear picture
regarding the consistency of the Index variants for software maintainability measurement.
Secondly, most studies conducted the comparison on a relatively small set of software sys-
tems, while we conducted experiments on a more extensive set of subject software systems.
Furthermore, while the existing works mainly focused on the comparative analysis of either
one subject or between multiple subjects, we provide analyses in both contexts.

4. Research Method

To achieve the research objectives, experiments were conducted on Java open-source
software systems. A total of 45 object-oriented software systems were randomly selected
for the study. Projects varying in maturity, popularity, domain, and size were included to
ensure a diverse sample. To answer RQ1 and RQ2.1, the most recently released version at
the time of conducting the experiments for each of the 45 software systems under study
was used. Table 4 provides an overview of the software systems studied. The source
code for each included subject was retrieved from the GitHub repository specified in the
table. To address RQ2.2, three software systems, varying in popularity and source code
characteristics, were selected as case studies, with all available versions of their release
histories included in the experiment. Table 5 presents these selected software systems and
their releases.

The Maintainability Index was calculated for each software system under study using
seven variants: MIorig., MIorig.(CM), MIimpr., MIimpr.(CM), MILOC, MIJH , and MIJH(CM).
These variants were chosen because software researchers and practitioners most commonly
utilize them to assess the maintainability of object-oriented software. The software metric
values needed for the computations were derived from the source codes of the subject
software using JHawk 6.1.4, a Java software metric collection tool. Then, the seven variants
were calculated using the formulas listed in Section 2.3. When calculating, the metric values
were averaged per class since this is a common practice when calculating the Index at the
system level in an object-oriented software ecosystem. In Table 6, descriptive statistics of

Appl. Sci. 2023, 13, 2972 11 of 36

the collected software metric values of 45 studied software systems, averaged per class,
are reported. In addition, these data are presented visually with boxplots in Figure 1.
The resulting Index variant values are available in Appendix A. In Table A1, Index variant
values relevant for RQ1 and RQ2.1 are reported. In Tables A2–A4, Index variant values
relevant for RQ2.2 are reported for CS1, CS2, and CS3, respectively.

Table 4. Overview of subject software systems included in the study (RQ1 and RQ2.1).

Software System Code Repository a GitHub
Stars b Release Number of

Classes
Lines of
Code

Lines of
Comments

S1. Activiti Activiti/Activiti 8.9k 7.4.0 3,130 181,012 67,996
S2. Angry IP Scanner angryip/ipscan 2.9k 3.8.2 382 12,971 2878
S3. Apache Ant apache/ant 337 1.10.12 1817 139,425 104,736
S4. Apache Commons
Codec apache/commons-codec 366 1.15 190 23,873 15,319

S5. Apache Commons CSV apache/commons-csv 291 1.9.0 56 8314 3726
S6. Apache Commons DBCP apache/commons-dbcp 286 2.9.0 189 32,110 11,173
S7. Apache Commons Lang apache/commons-lang 2.3k 3.12.0 916 78,468 58,556
S8. Apache HttpClient apache/httpcomponents-client 1.2k 5.1.3 1179 72,840 29,967
S9. Apache PDFBox apache/pdfbox 1.7k 2.0.26 1587 167,686 85,153
S10. Apache POI apache/poi 1.5k 5.2.2 4534 399,492 179,826
S11. Arduino arduino/Arduino 13.1k 1.8.19 429 25,911 10,262
S12. Art of Illusion ArtOfIllusion/ArtOfIllusion 61 3.2.0 901 118,268,809 18,676
S13. AssertJ assertj/assertj-core 2.2k 3.23.1 5359 201,769 158,914
S14. Caffeine ben-manes/caffeine 12.1k 3.1.1 925 55,991 15,328
S15. cglib cglib/cglib 4.5k 3.3.0 498 15,181 4353
S16. DITA Open Toolkit dita-ot/dita-ot 322 3.7.2 499 49,117 12,357
S17. EasyMock easymock/easymock 776 4.3 336 14,757 6930
S18. Ehcache ehcache/ehcache3 1.8k 3.10.1 2374 127,468 41,302
S19. FastJSON alibaba/fastjson 24.9k 1.2.83 6295 182,197 13,922
S20. GeOxygene IGNF/geoxygene 31 1.9 2767 241,496 114,263
S21. h2database h2database/h2database 3.4k 2.1.214 1657 238,082 69,448
S22. Hibernate ORM hibernate/hibernate-orm 5.1k 5.6.11 15,382 798,556 191,614
S23. iText7 itext/itext7 1.3k 7.2.3 3063 292,122 159,854
S24. JabRef JabRef/jabref 2.7k 5.7 1935 131,891 15,927
S25. Jajuk jajuk-team/jajuk 41 11.0 1043 67,423 47,767
S26. JasperReports TIBCOSoftware/jasperreports 702 6.20.0 3720 319,275 150,282
S27. javaGeom dlegland/javaGeom 44 0.11.3 376 32,577 17,992
S28. Java Hamcrest hamcrest/JavaHamcrest 2k 2.2 242 6980 3532
S29. Jenkins jenkinsci/jenkins 19.4k 2.366.1 3703 172,272 77,378
S30. JFreeChart jfree/jfreechart 888 1.5.3 1056 136,664 127,798
S31. JFreeSVG jfree/jfreesvg 251 5.0.3 24 3930 3,164
S32. JGraphT jgrapht/jgrapht 2.2k 1.5.1 1261 128,742 60,731
S33. JMeter apache/jmeter 6.4k 5.5 1680 146,352 68,114
S34. Joda-Time JodaOrg/joda-time 4.8k 2.11.1 557 88,232 44,692
S35. jsoup jhy/jsoup 9.7k 1.15.3 244 26,125 5708
S36. JUnit4 junit-team/junit4 8.3k 4.13.2 1469 31,242 7460
S37. JUnit5 junit-team/junit5 5.4k 5.9.0 2314 81,910 35,277
S38. Mockito mockito/mockito 13.3k 4.7.0 1948 58,710 19,848
S39. MPAndroidChart PhilJay/MPAndroidChart 35.5k 3.1.0 300 24,370 8930
S40. PowerMock powermock/powermock 3.9k 2.0.9 1220 37,852 20,675
S41. SLF4J qos-ch/slf4j 2k 2.0.0 260 13,397 10,046
S42. Spring spring-projects/spring-framework 49k 5.3.22 14,088 675,735 346,280
S43. Spring Boot spring-projects/spring-boot 63k 2.7.3 10,431 351,935 164,354
S44. TestNG cbeust/testng 1.8k 7.6.1 2444 91,953 9616
S45. YamlBeans EsotericSoftware/yamlbeans 525 1.15 186 8485 894

a GitHub code repositories are available at https://github.com/ (accessed on 30 August 2022). b Data gathered
on 30 August 2022.

https://github.com/

Appl. Sci. 2023, 13, 2972 12 of 36

Table 5. Overview of subject software systems included in the study (RQ2.2).

Number of Classes Lines of Code Lines of Comments

Case Study Software System Releases Avg. Med. Std. Avg. Med. Std. Avg. Med. Std.

CS1 S13. AssertJ 63 (1.0.0–3.23.1) 3346.9 3065 1133 125,175.9 112,809 44,201.9 94,521.7 82,938 35,557.8
CS2 S14. Caffeine 61 (1.0–3.1.1) 760.6 7836 117.1 45,474.5 46,574 7364.8 12,756 13,204 1411.4
CS3 S34. Joda-Time 52 (0.9–2.11.1) 547.9 557 72.2 80,046.7 85,490 13,880.8 42,200.2 44,552 5451.7

Avg. = average, Med. = median, Std. = standard deviation.

Table 6. Descriptive statistics of software metric values averaged per class.

Halstead’s Ef-
fort per Class

Halstead’s Volume
per Class

McCabe’s Cyclomatic
Complexity per Class

Lines of Code
per Class

Number of State-
ments per Class

Percent of Lines
of Comments

Avg. 54,201 2458 12.1 76.0 54.6 43.4
Med. 37,166 2164 11.3 64.6 47.9 44.9
Std. 58,992 1491 6.81 41.0 29.9 20.4
Min. 2957 377 3.64 21.3 13.9 7.64
Max. 288,226 5693 33.3 170 123 93.5

Avg. = average, Med. = median, Std. = standard deviation, Min. = minimum, Max. = maximum.

Next, data analysis on the acquired data was performed using IBM SPSS Statistics 28
and Python 3.7.6. with the matplotlib, NumPy, pandas, SciPy, seaborn, and scikit-learn
libraries. A variety of data analysis methods (i.e., descriptive statistics, hypothesis testing,
correlation analysis, multidimensional scaling, cluster analysis, and trend analysis) were
used to answer the research questions, which allowed us to evaluate and compare the
consistency of several variants of the Index in measuring the maintainability of object-
oriented software systems on a large and diverse set of Java software in different contexts.

To answer RQ1, descriptive statistics were initially used to describe the values of each
Index variant and to gain a general understanding of the distribution of the data. This
allowed us to evaluate how the different variants capture the notion of maintainability
when applied to measure the maintainability of the same software system and to compare
the variants in terms of their absolute values. Next, focusing on identifying any significant
differences between the variants, the pairwise differences between Index variants were
assessed. Inferential statistics were employed to determine if there was a statistically signif-
icant difference in the maintainability measurements of the two Index variants. To verify
the assumptions of normality for the differences between the two groups under study,
the Shapiro–Wilk Test was utilized because the sample size for the data of RQ1 was small
(n ≤ 50). When the test showed that the normality assumption was met, i.e., that the
differences between the two groups followed a normal distribution, a Paired-Samples t-Test
was performed. The test aimed to determine whether there was statistical evidence that
the mean difference between paired observations was significantly different from zero. We
report Cohen’s d, a measure of effect size, to provide additional information about the
magnitude of the difference in means to aid in interpreting the practical significance of the
observed difference. It is computed as

d =
M1 −M2

SDpooled
(9)

where the numerator is the difference between the means of the two measures M1 and M2
and the denominator SDpooled is the pooled standard deviations, a weighted average of
the standard deviation of the two groups [69]. The effect sizes were interpreted as very
small, small, medium, large, very large, or huge [70], as specified in Table 7. When the
Shapiro–Wilk Test revealed that the normality assumption for the differences between
the two groups of Index variant values was not met, the Wilcoxon Signed-Rank Test,
a non-parametric equivalent to the Paired-Samples t-Test, was used instead. In such

Appl. Sci. 2023, 13, 2972 13 of 36

cases, the Matched-Pairs Rank-Biserial Correlation (rc) was used to measure the effect size,
calculated as the difference between two proportions as

rc =
NRP
NR
− NRN

NR
(10)

where NRP signifies the number of positive ranks, NRN the number of negative ranks,
and NR the total number of ranks. In proportion to the effect size, the coefficient’s value
could range from −1 to 1. A coefficient with a value of 0 indicates that there is no effect,
i.e., no difference in the data between groups. Positive values imply that the data in
the reference group tend to be more than the data in the comparison group. In contrast,
negative values indicate that the data in the reference group tend to be fewer than in the
comparison group [71].

Figure 1. Boxplots of software metric values averaged per class.

Table 7. Interpretation of Cohen’s d effect size.

Cohen’s d Effect Size Interpretation of the Effect Magnitude

0.01 ≤ |d| < 0.2 Very small effect
0.2 ≤ |d| < 0.5 Small effect
0.5 ≤ |d| < 0.8 Medium effect
0.8 ≤ |d| < 1.2 Large effect
1.2 ≤ |d| < 2 Very large effect
2 ≤ |d| Huge effect

To answer RQ2.1, a pairwise correlation analysis was carried out between pairs of In-
dex variants to examine the association between variant values. Based on the Shapiro–Wilk

Appl. Sci. 2023, 13, 2972 14 of 36

Test, a parametric correlation coefficient was utilized, the Pearson Correlation Coefficient (r).
It is an indicator of the strength and direction of a linear relationship between two variables.
It has a possible range of values between −1 and 1, with −1 denoting a perfect negative
linear relationship, 0 no relationship, and 1 a perfect positive linear relationship. According
to the coefficient values described in Table 8, the strength of a correlation coefficient was
interpreted as negligible, weak, moderate, strong, or very strong [72]. Following that,
multidimensional scaling was conducted. The algorithm assisted in obtaining quantitative
estimations of similarity and dissimilarity across Index variants in a low-dimensional
vector space, i.e., a two-dimensional space in our case, enabling a graphical representation
of the underlying relational structures contained therein. The algorithm conveyed the
(dis)similarities between the set of variants in a lower-dimensional representation of the
data in a way that preserved the relative (dis)similarities between the variants, and the
distances respected well the distance in the original high-dimensional space. Accordingly,
similar Index variants were spatially located closer together, and dissimilar variants were
located proportionately further apart [73]. We performed metric multidimensional scaling
using a distance matrix built on pairwise dissimilarity scores between Index variants, based
on the previously conducted correlation analysis. The distance matrix, in our case a 7× 7
symmetric square matrix, determined how dissimilar all the pairs of Index variants were
from each other, based on the dissimilarity score, computed as

DSa,b = 1− |ra,b| (11)

where DSa,b is the dissimilarity score between Index variants a and b and |ra,b| is the abso-
lute Pearson Correlation Coefficient of the two variants. It should be noted that the distance
matrix’s principal diagonal was equal to zero because the dissimilarity score between the
pair of the same Index variant was always zero. Finally, hierarchical agglomerative cluster-
ing was performed to identify clusters, i.e., groups of similar Index variants, based on the
computed pairwise dissimilarities scores in a way that resulted in maximum intra-cluster
similarity and maximum inter-cluster dissimilarity. Each Index variant began as a single
individual cluster. Then, the algorithm merged the two most-similar clusters based on the
distance metric iteratively. We used the complete linkage method to calculate the distances,
which defines the distance between two clusters as the maximum distance between any
two individuals in the two clusters. Formally, the method is defined as

D(A, B) = max(dist(a, b)); a ∈ A ∧ b ∈ B (12)

where D(A, B) represents the distance between clusters A and B and dist(a, b) represents
the distance between all individuals a in cluster A and individuals b in B [74].

Table 8. Interpretation of Pearson’s and Kendall’s Correlation Coefficient.

Pearson’s Correlation Kendall’s τ-b Correlation Interpretation of the Correlation

0.0 ≤ |r| < 0.1 0.0 ≤ |τ| < 0.1 Negligible correlation
0.1 ≤ |r| < 0.4 0.1 ≤ |τ| < 0.4 Weak correlation
0.4 ≤ |r| < 0.7 0.4 ≤ |τ| < 0.7 Moderate correlation
0.7 ≤ |r| < 0.9 0.7 ≤ |τ| < 0.9 Strong correlation
0.9 ≤ |r| ≤ 1 0.9 ≤ |τ| ≤ 1 Very strong correlation

To answer RQ2.2, the link between Index variants was analyzed in the context of
comparing maintainability with versions of the same software system using correlation
analysis for each case study. Because we had a moderate sample size (n > 50), we employed
the Kolmogorov–Smirnov Test to check the assumptions of normality. Based on the results,
a non-parametric Kendall’s τ-b Correlation Coefficient was used. Kendall’s Correlation
Coefficient, like Pearson’s, is used to assess the degree of association between two variables,
in our case two Index variants. The strength of correlation was interpreted as defined in
Table 8. Next, multidimensional scaling with correlation-based distances was used to depict

Appl. Sci. 2023, 13, 2972 15 of 36

similarities and dissimilarities for each case study, as in RQ2.1. In this case, Kendall’s τ-b
Correlation Coefficients were used to construct the distance matrix for each case study. Next,
to assess if the maintainability trends based on the measurements provided by the seven
Index variants are comparable, we evaluated the data based on the semantic versioning of
the releases, i.e., major.minor.patch, such as 3.23.1. First, trend analysis was performed to
assess the consistency of Index variants’ maintainability evolution indications from a more
long-term perspective. We used the Mann–Kendall Trend Test, a non-parametric statistical
test for determining the underlying monotonic trend, i.e., consistent upward or downward
maintainability trend, throughout the evolution of a software system, and Sen’s Slope (β)
to estimate the magnitude of the trend [75]. Following that, we focused on the short-term
trends, i.e., changes in maintainability from a previously released version of a software
system, calculated as

∆MIi(j− 1, j) = MIi,j −MIi,j−1 (13)

where ∆MIi(j− 1, j) is the change in the Index variant MIi, j is the current release of a
software system, and j− 1 is the preceding release.

5. Results and Data Analysis
5.1. RQ1: Maintainability Measurement in a Software System

For each software system under study, values of the Index variants are visually pre-
sented in Figure 2. We can observe that, for each subject software, the single-valued
maintainability evaluations by various Index variants were not the same. Nevertheless,
certain general patterns in the Index values can be identified. The values of the Index
variants that do not consider measuring code documentation, i.e., Index variants without
the comment part, are on the left side of the plot, whereas the Index variants that take code
comments into account in their computations are on the right side. Thus, the values of
the former tend to be lower than the latter. Although this was to some extent expected
given how the equations of Index variants with the comment part are formulated, an in-
teresting observation is that the gap between the two groups of Index variants appears to
be somewhat consistent for all software systems. Furthermore, we can observe that the
gap tends to be slightly smaller when there is little code documentation, i.e., when the
percentage of comment lines is low (e.g., in the case of S19, S44, S45), and the gap tends
to be larger when the percentage of comment lines is higher (e.g., in the case of S30, S31).
A closer examination of the individuals of the two groups reveals there is more variation
in the specific Index variant values. The two lowest values are reported by MIimpr. and
MILOC. In a large majority of subject software (88.9%), MILOC has the lowest value, while
in 11.1% of software, the lowest value is reported by MIimpr.. For the second-lowest value,
the situation is reversed. Next, the third- and the fourth-lowest values are reported by
either MIJH or MIorig.. In 60% of software systems, the third-lowest value is reported
by MIJH and in 40% by MIorig.. The situation is reversed with the fourth-lowest value.
The next value in the rankings, i.e., the third-highest value, is, in all cases, MIimpr.(CM).
MIJH(CM) and MIorig.(CM) report the two highest values. The highest value is reported
by MIorig.(CM) in 60% of subject software and MIJH(CM) in 40%. For the second-highest
values, 60% are reported by MIJH(CM) and 40% by MIorig.(CM). In Table 9, descriptive
statistics about the Index variant values are provided, supporting the previously stated
observations. In general, MIimpr. and MILOC suggest lower maintainability for the same
software system than MIJH or MIorig., as the values of MIJH and MIorig. tend to be higher
than those of MIimpr. and MILOC. Additionally, MIJH(CM) and MIorig.(CM) suggest higher
maintainability in comparison to MIimpr.(CM), since the value of MIimpr.(CM) tends to be
lower than that of MIJH(CM) and MIorig.(CM).

Appl. Sci. 2023, 13, 2972 16 of 36

Figure 2. Dot plot of Index variant values for each subject software system.

Table 9. Descriptive statistics and normality test of Index variant values.

MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

Avg. 66.66 112.41 60.90 106.64 59.23 66.37 112.11
95% CI [62.64, 70.69] [108.35, 116.47] [56.73, 65.07] [102.48, 110.8] [54.87, 63.59] [62.13, 70.61] [107.87, 116.36]
Med. 67.74 111.37 61.04 105 59.98 66.74 112.15
Std. 13.39 13.51 13.88 13.84 14.51 14.13 14.14
Min. 44.29 82.70 36.90 78.44 33.45 42.54 83.70
Max. 94.74 136.82 89.78 131.86 88.23 96.71 138.78
Skew. 0.06 0.03 0.06 0.04 −0.01 0.10 0.08
Kurt. −1.00 −0.69 −0.93 −0.72 −0.97 −0.90 −0.68

SW W = 0.96,
p = 0.147

W = 0.98,
p = 0.461

W = 0.97,
p = 0.207

W = 0.97,
p = 0.389

W = 0.97,
p = 0.256

W = 0.96,
p = 0.165

W = 0.97,
p = 0.352

Avg. = average, CI = confidence interval, Med. = median, Std. = standard deviation, Min. = minimum, Max. =
maximum, Skew = skewness, Kurt. = kurtosis, SW = Shapiro–Wilk Test.

The boxplots in Figure 3 illustrate the pairwise differences between the values of
different Index variants. The figure gives a general idea of the direction of the differences,
i.e., whether they are generally positive, negative, or inconclusive. This helps show which
Index variant has higher values between the two variants. For example, a consistent positive
difference is observed between MIorig.(CM) and MIorig., while the results between MIorig.

Appl. Sci. 2023, 13, 2972 17 of 36

and MIJH are inconsistent, as some subject software systems have higher maintainability
based on MIorig. (e.g., in the case of S1), while others have higher maintainability based
on MIJH (e.g., in the case of S4). The Index variants without comment parts have smaller
differences from Index variants without comment parts compared to Index variants with
comment parts. For instance, the mean value of the absolute difference between MIorig. and
MIimpr., MILOC, and MIJH is 5.77, 7.43, and 1.50, respectively, while the mean value of the
absolute difference between MIorig. and MIorig.(CM), MIimpr.(CM), and MIJH(CM) is 45.74,
39.98, and 45.45, respectively. Similarly, it can be observed that the Index variants with
comment parts have smaller differences from Index variants with comment parts compared
to Index variants without comment parts. For instance, the mean value of the absolute
difference between MIorig.(CM) and MIimpr.(CM) and MIJH(CM) is 5.77 and 1.50, respectively,
while the mean value of the absolute difference between MIorig.(CM) and MIorig., MIimpr.,
MILOC, and MIJH is 45.74, 51.51, 53.18, and 46.04, respectively.

Figure 3. Boxplots of the pairwise differences between Index variant values.

Appl. Sci. 2023, 13, 2972 18 of 36

The differences between the values of Index variants are evaluated in Table 10 us-
ing inferential statistics. Note that the Shapiro–Wilk Test was used to verify normality
assumptions, and the appropriate test was then used, either the Paired Samples t-Test,
when the normality assumptions were met, or the Wilcoxon Signed-Rank Test, when the
normality assumptions were not met. To accompany the former, the average difference
with the standard error and d effect size are reported in the table, while to accompany the
latter, the median difference and rc effect size are reported. All differences were found to be
statistically significant, except for the differences between MIorig. and MIJH and between
MIorig.(CM) and MIJH(CM). In Figure 4, the boxplots of the Index variants with statistical
significance annotations are depicted (only non-significant pairs are annotated). The box-
plots of the non-significant pairs show a negligible difference, while the rest of the boxplots
visibly differ. The d effect size ranges from huge (for MIimpr. −MIorig., MILOC −MIorig.,
MIimpr.(CM)−MIorig.(CM), MILOC −MIJH), very large (for MILOC −MIimpr.), to very small
(for MIJH −MIorig., MIJH(CM) −MIorig.(CM)). For the last one, this means that the practical
significance of the difference is very small. For all cases where the rc effect size was used,
its value equals −1 or 1. Where a positive effect size of 1 is reported, the Index variant
values in the reference group are, in all cases, higher than the Index variant values in
the comparison group (e.g., in the case of MIorig.(CM) − MIorig.). Contrariwise, when a
negative effect size of −1 is reported, the Index variant values in the comparison group are,
in all cases, higher than the Index variant values in the reference group (e.g., in the case of
MIorig. −MIimpr.(CM)).

Figure 4. Boxplots of the Index variants values with statistical significance annotation (n.s. =
not significant).

Appl. Sci. 2023, 13, 2972 19 of 36

Table 10. Evaluation of the differences between the paired observations of Index variant values.

Comparison
Group

Reference
Group

Shapiro–Wilk
Normality Test

Avg.(±SE a/Med. b

Difference
Test t a/Z b

Value
Statistical
Significance

Effect Size
d a/rc

b

MIorig. MIorig.(CM) W(45) = 0.71, p < 0.001 b 48.50 Z = −5.841 p < 0.001 rc = 1
MIimpr. W(45) = 0.95, p = 0.065 a −5.77 ± 0.19 t(44) = −30.54 p < 0.001 d = −4.55
MIimpr.(CM) W(45) = 0.81, p < 0.001 b 42.29 Z = −5.841 p < 0.001 rc = 1
MILOC W(45) = 0.99, p = 0.943 a −7.43 ± 0.31 t(44) = −23.88 p < 0.001 d = −3.56
MIJH W(45) = 0.97, p = 0.363 a −0.29 ± 0.27 t(44) = −1.09 p = 0.280 d = −0.16
MIJH.(CM) W(45) = 0.87, p < 0.001 b 47.09 Z = −5.841 p < 0.001 rc = 1

MIorig.(CM) MIorig W(45) = 0.71, p < 0.001 b −48.50 Z = −5.841 p < 0.001 rc = −1
MIimpr. W(45) = 0.74, p < 0.001 b −54.40 Z = −5.841 p < 0.001 rc = −1
MIimpr.(CM) W(45) = 0.95, p = 0.065 a −5.77 ± 0.19 t(44) = −30.54 p < 0.001 d= −4.55
MILOC W(45) = 0.82, p < 0.001 b −55.84 Z= −5.841 p < 0.001 rc= −1
MIJH W(45) = 0.80, p < 0.001 b −48.34 Z = −5.841 p < 0.001 rc = −1
MIJH.(CM) W(45) = 0.97, p = 0.363 a −0.29 ± 0.27 t(44) = −1.09 p = 0.280 d = −0.16

MIimpr. MIorig W(45) = 0.95, p = 0.065 a 5.77 ± 0.19 t(44) = 30.54 p < 0.001 d = 4.55
MIorig.(CM) W(45) = 0.74, p < 0.001 b 54.40 Z = −5.841 p < 0.001 rc = 1
MIimpr.(CM) W(45) = 0.71, p < 0.001 b 48.50 Z = −5.841 p < 0.001 rc = 1
MILOC W(45) = 0.95, p = 0.077 a −1.67 ± 0.20 t(44) = −8.42 p < 0.001 d = −1.26
MIJH W(45) = 0.94, p = 0.023 b 5.26 Z = −5.841 p < 0.001 rc = 1
MIJH.(CM) W(45) = 0.79, p < 0.001 b 53.6 Z = −5.841 p < 0.001 rc = 1

MIimpr.(CM) MIorig W(45) = 0.81, p < 0.001 b −42.29 Z = −5.841 p < 0.001 rc= −1
MIorig.(CM) W(45) = 0.95, p = 0.065 a 5.77 ± 0.19 t(44) = 30.54 p < 0.001 d = 4.55
MIimpr. W(45) = 0.71, p < 0.001 b −48.50 Z = −5.841 p < 0.001 rc = −1
MILOC W(45) = 0.79, p < 0.001 b −50.20 Z = −5.841 p < 0.001 rc = −1
MIJH W(45) = 0.78, p < 0.001 b −42.58 Z = −5.841 p < 0.001 rc = −1
MIJH.(CM) W(45) = 0.94, p = 0.023 b 5.26 Z = −5.841 p < 0.001 rc = 1

MILOC MIorig W(45) = 0.99, p = 0.943 a 7.43 ± 0.31 t(44) = 23.88 p < 0.001 d = 3.56
MIorig.(CM) W(45) = 0.82, p < 0.001 b 55.84 Z = −5.841 p < 0.001 rc = 1
MIimpr. W(45) = 0.95, p = 0.077 a 1.67 ± 0.20 t(44) = 8.42 p < 0.001 d = 1.26
MIimpr.(CM) W(45) = 0.79, p < 0.001 b 50.20 Z = −5.841 p < 0.001 rc = 1
MIJH W(45) = 0.98, p = 0.576 a 7.14 ± 0.29 t(44) = 24.48 p < 0.001 d = 3.65
MIJH.(CM) W(45) = 0.85, p < 0.001 b 55.11 Z = −5.841 p < 0.001 rc = 1

MIJH MIorig W(45) = 0.97, p = 0.363 a 0.29 ± 0.27 t(44) = 1.09 p = 0.280 d = 0.16
MIorig.(CM) W(45) = 0.80, p < 0.001 b 48.34 Z = −5.841 p < 0.001 rc = 1
MIimpr. W(45) = 0.94, p = 0.023 b −5.26 Z = −5.841 p < 0.001 rc = −1
MIimpr.(CM) W(45) = 0.78, p < 0.001 b 42.58 Z = −5.841 p < 0.001 rc = 1
MILOC W(45) = 0.98, p = 0.576 a −7.14 ± 0.29 t(44) = −24.48 p < 0.001 d = −3.65
MIJH.(CM) W(45) = 0.71, p < 0.001 b 48.50 Z = −5.841 p < 0.001 rc = 1

MIJH(CM) MIorig W(45) = 0.87, p < 0.001 b −47.09 Z = −5.841 p < 0.001 rc = −1
MIorig.(CM) W(45) = 0.97, p = 0.363 a 0.29 ± 0.27 t(44) = 1.09 p = 0.280 d = 0.16
MIimpr. W(45) = 0.79, p < 0.001 b −53.61 Z = −5.841 p < 0.001 rc = −1
MIimpr.(CM) W(45) = 0.94, p = 0.023 b −5.26 Z = −5.841 p < 0.001 rc = −1
MILOC W(45) = 0.85, p < 0.001 b −55.11 Z = −5.841 p < 0.001 rc = −1
MIJH W(45) = 0.71, p < 0.001 b −48.50 Z= −5.841 p < 0.001 rc= −1

a Paired Samples t-test, b Wilcoxon Signed-Rank Test, Avg. = average, SE = standard error, Med. = median.

5.2. RQ2.1: Maintainability Measurement in Different Software Systems

The scatter plot matrix representation with pairwise correlation analysis is shown
in Figure 5. Based on the results of the normality tests reported in Table 9, the Pearson

Appl. Sci. 2023, 13, 2972 20 of 36

Correlation Coefficient was used to analyze the relationships between the Index variants.
The results showed that all Index variants are strongly or very strongly positively correlated.
The most outliers, represented by blue dots that are furthest from the regression line, can be
observed when assessing the relationship between an Index variant without and one with
the comment part. That is why, for example, the correlation between MILOC and MIJH(CM)

(r = 0.896) is lower compared to the correlation between MILOC and MIimpr. (r = 0.997).

Figure 5. Scatter plot matrix representing pairwise correlation analyses (all reported correlations are
significant (p < 0.001)) and variation in the data distribution.

To further analyze the multivariate relationships based on the Pearson Correlation
Coefficient between the seven Index variants, multidimensional scaling was used to reduce
the dimensions of the data to two. The resulting visualization seen in Figure 6 attempts
to model the similarity and dissimilarity between the Index variants as the distances they

Appl. Sci. 2023, 13, 2972 21 of 36

exhibit in the vector space. From the visualization, it can be observed that the Index variants
with the comment part, namely MIorig.(CM), MIimpr.(CM), and MIJH(CM), appear to be close
together on the left side of the plot, while the Index variants without the comment part,
namely MIorig., MIimpr., MILOC, and MIJH , appear close together on the right side of the
plot. This observation indicates that Index variants without the comment part are more
similar to each other in comparison to Index variants with the comment part. Similarly, this
observation indicates that Index variants with the comment part are more similar to each
other in comparison to Index variants without the comment part. The identified two groups
are represented by the areas in the figure, which were manually annotated to emphasize
the clear distinction between the two groups, as well as the close proximity of the Index
variants within each group.

Figure 6. Visualizing similarities and dissimilarities after multidimensional scaling based on the
Pearson Correlation Coefficient.

Instead of the manual identification of groups, to more accurately determine the
similar groups of the Index variants, clustering on the Pearson Correlation Coefficients was
performed. In Figure 7, a correlation heat map with a dendrogram that depicts the results
of hierarchical clustering is presented. The dendrogram displays which Index variants are
most similar to each other. The results showed that the first cluster created includes MIimpr.
and MILOC. The second cluster contains MIimpr.(CM) and MIJH(CM), which is in the next
step joined with MIorig.(CM). The fourth cluster includes MIorig. and MIJH , which was in the
next step combined with the first cluster of MIimpr. and MILOC. Lastly, the two remaining
clusters were merged into one. However, it can be noted that the merge threshold level of
the two final clusters, as indicated by the distance in the dendrogram, is significantly higher
compared to the previous clustering steps. These two distinct clusters, as identified by the
hierarchical clustering, are the same as those that were manually identified earlier, i.e., the
Index variants with the comment part and the Index variants without the comment part.

Appl. Sci. 2023, 13, 2972 22 of 36

Figure 7. Correlation heat map and dendrogram of hierarchical agglomerative clustering.

5.3. RQ2.2: Maintainability Measurement in Versions of a Software System

To assess the relationship between Index variants in the context of comparing the main-
tainability of versions of the same software system, a correlation analysis was conducted
for each case study. First, in Table 11, the results of the normality tests are reported. Even
when a parametric correlation coefficient may have been appropriate to use (e.g., in the case
of assessing the relationship between MIorig. and MIorig.(CM) for CS2), we opted to assess
all relationships using Kendall’s τ-b Correlation Coefficient to ensure consistency in com-
paring and analyzing the correlations across all pairs. The results of the correlation analysis
for each case study are presented in Table 12. The correlation coefficients are positive, but
tend to be weaker than those reported in RQ2.1, particularly for CS1 and CS2. In the case
of CS1 and CS2, the correlation ranges from moderate to very strong, while in the case of
CS3, the correlation is very strong across all pairs. Despite the pattern being less noticeable,
the correlations between two Index variants with the comment part and between two Index
variants without the comment part tend to be stronger in comparison to the correlation
between two Index variants, one from each of the two groups. The case of CS1 shows how
three-metric Index variants can also be, in some cases, closely related to their four-metric
alternative. For instance, the correlation between MIorig. and its version with the comment
part, i.e., MIorig.(CM), is very strong (τ = 0.919), while it is only considered strong between
MIorig. and MILOC (τ = 0.805), as well as between MIorig. and MIJH (τ = 0.729).

The results of the correlation analysis were further analyzed through multidimensional
scaling to gain a deeper understanding of the relationships between the Index variants.
The resulting visualizations for each case study are presented in Figure 8. There is still
a tendency for Index variants with comment parts to be close to each other in the vector
space, as well as a tendency for Index variants without comment parts to be close to each
other. However, the pattern is not as pronounced as in the previous analysis for RQ2.1.
Herein, in some case studies, certain Index variants with the comment part are closer to
certain Index variants without the comment part and vice versa. For example, in the case
of CS1, MIorig. appears closer to MIorig.(CM) rather than to MILOC and MIJH .

Appl. Sci. 2023, 13, 2972 23 of 36

Table 11. Kolmogorov–Smirnov normality test.

Case Study MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS1. AssertJ W = 0.151,
p = 0.001

W = 0.199,
p < 0.001

W = 0.189,
p < 0.001

W = 0.177,
p < 0.001

W = 0.159,
p < 0.001

W = 0.169,
p < 0.001

W = 0.255,
p < 0.001

CS2. Caffeine W = 0.102,
p = 0.186

W = 0.131,
p = 0.011

W = 0.100,
p = 0.200

W = 0.137,
p = 0.006

W = 0.113,
p = 0.050

W = 0.091,
p = 0.200

W = 0.156,
p < 0.001

CS3. Joda-Time W = 0.404,
p < 0.001

W = 0.395,
p < 0.001

W = 0.404,
p < 0.001

W = 0.399,
p < 0.001

W = 0.404,
p < 0.001

W = 0.404,
p < 0.001

W = 0.402,
p < 0.001

Table 12. Correlation analysis using Kendall’s τ-b Correlation Coefficient (all reported correlations
are significant (p < 0.001)).

CS1. AssertJ
MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

MIorig. 1 0.919 0.942 0.870 0.805 0.729 0.724
MIorig.(CM) 0.919 1 0.873 0.943 0.745 0.663 0.789
MIimpr. 0.942 0.873 1 0.838 0.860 0.780 0.750
MIimpr.(CM) 0.870 0.943 0.838 1 0.716 0.630 0.813
MILOC 0.805 0.745 0.860 0.716 1 0.887 0.683
MIJH 0.729 0.663 0.780 0.630 0.887 1 0.667
MIJH(CM) 0.724 0.789 0.750 0.813 0.683 0.667 1
CS2. Caffeine

MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

MIorig. 1 0.629 0.909 0.651 0.892 0.885 0.629
MIorig.(CM) 0.629 1 0.679 0.972 0.703 0.659 0.945
MIimpr. 0.909 0.679 1 0.700 0.948 0.864 0.663
MIimpr.(CM) 0.651 0.972 0.700 1 0.724 0.679 0.923
MILOC 0.892 0.703 0.948 0.724 1 0.864 0.685
MIJH 0.885 0.659 0.864 0.679 0.864 1 0.663
MIJH(CM) 0.629 0.945 0.663 0.923 0.685 0.663 1
CS3. Joda-Time

MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

MIorig. 1 0.957 0.988 0.963 0.977 0.988 0.983
MIorig.(CM) 0.957 1 0.945 0.994 0.934 0.945 0.971
MIimpr. 0.988 0.945 1 0.951 0.984 0.988 0.971
MIimpr.(CM) 0.963 0.994 0.951 1 0.940 0.951 0.974
MILOC 0.977 0.934 0.984 0.940 1 0.980 0.963
MIJH 0.988 0.945 0.988 0.951 0.980 1 0.974
MIJH(CM) 0.983 0.971 0.971 0.974 0.963 0.974 1

The consistency of the long-term trends in maintainability for each case study was
analyzed using Mann–Kendall Trend Tests, and the results are presented in Table 13. The re-
sults suggest that the long-term monotonic trends in maintainability are all statistically
significant and point in the same direction; the maintainability trends are negative, indicat-
ing that maintainability is consistently decreasing over time. Nonetheless, the choice of
Index variant affects the magnitude of the trend, with different variants yielding different
results. In the case of CS2, it can be observed that the magnitude of the trends is gener-
ally slightly higher when maintainability is assessed using Index variants with comment
parts (β = −0.051, β = −0.054, and β = −0.056 for MIorig.(CM), MIimpr.(CM), and MIJH(CM),
respectively) compared to when maintainability is assessed using Index variants without
comment parts (β = −0.010, β = −0.011, β = −0.014, and β = −0.015 for MIorig., MIimpr.,

Appl. Sci. 2023, 13, 2972 24 of 36

MIJH , and MILOC, respectively). Additionally, a pattern can be noted between the magni-
tudes of the trends based on the maintainability assessment made by a three-metric Index
variant and the one made by its four-metric alternative across all three case studies. For in-
stance, in the case of CS1, the magnitude of the trend assessed by MIorig.(CM) (β = −0.064)
is higher than the one by MIorig. (β = −0.056); the magnitude of the trend assessed by
MIimpr.(CM) (β = −0.055) is higher than the one by MIimpr. (β = −0.048); the magnitude of
the trend assessed by MIJH(CM) (β = −0.033) is higher than the one by MIJH (β = −0.025).

Figure 8. Visualizing similarities and dissimilarities after multidimensional scaling based on Kendall’s
τ-b Correlation Coefficient.

Table 13. Mann–Kendall Trend analyses.

Case Study MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS1. AssertJ Z = −7.640,
β = −0.056,
p < 0.001

Z = −8.316,
β = −0.064,
p < 0.001

Z = −7.153,
β = −0.048,
p < 0.001

Z = −8.672,
β = −0.055,
p < 0.001

Z = −5.718,
β = −0.031,
p < 0.001

Z = −4.650,
β = −0.025,
p < 0.001

Z = −7.841,
β = −0.033,
p < 0.001

CS2. Caffeine Z = −3.485,
β = −0.010,
p < 0.001

Z = −6.783,
β = −0.051,
p < 0.001

Z = −3.871,
β = −0.011,
p < 0.001

Z = −6.509,
β = −0.054,
p < 0.001

Z = −4.120,
β = −0.014,
p < 0.001

Z = −4.369,
β = −0.015,
p < 0.001

Z = −7.156,
β = −0.056,
p < 0.001

CS3. Joda-Time Z = −9.302,
β = −0.030,
p < 0.001

Z = −9.276,
β = −0.032,
p < 0.001

Z = −9.302,
β = −0.032,
p < 0.001

Z = −9.276,
β = −0.034,
p < 0.001

Z = −9.234,
β = −0.037,
p < 0.001

Z = −9.334,
β = −0.024,
p < 0.001

Z = −9.324,
β = −0.027,
p < 0.001

To examine the short-term trends in the maintainability of each case study, the differ-
ences in maintainability from one software release to its previous version are presented
separately for each Index variant under study in Figure 9. Since the differences in maintain-
ability have a large range of values, the Y axis uses a symmetrical logarithmic scale to help
the reader better observe all these changes. This scale represents small values, i.e., small
differences in maintainability, on a linear scale and larger values, i.e., large differences, on a
logarithmic scale. Blue highlights are placed behind the lines to emphasize changes that
majorly differ from those observed in the maintainability assessments made using other
Index variants, or at least from most of them. In most cases, it can be noted that the changes
are consistent; if, according to one Index variant, a positive change is shown, it is likely
that this change is also regarded as positive according to the assessments made using other
Index variants. When differences in the direction of the maintainability change between two
consecutive releases do occur, the directions of the change are mostly consistent between
Index variants with and those without the comment part. However, while the directions
of the changes are, in most cases, aligned, the magnitudes of these changes often vary for
assessments made by all Index variants.

Appl. Sci. 2023, 13, 2972 25 of 36

Figure 9. Lollipop plots depicting the change in Index variants’ values from the previous release.

6. Discussion
6.1. Summary of Research Questions and Their Answers
6.1.1. RQ1: How Do Different Maintainability Index Variants Perform When Utilized for
the Maintainability Measurement of a Single Object-Oriented Software System?

The results of different variants of an Index used to assess the maintainability of
object-oriented software systems can vary greatly. To ensure the most-accurate assessment,
the specific variant selected should take into account the relevant aspects of maintainability
that best represent the maintainability of the software system in question. For example,
if code documentation significantly benefits software maintainability, a variant incorporat-
ing code comments into the Index computation should be used. Note that some human
analysis of the comments is recommended to aid this decision [10,36]. The differences
between the values produced by different Index variants are, in most cases, significant

Appl. Sci. 2023, 13, 2972 26 of 36

and should not be overlooked. Typically, the Index variants without the comment part
have closer values, as well as the Index variants with the comment part. Additionally,
the former tend to have lower values compared to the latter. As a result, this makes it
difficult to compare values obtained from different variants directly. Furthermore, using
originally proposed thresholds for conventional systems to convert the maintainability
assessment on an interval scale, which ranges from an unbounded negative number to
171, into categorical, i.e., low, medium, and high maintainability, may not be appropriate
without considering the object-oriented nature of the software system and the specific
Index variant used to make the maintainability assessment.

6.1.2. RQ2.1: How Do Different Maintainability Index Variants Perform When Utilized for
Maintainability Measurement between Different Software Systems?

Although there are differences in the values produced by different variants of an Index
used to measure software system maintainability, the variants tend to behave similarly
when comparing maintainability between systems. The relationship between all pairs of
Index variants under study is positive and strong to very strong. When comparing two
software systems based on their maintainability assessments from different Index variants,
if one software is easier to maintain than the other according to one variant, it is very
likely that the same holds true according to any other variant. Moreover, when comparing
the maintainability of software systems using different variants of the Index, very similar
outputs can be expected for all variants without the comment part and all variants with the
comment part. On the other hand, when comparing the maintainability of systems using
two Index variants, one from each of the two groups, the consistency in the maintainability
comparison is expected to be lower. These findings reinforce the importance of carefully
considering which variant of the Index to use for the maintainability assessment, namely
taking into account whether or not code documentation should be considered.

6.1.3. RQ2.2: How Do Different Maintainability Index Variants Perform When Utilized for
Maintainability Measurement between Versions of the Same Software System?

When comparing the maintainability of different versions of the same software using
different Index variants, the relationship between the variants remains positive, but can
range from moderate to very strong. It can be observed that, in the case when comparing
the maintainability between releases of the same software system, i.e., when changes in
the source code are small, the Index variants tend to be more prone to non-consistency in
the maintainability comparisons. This means that when focusing on finer-grained results
posed by the Index, the selection of the Index variant has even more of an impact on the
maintainability perception. Therefore, extra caution should be taken when using the Index
variants for more specific assessments instead of general ones. Despite this, the Index
variants without comment parts still tend to be more similar to each other than those
without comment parts and vice versa. From a short-term perspective, the maintainability
trends, i.e., changes in maintainability, are in the same direction, but can be of different
strengths, while from a long-term perspective, the maintainability trends are in alignment,
although the magnitude of the trends is not.

6.2. Theoretical and Practical Implications

Overall, the findings of this research have the potential to benefit both researchers
and practitioners in the field of software engineering by providing a better understand-
ing of how the selection of Index variant affects the perception of the maintainability of
software systems.

One of the theoretical implications of this study that could be further exploited in
software-engineering-related research is the insight into the characteristics of the evalu-
ated variants when applied in different contexts, which was gained through the empirical
evaluation and comparison of different variants of the Index. These findings contribute
to the body of knowledge about software maintainability and are of interest to software
researchers. Researchers should carefully examine which Index variants should be used

Appl. Sci. 2023, 13, 2972 27 of 36

in their studies, as the results can be impacted by the choices made. Furthermore, this
study identified some research gaps and suggested some possible directions for future
research efforts. For instance, Index variant thresholds for object-oriented software should
be refined in the future while also considering the specifics of the Index variant used for
maintainability assessment. For non-object-oriented software systems, an Index value be-
low 65 indicates poor maintainability, between 65 and 85 indicates medium maintainability,
and above 85 indicates high maintainability [10]. However, as Sjøberg et al. [19] already
noted, these standard threshold values are inappropriate for object-oriented software since
the classes tend to be generally smaller than in conventional software. Moreover, there is
no clear scheme of Index thresholds for object-oriented systems. We add to this finding that
the Index variant used for assessing maintainability should be taken into account when
setting the thresholds. This would ensure that the threshold values appropriately reflect
the software’s maintainability characteristics.

In terms of practical implications, software practitioners can use the results of this
research to guide their selection of the most-appropriate Index variant for assessing the
maintainability of their software systems in an efficient and effective manner. By better
understanding Index variants and the importance of the context in which an Index variant is
used, practitioners can select the variant that best fits their specific needs and goals. Ignoring
which Index variant is used to assess maintainability could lead to misleading perceptions.
Additionally, by having a better understanding of the characteristics that contribute to
maintainability and how they can be measured by different Index variants, practitioners
can also make informed decisions about how to prioritize and focus their efforts to improve
these aspects of their software during development, leading to improvements in software
quality and the long-term sustainability of their software systems.

6.3. Threats to Validity
6.3.1. Internal Validity

The first threat to internal validity is related to the method used for data collection.
All source codes for the included software systems were obtained from the original (i.e.,
not forked) GitHub repositories. To ensure all included software systems were following
object-oriented principles, some manual inspection of the source code of subject software
systems was performed by the authors. To reduce the likelihood of errors caused by
humans, the process of collecting software metrics and computing the Index variants for all
software under study was performed automatically by running scripts. The correctness and
completeness of this process were manually verified on a sample of subjects. The JHawk
tool was used to extract the source code metrics, as it is commonly used for metrics
extraction of Java software. The Index variants’ computation was performed according to
the equations presented in Section 2.3.

The next threat to internal validity is related to the methods of data analysis used.
Since the chosen analyses may bias the result, we explained the idea and motivation for
each data analysis method used. When possible, the parameter settings of the data analysis
method used were provided to the reader to give a better understanding of the analysis.
For each hypothesis testing with statistical tests, we reviewed the underlying assumptions
associated with each inferential statistic and reported the extent to which the assumptions
were met.

6.3.2. External Validity

One major threat to external validity is related to the software systems on which
the research is based, including sample size, selection bias, and subject characteristics.
To address these threats, our research relied on a version of 45 different software systems
and all versions of 3 software systems, a sample generally larger than that in related
work. The selection was random, and our selected subjects represent a heterogeneous
group of software systems in terms of software characteristics, including size, complexity,
code documentation, maturity, and domain of use. However, the results could have been

Appl. Sci. 2023, 13, 2972 28 of 36

different for a different group of software systems, as there is no guarantee that the selected
software systems are good representatives. All systems studied were open-source and
based on the Java programming language. Therefore, it is plausible that the results are
different for closed-source software and may not be representative of the overall population,
but only for open-source software. Furthermore, the results of the study may not generalize
to the broader population of object-oriented systems based on programming languages
other than Java. Even though the findings are likely valid for software based on other
object-oriented languages, further research is needed to confirm them.

Another threat to external validity is the set of Index variants studied. We limited
our selection to well-defined variants (i.e., variants with an adequate description of the
metrics needed for computation, the process of the metrics’ collection, and the process of
Index calculation) that are commonly used in existing research on object-oriented software.
Replication studies are needed to confirm and generalize the results to a more extensive set
of Index variants.

7. Conclusions

Maintainability as a software characteristic is of paramount importance in software
development because it substantially affects the long-term expenses associated with a
software system. It is believed that a system that is difficult to maintain requires more re-
sources to correct, improve, perfect, and adapt, which raises the overall cost of the software.
Conversely, an easily maintainable system is believed to be more cost effective in carrying
out such maintenance tasks while also reducing the software system’s tendency towards
deteriorating software quality. Therefore, it is essential to understand how maintainable a
software system is as it is being developed.

Several aspects can impact the software’s maintainability, including the code’s com-
plexity, the software’s size, and the presence of documentation and comments that help
describe the code. The Maintainability Index is frequently used as a single-valued measure
for estimating the overall maintainability of software, taking these aspects into account in
different ways through various Index variants. However, it is still unclear how different
Index variants compare when applied to software systems. This paper evaluated and
compared the Index variants by applying them to Java open-source software systems.
The objective was to determine if and to what degree these variants are consistent with
one another when used to assess the maintainability of a single software system and when
used to compare the maintainability of different software systems.

The study’s results showed that when comparing maintainability measurements
from several Index variants, the perception of maintainability could be impacted by the
choice of the Index variant used. Although different Index variants present different
values when subjected to the same software system, the Index variant values are very
strongly positively correlated and indicate in a similar manner how maintainability evolves
between releases and from a more long-term perspective. Based on their maintainability
measurement characteristics, the Index variants can be divided into two distinct clusters
containing variants that are more similar to one another: Index variants without considering
code comments and Index variants that include code comments in their computation.
The differences in Index variants’ values are the most notable when looking at the finer-
grained results derived from different Index variants.

In the future, it would be interesting to extend our study to software systems written
in other object-oriented programming languages, such as Python and C#. Another potential
area of research is to conduct replication studies of existing work by analyzing the results
from the perspective of using Index variants other than the one primarily selected. This
may offer intriguing insights into whether and how the selection of Index variants affects
the results and established findings in the software engineering research community. In ad-
dition, it would be valuable to examine the Index variants for maintainability assessments
at levels other than the system level (i.e., packages, classes) since this study focused only on

Appl. Sci. 2023, 13, 2972 29 of 36

examining Index variants at the overall system level. Future efforts could also be invested
in investigating and determining the Index threshold levels for object-oriented software.

Author Contributions: Conceptualization, T.H. and B.Š.; methodology, T.H. and B.Š.; software, T.H.;
validation, T.H. and B.Š.; formal analysis, T.H.; resources, B.Š.; investigation, T.H.; data curation, T.H.;
writing—original draft preparation, T.H.; writing—review and editing, T.H. and B.Š.; visualization,
T.H.; supervision, B.Š.; project administration, B.Š.; funding acquisition, B.Š. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research Agency
(Research Core Funding No. P2-0057).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RQ Research question
MIorig. Original Maintainability Index
MIorig.(CM) Original Maintainability Index with comment part
MIimpr. Improved Maintainability Index
MIimpr.(CM) Improved Maintainability Index with comment part
MILOC Maintainability Index using Lines Of Code only
MIJH JHawk Maintainability Index
MIJH(CM) JHawk Maintainability Index with comment part
MIVS Visual Studio Maintainability Index
aveE Average Halstead’s Effort per module
aveV Average Halstead’s Volume per module
aveV(g) Average Cyclomatic Complexity per module
aveLOC Average Lines of Code per module
aveNOS Average Number of Statements per module
perCM Average Percent of Lines of Comments per module
S Software system
CS Case study
Avg. Average
Med. Median
Std. Standard deviation
Min. Minimum
Max. Maximum
Skew. Skewness
Kurt. Kurtosis
CI Confidence interval
SE Standard error
SW Shapiro–Wilk Test
MDS Multidimensional scaling

Appl. Sci. 2023, 13, 2972 30 of 36

Appendix A. Maintainability Index Variant Values

Table A1. Index variant values (RQ1 and RQ2.1).

Software System MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

S1. Activiti 68.36 115.88 61.90 109.41 62.82 66.74 114.26
S2. Angry IP Scanner 82.39 123.47 77.07 118.14 76.20 80.96 122.03
S3. Apache Ant 64.31 113.28 58.43 107.40 55.56 64.19 113.17
S4. Apache Commons Codec 48.21 98.09 44.44 94.32 42.26 51.74 101.63
S5. Apache Commons CSV 49.42 98.41 41.73 90.72 37.47 47.11 96.11
S6. Apache Commons DBCP 45.52 92.25 36.90 83.63 33.45 43.81 90.54
S7. Apache Commons Lang 60.33 109.36 54.63 103.67 52.68 59.61 108.64
S8. Apache HttpClient 69.14 117.49 63.00 111.34 61.14 68.73 117.07
S9. Apache PDFBox 57.51 107.20 51.55 101.23 47.06 59.26 108.95
S10. Apache POI 61.23 110.25 54.54 103.56 51.94 59.27 108.29
S11. Arduino 68.31 116.33 63.10 111.12 61.72 67.59 115.61
S12. Art of Illusion 46.44 82.70 42.19 78.44 40.87 47.44 83.70
S13. AssertJ 81.98 130.48 75.98 124.48 73.60 82.99 131.49
S14. Caffeine 69.49 113.37 63.18 107.06 61.66 68.26 112.15
S15. cglib 83.92 128.39 78.65 123.12 78.92 82.77 127.24
S16. DITA Open Toolkit 57.71 100.49 51.02 93.80 48.98 56.20 98.98
S17. EasyMock 76.74 126.03 70.14 119.44 69.75 75.56 124.85
S18. Ehcache 71.94 117.88 66.10 112.04 64.70 71.97 117.91
S19. FastJSON 84.26 111.06 81.28 108.08 80.23 85.44 112.24
S20. GeOxygene 58.36 107.70 52.84 102.18 52.19 56.67 106.01
S21. h2database 48.04 92.72 41.59 86.27 38.42 45.82 90.51
S22. Hibernate ORM 69.57 111.71 62.85 105.00 65.55 69.62 111.76
S23. iText7 55.22 105.14 51.99 101.91 49.83 56.80 106.72
S24. JabRef 67.74 100.38 61.04 93.67 58.63 66.74 99.38
S25. Jajuk 66.73 116.16 60.89 110.32 59.98 65.07 114.50
S26. JasperReports 60.56 109.87 55.13 104.44 52.63 63.37 112.68
S27. javaGeom 60.35 110.29 53.95 103.89 52.38 57.50 107.44
S28. Java Hamcrest 86.90 136.57 81.10 130.77 80.32 86.87 136.55
S29. Jenkins 75.68 124.69 69.98 118.99 68.30 75.39 124.40
S30. JFreeChart 50.32 96.20 42.57 88.46 41.42 47.64 93.53
S31. JFreeSVG 44.29 92.54 37.98 86.23 34.56 43.33 91.58
S32. JGraphT 55.07 104.39 49.81 99.13 47.99 56.64 105.96
S33. JMeter 62.13 111.37 55.39 104.63 52.24 60.14 109.38
S34. Joda-Time 46.93 96.61 38.44 88.11 35.55 42.54 92.21
S35. jsoup 53.01 93.88 48.24 89.10 46.70 52.18 93.04
S36. JUnit4 94.74 136.82 89.78 131.86 88.23 96.71 138.78
S37. JUnit5 82.97 131.68 77.28 125.99 75.15 85.02 133.73
S38. Mockito 81.81 128.23 78.25 124.67 79.20 85.72 132.14
S39. MPAndroidChart 61.08 108.35 55.34 102.62 54.08 59.51 106.78
S40. PowerMock 83.55 133.47 80.41 130.33 78.47 85.47 135.39
S41. SLF4J 74.87 123.85 68.17 117.15 66.31 72.65 121.64
S42. Spring 74.35 124.07 68.81 118.53 67.54 74.79 124.51
S43. Spring Boot 85.01 134.27 78.66 127.92 76.36 85.13 134.39
S44. TestNG 80.82 111.54 75.42 106.15 73.62 82.89 113.62
S45. YamlBeans 72.62 103.44 68.75 99.57 68.80 72.80 103.63

Table A2. Index variant values for CS1. AssertJ (RQ2.2).

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS1. AsssertJ 1.0.0 85.29 134.60 78.95 128.26 75.67 84.71 134.02
CS1. AsssertJ 1.1.0 84.94 134.28 78.61 127.94 75.32 84.37 133.71
CS1. AsssertJ 1.2.0 85.10 134.47 78.75 128.13 75.49 84.55 133.92
CS1. AsssertJ 1.3.0 85.23 134.57 78.80 128.15 75.46 84.75 134.10
CS1. AsssertJ 1.4.0 85.23 134.16 78.82 127.75 75.52 84.78 133.72

Appl. Sci. 2023, 13, 2972 31 of 36

Table A2. Cont.

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS1. AsssertJ 1.5.0 84.94 133.79 78.54 127.39 75.24 84.50 133.35
CS1. AsssertJ 1.6.0 84.90 133.75 78.48 127.34 75.22 84.49 133.34
CS1. AsssertJ 1.6.1 84.87 133.73 78.46 127.32 75.19 84.46 133.32
CS1. AsssertJ 1.7.0 84.78 133.68 78.42 127.32 75.26 84.45 133.35
CS1. AsssertJ 1.7.1 84.78 133.68 78.42 127.32 75.27 84.45 133.35
CS1. AsssertJ 2.0.0 84.09 133.23 77.96 127.09 75.00 84.01 133.14
CS1. AsssertJ 2.1.0 83.99 133.13 77.72 126.86 74.78 83.86 133.01
CS1. AsssertJ 2.2.0 84.00 133.36 77.72 127.09 74.78 83.89 133.25
CS1. AsssertJ 2.3.0 83.65 132.79 77.47 126.61 74.56 83.63 132.77
CS1. AsssertJ 2.4.0 83.00 132.24 76.84 126.08 73.94 83.09 132.33
CS1. AsssertJ 2.4.1 83.00 132.24 76.84 126.08 73.94 83.09 132.34
CS1. AsssertJ 2.5.0 82.88 132.10 76.71 125.93 73.84 83.05 132.27
CS1. AsssertJ 2.6.0 82.78 132.05 76.55 125.83 73.65 82.94 132.22
CS1. AsssertJ 2.7.0 83.35 132.45 77.23 126.33 74.39 83.65 132.74
CS1. AsssertJ 2.8.0 83.31 132.42 77.19 126.30 74.33 83.61 132.72
CS1. AsssertJ 2.9.0 83.14 132.28 77.25 126.39 74.51 83.76 132.91
CS1. AsssertJ 3.0.0 83.88 132.94 77.66 126.72 74.65 83.74 132.80
CS1. AsssertJ 3.1.0 83.64 132.68 77.35 126.39 74.35 83.55 132.58
CS1. AsssertJ 3.2.0 83.63 132.80 77.33 126.50 74.34 83.55 132.71
CS1. AsssertJ 3.3.0 83.28 132.10 77.05 125.87 74.09 83.26 132.08
CS1. AsssertJ 3.4.0 82.71 131.73 76.50 125.53 73.56 82.80 131.83
CS1. AsssertJ 3.4.1 82.71 131.74 76.51 125.54 73.56 82.80 131.83
CS1. AsssertJ 3.5.0 82.42 131.52 76.21 125.30 73.28 82.60 131.69
CS1. AsssertJ 3.5.1 82.43 131.52 76.21 125.31 73.29 82.60 131.70
CS1. AsssertJ 3.5.2 82.43 131.52 76.21 125.31 73.29 82.60 131.70
CS1. AsssertJ 3.6.0 82.32 131.47 76.06 125.22 73.16 82.50 131.66
CS1. AsssertJ 3.6.1 82.32 131.47 76.06 125.21 73.15 82.50 131.65
CS1. AsssertJ 3.6.2 82.33 131.48 76.07 125.23 73.16 82.51 131.67
CS1. AsssertJ 3.7.0 82.83 131.81 76.67 125.64 73.85 83.15 132.12
CS1. AsssertJ 3.8.0 82.87 131.81 76.70 125.64 73.87 83.18 132.12
CS1. AsssertJ 3.9.0 82.63 131.53 76.75 125.65 74.06 83.32 132.22
CS1. AsssertJ 3.9.1 81.66 130.73 75.92 125.00 73.25 82.60 131.67
CS1. AsssertJ 3.10.0 81.42 130.59 75.68 124.84 73.06 82.40 131.57
CS1. AsssertJ 3.11.0 81.24 130.48 75.38 124.62 72.89 82.59 131.83
CS1. AsssertJ 3.11.1 81.24 130.47 75.38 124.62 72.89 82.59 131.82
CS1. AsssertJ 3.12.0 81.38 130.55 75.52 124.69 73.07 82.66 131.83
CS1. AsssertJ 3.12.1 81.38 130.55 75.52 124.69 73.07 82.66 131.83
CS1. AsssertJ 3.12.2 81.40 130.57 75.53 124.70 73.08 82.67 131.84
CS1. AsssertJ 3.13.0 81.16 130.37 75.23 124.44 72.75 82.34 131.55
CS1. AsssertJ 3.13.1 81.16 130.37 75.23 124.44 72.75 82.34 131.55
CS1. AsssertJ 3.13.2 81.16 130.37 75.23 124.44 72.74 82.34 131.55
CS1. AsssertJ 3.14.0 81.35 130.45 75.43 124.53 72.95 82.53 131.63
CS1. AsssertJ 3.15.0 81.87 130.55 75.88 124.56 73.62 82.82 131.50
CS1. AsssertJ 3.16.0 81.93 130.71 75.94 124.73 73.65 82.92 131.70
CS1. AsssertJ 3.16.1 81.94 130.73 75.95 124.74 73.66 82.93 131.72
CS1. AsssertJ 3.17.0 82.26 130.80 76.24 124.78 73.87 83.23 131.76
CS1. AsssertJ 3.17.1 82.26 130.80 76.24 124.78 73.87 83.23 131.77
CS1. AsssertJ 3.17.2 82.27 130.82 76.25 124.80 73.88 83.24 131.78
CS1. AsssertJ 3.18.0 82.25 130.82 76.22 124.80 73.84 83.22 131.79
CS1. AsssertJ 3.18.1 82.15 130.72 76.18 124.75 73.80 83.18 131.75
CS1. AsssertJ 3.19.0 82.13 130.57 76.17 124.61 73.80 83.15 131.59
CS1. AsssertJ 3.20.0 82.18 130.66 76.16 124.63 73.74 83.15 131.63
CS1. AsssertJ 3.20.1 82.18 130.65 76.15 124.63 73.73 83.15 131.63
CS1. AsssertJ 3.20.2 82.17 130.65 76.14 124.62 73.73 83.14 131.62
CS1. AsssertJ 3.21.0 82.04 130.46 76.05 124.48 73.70 83.06 131.49
CS1. AsssertJ 3.22.0 81.85 130.36 75.85 124.36 73.50 82.88 131.39
CS1. AsssertJ 3.23.0 81.98 130.48 75.98 124.48 73.60 82.99 131.49
CS1. AsssertJ 3.23.1 81.98 130.48 75.98 124.48 73.60 82.99 131.49

Appl. Sci. 2023, 13, 2972 32 of 36

Table A3. Index variant values for CS2. Caffeine (RQ2.2).

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS2. Caffeine 1.0 69.38 115.10 62.99 108.71 61.63 68.65 114.37
CS2. Caffeine 1.0.1 70.11 116.11 63.88 109.88 62.48 69.47 115.46
CS2. Caffeine 1.1.0 70.39 116.34 64.19 110.14 62.80 69.76 115.71
CS2. Caffeine 1.2.0 70.39 116.22 64.18 110.01 62.79 69.73 115.57
CS2. Caffeine 1.3.0 69.92 115.21 63.44 108.73 62.12 69.40 114.69
CS2. Caffeine 1.3.1 69.99 115.29 63.52 108.82 62.20 69.47 114.78
CS2. Caffeine 1.3.2 70.41 116.21 63.98 109.78 62.58 69.77 115.57
CS2. Caffeine 1.3.3 70.42 116.21 63.99 109.78 62.58 69.77 115.57
CS2. Caffeine 2.0.0 70.26 115.01 63.94 108.69 62.47 69.71 114.47
CS2. Caffeine 2.0.1 70.34 115.12 64.02 108.81 62.55 69.81 114.59
CS2. Caffeine 2.0.2 70.33 115.15 64.01 108.83 62.52 69.80 114.62
CS2. Caffeine 2.0.3 70.30 115.17 63.98 108.85 62.49 69.76 114.63
CS2. Caffeine 2.1.0 69.94 114.68 63.56 108.31 62.02 69.32 114.07
CS2. Caffeine 2.2.0 69.80 114.56 63.43 108.19 61.90 69.18 113.94
CS2. Caffeine 2.2.1 69.73 114.36 63.34 107.97 61.80 69.13 113.75
CS2. Caffeine 2.2.2 69.72 114.33 63.34 107.94 61.79 69.12 113.72
CS2. Caffeine 2.2.3 69.65 114.23 63.27 107.85 61.73 69.05 113.63
CS2. Caffeine 2.2.4 69.69 114.25 63.31 107.88 61.78 69.09 113.66
CS2. Caffeine 2.2.5 69.68 114.25 63.31 107.88 61.77 69.09 113.66
CS2. Caffeine 2.2.6 69.68 114.25 63.31 107.88 61.77 69.09 113.66
CS2. Caffeine 2.2.7 69.72 114.30 63.35 107.93 61.81 69.12 113.70
CS2. Caffeine 2.3.0 69.62 114.12 63.26 107.76 61.72 69.01 113.51
CS2. Caffeine 2.3.1 69.84 114.37 63.50 108.02 61.93 69.21 113.74
CS2. Caffeine 2.3.2 69.83 114.38 63.49 108.04 61.92 69.21 113.76
CS2. Caffeine 2.3.3 69.82 114.41 63.48 108.08 61.93 69.20 113.80
CS2. Caffeine 2.3.4 69.93 114.36 63.60 108.04 62.00 69.32 113.75
CS2. Caffeine 2.3.5 70.13 114.64 63.83 108.35 62.24 69.53 114.05
CS2. Caffeine 2.4.0 70.36 114.82 64.08 108.53 62.52 69.75 114.21
CS2. Caffeine 2.5.0 70.07 114.42 63.78 108.13 62.24 69.48 113.83
CS2. Caffeine 2.5.1 70.10 114.46 63.81 108.17 62.28 69.51 113.87
CS2. Caffeine 2.5.2 70.04 114.36 63.73 108.06 62.20 69.43 113.75
CS2. Caffeine 2.5.3 70.02 114.35 63.72 108.05 62.18 69.39 113.72
CS2. Caffeine 2.5.4 70.03 114.36 63.72 108.06 62.19 69.39 113.73
CS2. Caffeine 2.5.5 70.05 114.38 63.75 108.08 62.22 69.42 113.74
CS2. Caffeine 2.5.6 70.11 114.44 63.82 108.14 62.29 69.48 113.81
CS2. Caffeine 2.6.0 70.00 114.26 63.68 107.94 62.15 69.37 113.63
CS2. Caffeine 2.6.1 70.02 114.15 63.71 107.84 62.17 69.41 113.54
CS2. Caffeine 2.6.2 69.98 114.12 63.65 107.79 62.11 69.38 113.52
CS2. Caffeine 2.7.0 70.08 113.77 63.66 107.35 62.14 69.46 113.16
CS2. Caffeine 2.8.0 69.77 113.21 63.31 106.75 61.78 69.12 112.55
CS2. Caffeine 2.8.1 69.69 113.11 63.23 106.64 61.67 69.04 112.45
CS2. Caffeine 2.8.2 69.71 113.12 63.25 106.66 61.68 69.06 112.46
CS2. Caffeine 2.8.3 69.76 113.22 63.30 106.76 61.74 69.11 112.57
CS2. Caffeine 2.8.4 69.76 113.21 63.29 106.75 61.73 69.11 112.56
CS2. Caffeine 2.8.5 69.78 113.23 63.32 106.78 61.76 69.14 112.59
CS2. Caffeine 2.8.6 69.59 112.94 63.08 106.43 61.49 68.87 112.22
CS2. Caffeine 2.8.7 69.42 112.64 62.90 106.12 61.31 68.68 111.91
CS2. Caffeine 2.8.8 69.42 112.64 62.90 106.12 61.30 68.68 111.91
CS2. Caffeine 2.9.0 69.35 112.62 62.83 106.10 61.24 68.67 111.94
CS2. Caffeine 2.9.1 69.28 112.52 62.76 105.99 61.17 68.59 111.82
CS2. Caffeine 2.9.2 69.18 112.37 62.64 105.82 61.05 68.46 111.65
CS2. Caffeine 2.9.3 69.02 112.11 62.45 105.55 60.87 68.29 111.39
CS2. Caffeine 3.0.0 69.70 112.56 63.28 106.13 61.77 68.94 111.79
CS2. Caffeine 3.0.1 69.69 112.53 63.27 106.11 61.75 68.93 111.77
CS2. Caffeine 3.0.2 69.66 112.91 63.23 106.48 61.71 68.85 112.10
CS2. Caffeine 3.0.3 70.34 114.05 63.97 107.68 62.42 69.43 113.14
CS2. Caffeine 3.0.4 71.32 115.60 65.16 109.44 63.50 70.45 114.74
CS2. Caffeine 3.0.5 71.30 115.51 65.14 109.35 63.48 70.44 114.64

Appl. Sci. 2023, 13, 2972 33 of 36

Table A3. Cont.

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS2. Caffeine 3.0.6 69.75 113.75 63.36 107.37 61.80 68.47 112.47
CS2. Caffeine 3.1.0 69.37 113.26 63.06 106.95 61.50 68.22 112.11
CS2. Caffeine 3.1.1 69.49 113.37 63.18 107.06 61.66 68.26 112.15

Table A4. Index variant values for CS3. Joda-Time (RQ2.2).

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS3. Joda-Time 0.9 59.04 104.72 52.37 98.05 50.51 57.43 103.12
CS3. Joda-Time 0.9.5 58.99 101.47 51.45 93.93 50.84 56.77 99.25
CS3. Joda-Time 1.0 54.77 104.65 46.70 96.57 44.74 50.68 100.55
CS3. Joda-Time 1.1 53.45 103.29 45.37 95.22 43.20 49.43 99.28
CS3. Joda-Time 1.2 55.59 105.39 47.81 97.61 45.61 51.77 101.57
CS3. Joda-Time 1.2.1 52.22 102.02 44.12 93.92 41.92 48.04 97.84
CS3. Joda-Time 1.3 53.49 103.30 45.52 95.33 43.15 49.37 99.18
CS3. Joda-Time 1.4 52.98 102.84 44.94 94.80 42.53 48.79 98.65
CS3. Joda-Time 1.5 52.68 102.51 44.64 94.47 42.17 48.53 98.36
CS3. Joda-Time 1.5.1 52.67 102.50 44.63 94.46 42.16 48.52 98.35
CS3. Joda-Time 1.5.2 52.64 102.47 44.61 94.44 42.13 48.50 98.33
CS3. Joda-Time 1.6.0 52.38 102.20 44.34 94.16 41.84 48.23 98.05
CS3. Joda-Time 1.6.1 52.34 102.16 44.30 94.12 41.80 48.19 98.00
CS3. Joda-Time 1.6.2 52.34 102.16 44.30 94.12 41.80 48.18 98.00
CS3. Joda-Time 2.0 47.75 97.60 39.28 89.13 36.60 43.09 92.94
CS3. Joda-Time 2.1 47.67 97.52 39.21 89.05 36.52 43.01 92.85
CS3. Joda-Time 2.2 47.52 97.36 39.04 88.88 36.34 42.84 92.67
CS3. Joda-Time 2.3 47.49 97.31 39.00 88.83 36.31 42.82 92.64
CS3. Joda-Time 2.4 47.60 97.41 39.13 88.94 36.44 42.93 92.74
CS3. Joda-Time 2.5 47.51 97.31 39.04 88.83 36.37 42.84 92.64
CS3. Joda-Time 2.6 47.53 97.32 39.05 88.84 36.38 42.85 92.65
CS3. Joda-Time 2.7 47.53 97.33 39.06 88.85 36.39 42.86 92.65
CS3. Joda-Time 2.8 47.53 97.32 39.06 88.85 36.39 42.86 92.65
CS3. Joda-Time 2.8.1 47.53 97.32 39.06 88.85 36.39 42.86 92.65
CS3. Joda-Time 2.8.2 47.53 97.32 39.06 88.85 36.39 42.86 92.65
CS3. Joda-Time 2.9 47.43 97.21 38.95 88.73 36.28 42.75 92.53
CS3. Joda-Time 2.9.1 47.42 97.21 38.94 88.73 36.28 42.74 92.52
CS3. Joda-Time 2.9.2 47.40 97.19 38.93 88.71 36.25 42.72 92.50
CS3. Joda-Time 2.9.3 47.40 97.18 38.92 88.70 36.25 42.72 92.50
CS3. Joda-Time 2.9.4 47.48 97.26 39.01 88.79 36.34 42.81 92.59
CS3. Joda-Time 2.9.5 47.42 97.19 38.94 88.71 36.27 42.74 92.51
CS3. Joda-Time 2.9.6 47.41 97.18 38.93 88.70 36.26 42.73 92.50
CS3. Joda-Time 2.9.7 47.41 97.18 38.93 88.70 36.26 42.73 92.51
CS3. Joda-Time 2.9.8 47.43 97.21 38.96 88.73 36.29 42.76 92.53
CS3. Joda-Time 2.9.9 47.43 97.21 38.96 88.73 36.29 42.76 92.53
CS3. Joda-Time 2.10 47.41 97.18 38.93 88.70 36.27 42.74 92.51
CS3. Joda-Time 2.10.1 47.40 97.17 38.92 88.69 36.25 42.72 92.49
CS3. Joda-Time 2.10.2 47.39 97.16 38.91 88.68 36.24 42.72 92.48
CS3. Joda-Time 2.10.3 47.36 97.12 38.89 88.65 36.22 42.69 92.45
CS3. Joda-Time 2.10.4 47.36 97.12 38.89 88.65 36.22 42.69 92.45
CS3. Joda-Time 2.10.5 47.36 97.12 38.89 88.65 36.22 42.69 92.45
CS3. Joda-Time 2.10.6 47.36 97.12 38.89 88.65 36.22 42.69 92.45
CS3. Joda-Time 2.10.7 47.28 97.03 38.80 88.55 36.13 42.59 92.34
CS3. Joda-Time 2.10.8 47.28 97.03 38.80 88.55 36.13 42.59 92.34
CS3. Joda-Time 2.10.9 47.28 97.03 38.80 88.55 36.13 42.59 92.34
CS3. Joda-Time 2.10.10 47.28 97.03 38.80 88.55 36.13 42.59 92.34
CS3. Joda-Time 2.10.11 47.27 97.02 38.79 88.54 36.12 42.59 92.34
CS3. Joda-Time 2.10.12 47.27 97.02 38.79 88.54 36.12 42.59 92.34
CS3. Joda-Time 2.10.13 47.27 97.02 38.79 88.54 36.12 42.59 92.34

Appl. Sci. 2023, 13, 2972 34 of 36

Table A4. Cont.

Case Study Release MIorig. MIorig.(CM) MIimpr. MIimpr.(CM) MILOC MIJH MIJH(CM)

CS3. Joda-Time 2.10.14 47.27 97.02 38.79 88.54 36.12 42.59 92.34
CS3. Joda-Time 2.11.0 46.93 96.61 38.44 88.11 35.55 42.54 92.21
CS3. Joda-Time 2.11.1 46.93 96.61 38.44 88.11 35.55 42.54 92.21

References
1. ISO/IEC/IEEE 14764:2022; Software engineering—Software Life Cycle Processes—Maintenance. International Organization for

Standardization: Geneva, Switzerland, 2022.
2. Christa, S.; Madhusudhan, V.; Suma, V.; Rao, J.J. Software Maintenance: From the Perspective of Effort and Cost Requirement. In

Proceedings of the International Conference on Data Engineering and Communication Technology, Maharashtra, India, 10–11
March 2017; Satapathy, S., Bhateja, V., Joshi, A., Eds.; Springer: Singapore, 2017; pp. 759–768.

3. Granja-Alvarez, J.C.; Barranco-García, M.J. A Method for Estimating Maintenance Cost in a Software Project: A Case Study. J.
Softw. Maint. 1997, 9, 161–175. [CrossRef]

4. Ren, Y.; Xing, T.; Chen, X.; Chai, X. Research on Software Maintenance Cost of Influence Factor Analysis and Estimation Method.
In Proceedings of the 2011 3rd International Workshop on Intelligent Systems and Applications, Wuhan, China, 28–29 May 2011;
pp. 1–4. [CrossRef]

5. ISO/IEC 25010:2011; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—
System and Software Quality Models. International Organization for Standardization: Geneva, Switzerland, 2017.

6. Alsolai, H.; Roper, M. A systematic literature review of machine learning techniques for software maintainability prediction. Inf.
Softw. Technol. 2020, 119, 106214. [CrossRef]

7. Riaz, M.; Mendes, E.; Tempero, E. A systematic review of software maintainability prediction and metrics. In Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL, USA, 15–16
October 2009; pp. 367–377. [CrossRef]

8. Oman, P.; Hagemeister, J. Construction and testing of polynomials predicting software maintainability. Oregon Workshop on
Software Metrics. J. Syst. Softw. 1994, 24, 251–266. [CrossRef]

9. Coleman, D.; Ash, D.; Lowther, B.; Oman, P. Using metrics to evaluate software system maintainability. Computer 1994, 27, 44–49.
[CrossRef]

10. Welker, K.D.; Oman, P.W.; Atkinson, G.G. Development and Application of an Automated Source Code Maintainability Index. J.
Softw. Maint. 1997, 9, 127–159. [CrossRef]

11. Najm, N. Measuring Maintainability Index of a Software Depending on Line of Code Only. IOSR J. Comput. Eng. 2014, 16, 64–69.
[CrossRef]

12. Microsoft. Visual Studio. 2021. Available online: https://visualstudio.microsoft.com/ (accessed on 20 December 2021).
13. Virtual Machinery. MI and MINC—Maintainability Index. 2021. Available online: http://www.virtualmachinery.com/sidebar4

.htm (accessed on 20 December 2021).
14. Kaur, K.; Singh, H. Determination of Maintainability Index for Object Oriented Systems. Determ. Maintainab. Index Object Oriented

Syst. 2011, 36, 1–6. [CrossRef]
15. Kaur, A.; Kaur, K.; Pathak, K. A proposed new model for maintainability index of open source software. In Proceedings of the 3rd

International Conference on Reliability, Infocom Technologies and Optimization, Noida, India, 8–10 October 2014; pp. 1–6. [CrossRef]
16. Misra, S.C. Modeling Design/Coding Factors That Drive Maintainability of Software Systems. Softw. Qual. J. 2005, 13, 297–320.
17. Madhwaraj, K.G. Empirical comparison of two metrics suites for maintainability prediction in packages of object-oriented

systems: A case study of open source software. J. Comput. Sci. 2014, 10, 2330–2338. [CrossRef]
18. Welker, K.D. The software maintainability index revisited. CrossTalk 2001, 14, 18–21.
19. Sjøberg, D.I.K.; Anda, B.; Mockus, A. Questioning software maintenance metrics: A comparative case study. In Proceedings

of the 2012 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Lund, Sweden, 19–20
September 2012; pp. 107–110. [CrossRef]

20. Counsell, S.; Liu, X.; Eldh, S.; Tonelli, R.; Marchesi, M.; Concas, G.; Murgia, A. Re-visiting the ‘Maintainability Index’ Metric from
an Object-Oriented Perspective. In Proceedings of the 2015 41st Euromicro Conference on Software Engineering and Advanced
Applications, Madeira, Portugal, 26–28 August 2015; pp. 84–87. [CrossRef]

21. Seref, B.; Tanriover, O. Software code maintainability: A literature review. Int. J. Softw. Eng. Appl. 2016, 7, 3. [CrossRef]
22. Ganpati, A.; Kalia, A.; Singh, H. A comparative study of maintainability index of open source software. Int. J. Emerg. Technol.

Adv. Eng. 2012, 2, 228–230.
23. Fedoseev, K.; Askarbekuly, N.; Uzbekova, E.; Mazzara, M. Application of Data-Oriented Design in Game Development. J. Phys.

Conf. Ser. 2020, 1694, 106218. [CrossRef]
24. Molnar, A.; Motogna, S. Discovering Maintainability Changes in Large Software Systems. In Proceedings of the 27th International

Workshop on Software Measurement and 12th International Conference on Software Process and Product Measurement, Gothenburg,
Sweden, 25–27 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 88–93. [CrossRef]

http://doi.org/10.1002/(SICI)1096-908X(199705)9:3<161::AID-SMR148>3.0.CO;2-8
http://dx.doi.org/10.1109/ISA.2011.5873461
http://dx.doi.org/10.1016/j.infsof.2019.106214
http://dx.doi.org/10.1109/ESEM.2009.5314233
http://dx.doi.org/10.1016/0164-1212(94)90067-1
http://dx.doi.org/10.1109/2.303623
http://dx.doi.org/10.1002/(SICI)1096-908X(199705)9:3<127::AID-SMR149>3.0.CO;2-S
http://dx.doi.org/10.9790/0661-16276469
https://visualstudio.microsoft.com/
http://www.virtualmachinery.com/sidebar4.htm
http://www.virtualmachinery.com/sidebar4.htm
http://dx.doi.org/10.1145/1943371.1943383
http://dx.doi.org/10.1109/ICRITO.2014.7014758
http://dx.doi.org/10.3844/jcssp.2014.2330.2338
http://dx.doi.org/10.1145/2372251.2372269
http://dx.doi.org/10.1109/SEAA.2015.41
http://dx.doi.org/10.5121/ijsea.2016.7305
http://dx.doi.org/10.1088/1742-6596/1694/1/012035
http://dx.doi.org/10.1145/3143434.3143447

Appl. Sci. 2023, 13, 2972 35 of 36

25. Papamichail, M.D.; Symeonidis, A.L. A generic methodology for early identification of non-maintainable source code components
through analysis of software releases. Inf. Softw. Technol. 2020, 118, 106218. [CrossRef]

26. Kencana, G.H.; Saleh, A.; Darwito, H.A.; Rachmadi, R.R.; Sari, E.M. Comparison of Maintainability Index Measurement from
Microsoft CodeLens and Line of Code. In Proceedings of the 2020 7th International Conference on Electrical Engineering,
Computer Sciences and Informatics (EECSI), Yogyakarta, Indonesia, 1–2 October 2020; pp. 235–239.

27. Şanlıalp, İ.; Öztürk, M.M.; Yiğit, T. Energy Efficiency Analysis of Code Refactoring Techniques for Green and Sustainable Software
in Portable Devices. Electronics 2022, 11, 442. [CrossRef]

28. Zhou, Y.; Xu, B. Predicting the maintainability of open source software using design metrics. Wuhan Univ. J. Nat. Sci. 2008,
13, 14–20. [CrossRef]

29. Chowdhury, S.; Holmes, R.; Zaidman, A.; Kazman, R. Revisiting the debate: Are code metrics useful for measuring maintenance
effort? Empir. Softw. Eng. 2022, 27, 1–31. [CrossRef]

30. Strečanský, P.; Chren, S.; Rossi, B. Comparing Maintainability Index, SIG Method, and SQALE for Technical Debt Identification.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 121–124. [CrossRef]

31. Arisholm, E.; Briand, L.C.; Johannessen, E.B. A systematic and comprehensive investigation of methods to build and evaluate
fault prediction models. J. Syst. Softw. 2010, 83, 2–17. [CrossRef]

32. Mauša, G.; Galinac Grbac, T. Co-evolutionary multi-population genetic programming for classification in software defect
prediction: An empirical case study. Appl. Soft Comput. 2017, 55, 331–351. [CrossRef]

33. Gradišnik, M.; Beranič, T.; Karakatič, S. Impact of historical software metric changes in predicting future maintainability trends in
open-source software development. Appl. Sci. 2020, 10, 4624. [CrossRef]

34. Kaur, L.; Mishra, A. A comparative analysis of evolutionary algorithms for the prediction of software change. In Proceedings
of the 2018 International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, 18–19
November 2018; pp. 187–192. [CrossRef]

35. Reddy, B.R.; Ojha, A. Performance of maintainability index prediction models: A feature selection based study. Evol. Syst. 2019,
10, 179–204. [CrossRef]

36. Bray, M.; Brune, K.; Fisher, D.A.; Foreman, J.; Gerken, M. C4 Software Technology Reference Guide-A Prototype; Technical Report;
Software Engineering Institute—Carnegie Mellon University: Pittsburgh, PA, USA, 1997.

37. GitHub. The 2021 State of the Octoverse. 2021. Available online: https://octoverse.github.com/ (accessed on 20 December 2021).
38. Stack Overflow. Stack Overflow Developer Survey. 2021. Available online: https://insights.stackoverflow.com/survey/2021

(accessed on 20 December 2021).
39. Puntigam, F. Interfaces of Active Objects with Internal Concurrency. In Proceedings of the 1st International Workshop on

Distributed Objects for the 21st Century, Genova, Italy, 6–10 July 2009; Association for Computing Machinery: New York, NY,
USA, 2009. [CrossRef]

40. Murthy, A.R.C.; Palani, G.; Iyer, N.R. Object-oriented programming paradigm for damage tolerant evaluation of engineering
structural components. Adv. Eng. Softw. 2011, 42, 12–24. [CrossRef]

41. Brito e Abreu, F.; Melo, W. Evaluating the impact of object-oriented design on software quality. In Proceedings of the 3rd
International Software Metrics Symposium, Berlin, Germany, 25–26 March 1996; pp. 90–99. [CrossRef]

42. Coleman, D. Assessing maintainability. In Proceedings of the Software Engineering Productivity Conference, Salt Lake City, UT,
USA, 7 April 1992; pp. 525–532.

43. Elmidaoui, S.; Cheikhi, L.; Idri, A.; Abran, A. Empirical studies on software product maintainability prediction: A systematic
mapping and review. E-Inform. Softw. Eng. J. 2019, 13, 141–202.

44. Zighed, N.; Bounour, N.; Seriai, A.D. Comparative Analysis of Object-Oriented Software Maintainability Prediction Models.
Found. Comput. Decis. Sci. 2018, 43, 359–374. [CrossRef]

45. Ardito, L.; Coppola, R.; Barbato, L.; Verga, D. A tool-based perspective on software code maintainability metrics: A systematic
literature review. Sci. Program. 2020, 2020, 8840389. [CrossRef]

46. Virtual Machinery. JHawk. 2021. Available online: http://www.virtualmachinery.com/jhawkprod.htm (accessed on 20 December 2021).
47. Lacchia, M. Radon. 2021. Available online: https://radon.readthedocs.io/ (accessed on 20 December 2021).
48. Verifysoft Technology. Testwell CMT++/CMTJava. 2021. Available online: https://www.verifysoft.com/en_cmtx.html (accessed

on 20 December 2021).
49. Li, W.; Henry, S. Object-oriented metrics that predict maintainability. Object-Oriented Software. J. Syst. Softw. 1993, 23, 111–122.

[CrossRef]
50. Malhotra, R.; Khanna, M. Particle swarm optimization-based ensemble learning for software change prediction. Inf. Softw.

Technol. 2018, 102, 65–84. [CrossRef]
51. Elish, M.O.; Aljamaan, H.; Ahmad, I. Three empirical studies on predicting software maintainability using ensemble methods.

Soft Comput. 2015, 19, 2511–2524. [CrossRef]
52. Bandi, R.; Vaishnavi, V.; Turk, D. Predicting maintenance performance using object-oriented design complexity metrics. IEEE

Trans. Softw. Eng. 2003, 29, 77–87. [CrossRef]
53. Fioravanti, F.; Nesi, P. Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems. IEEE Trans.

Softw. Eng. 2001, 27, 1062–1084. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2019.106218
http://dx.doi.org/10.3390/electronics11030442
http://dx.doi.org/10.1007/s11859-008-0104-6
http://dx.doi.org/10.1007/s10664-022-10193-8
http://dx.doi.org/10.1145/3341105.3374079
http://dx.doi.org/10.1016/j.jss.2009.06.055
http://dx.doi.org/10.1016/j.asoc.2017.01.050
http://dx.doi.org/10.3390/app10134624
http://dx.doi.org/10.1109/INNOVATIONS.2018.8605988
http://dx.doi.org/10.1007/s12530-017-9201-0
https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2021
http://dx.doi.org/10.1145/1557876.1557877
http://dx.doi.org/10.1016/j.advengsoft.2010.10.012
http://dx.doi.org/10.1109/METRIC.1996.492446
http://dx.doi.org/10.1515/fcds-2018-0018
http://dx.doi.org/10.1155/2020/8840389
http://www.virtualmachinery.com/jhawkprod.htm
https://radon.readthedocs.io/
https://www.verifysoft.com/en_cmtx.html
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.1016/j.infsof.2018.05.007
http://dx.doi.org/10.1007/s00500-014-1576-2
http://dx.doi.org/10.1109/TSE.2003.1166590
http://dx.doi.org/10.1109/32.988708

Appl. Sci. 2023, 13, 2972 36 of 36

54. Hayes, J.; Patel, S.; Zhao, L. A metrics-based software maintenance effort model. In Proceedings of the 8th European Conference
on Software Maintenance and Reengineering, Tampere, Finland, 24–26 March 2004; pp. 254–258. [CrossRef]

55. De Lucia, A.; Pompella, E.; Stefanucci, S. Assessing effort estimation models for corrective maintenance through empirical studies.
Inf. Softw. Technol. 2005, 47, 3–15. [CrossRef]

56. Dahiya, S.S.; Chhabra, J.K.; Kumar, S. Use of genetic algorithm for software maintainability metrics’ conditioning. In Proceedings
of the 15th International Conference on Advanced Computing and Communications (ADCOM 2007), Guwahati, India, 18–21
December 2007; pp. 87–92. [CrossRef]

57. Sharma, A.; Grover, P.; Kumar, R. Predicting maintainability of component-based systems by using fuzzy logic. In Proceedings
of the International Conference on Contemporary Computing, Noida, India, 17–19 August 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 581–591.

58. Dubey, S.K.; Rana, A. A fuzzy approach for evaluation of maintainability of object oriented software system. Int. J. Comput. Appl.
2012, 49, 1–6.

59. Pratap, A.; Chaudhary, R.; Yadav, K. Estimation of software maintainability using fuzzy logic technique. In Proceedings of the
2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 7–8
February 2014; pp. 486–492. [CrossRef]

60. Revilla, M.A. Correlations between Internal Software Metrics and Software Dependability in a Large Population of Small C/C++
Programs. In Proceedings of the 18th IEEE International Symposium on Software Reliability (ISSRE ’07), Trollhattan, Sweden, 5–9
November 2007; pp. 203–208. [CrossRef]

61. Microsoft. Visual Studio—Maintainability Index. 2021. Available online: https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-maintainability-index-range-and-meaning (accessed on 20 December 2021).

62. Molnar, A.J.; Motogna, S. A Study of Maintainability in Evolving Open-Source Software. In Proceedings of the Evaluation of
Novel Approaches to Software Engineering: 15th International Conference, ENASE 2020, Prague, Czech Republic, 5–6 May 2020;
Revised Selected Papers 15; Springer: Berlin/Heidelberg, Germany, 2021; pp. 261–282.

63. Chowdhury, S.A.; Uddin, G.; Holmes, R. An Empirical Study on Maintainable Method Size in Java. In Proceedings of the 19th
International Conference on Mining Software Repositories, Pittsburgh, PA, USA, 23–24 May 2022; Association for Computing
Machinery: New York, NY, USA, 2022; pp. 252–264. [CrossRef]

64. Prabowo, G.; Suryotrisongko, H.; Tjahyanto, A. A Tale of Two Development Approach: Empirical Study on The Maintainability
and Modularity of Android Mobile Application with Anti-Pattern and Model-View-Presenter Design Pattern. In Proceedings of
the 2018 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 19–20 September
2018; pp. 149–154. [CrossRef]

65. Singh, N.; Singh, D.P.; Pant, B.; Tiwari, U.K. µBIGMSA-Microservice-Based Model for Big Data Knowledge Discovery: Thinking
Beyond the Monoliths. Wirel. Pers. Commun. 2021, 116, 2819–2833. [CrossRef]

66. Wilson, A.; Wedyan, F.; Omari, S. An Empirical Evaluation and Comparison of the Impact of MVVM and MVC GUI Driven
Application Architectures on Maintainability and Testability. In Proceedings of the 2022 International Conference on Intelligent
Data Science Technologies and Applications (IDSTA), San Antonio, TX, USA, 5–7 September 2022; pp. 101–108. [CrossRef]

67. De Stefano, M.; Iannone, E.; Pecorelli, F.; Tamburri, D.A. Impacts of software community patterns on process and product: An
empirical study. Sci. Comput. Program. 2022, 214, 102731. [CrossRef]

68. Lavazza, L.; Abualkishik, A.Z.; Liu, G.; Morasca, S. An empirical evaluation of the “Cognitive Complexity” measure as a predictor
of code understandability. J. Syst. Softw. 2023, 197, 111561. [CrossRef]

69. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: Milton Park, UK, 1988.
70. Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [CrossRef]
71. Kerby, D.S. The simple difference formula: An approach to teaching nonparametric correlation. Compr. Psychol. 2014, 3, 11-IT.

[CrossRef]
72. Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018,

126, 1763–1768. [CrossRef]
73. Hout, M.C.; Papesh, M.H.; Goldinger, S.D. Multidimensional scaling. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 93–103. [CrossRef]
74. Vijaya; Sharma, S.; Batra, N. Comparative Study of Single Linkage, Complete Linkage, and Ward Method of Agglomerative

Clustering. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon), Faridabad, India, 14–16 February 2019; pp. 568–573. [CrossRef]

75. Heričko, T.; Šumak, B. Analyzing Linter Usage and Warnings Through Mining Software Repositories: A Longitudinal Case Study
of JavaScript Packages. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and
Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 1375–1380. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CSMR.2004.1281427
http://dx.doi.org/10.1016/j.infsof.2004.05.002
http://dx.doi.org/10.1109/ADCOM.2007.69
http://dx.doi.org/10.1109/ICICICT.2014.6781331
http://dx.doi.org/10.1109/ISSRE.2007.12
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
http://dx.doi.org/10.1145/3524842.3527975
http://dx.doi.org/10.1109/ICELTICS.2018.8548784
http://dx.doi.org/10.1007/s11277-020-07822-0
http://dx.doi.org/10.1109/IDSTA55301.2022.9923083
http://dx.doi.org/10.1016/j.scico.2021.102731
http://dx.doi.org/10.1016/j.jss.2022.111561
http://dx.doi.org/10.22237/jmasm/1257035100
http://dx.doi.org/10.2466/11.IT.3.1
http://dx.doi.org/10.1213/ANE.0000000000002864
http://dx.doi.org/10.1002/wcs.1203
http://dx.doi.org/10.1109/COMITCon.2019.8862232.
http://dx.doi.org/10.23919/MIPRO55190.2022.9803554

	Introduction
	Background
	Object-Oriented Software
	Maintainability Measurement in Object-Oriented Software Systems
	Maintainability Index Variants

	Related Work
	Research Method
	Results and Data Analysis
	RQ1: Maintainability Measurement in a Software System
	RQ2.1: Maintainability Measurement in Different Software Systems
	RQ2.2: Maintainability Measurement in Versions of a Software System

	Discussion
	Summary of Research Questions and Their Answers
	RQ1: How Do Different Maintainability Index Variants Perform When Utilized for the Maintainability Measurement of a Single Object-Oriented Software System?
	RQ2.1: How Do Different Maintainability Index Variants Perform When Utilized for Maintainability Measurement between Different Software Systems?
	RQ2.2: How Do Different Maintainability Index Variants Perform When Utilized for Maintainability Measurement between Versions of the Same Software System?

	Theoretical and Practical Implications
	Threats to Validity
	Internal Validity
	External Validity

	Conclusions
	Appendix A
	References

