
Citation: Shen, Q.; Zhang, H.; Mao, Y.

Improving Deep Echo State Network

with Neuronal Similarity-Based

Iterative Pruning Merging Algorithm.

Appl. Sci. 2023, 13, 2918. https://

doi.org/10.3390/app13052918

Academic Editors: Nasro Min-Allah

and Ubaid Abbasi

Received: 22 January 2023

Revised: 13 February 2023

Accepted: 18 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improving Deep Echo State Network with Neuronal
Similarity-Based Iterative Pruning Merging Algorithm
Qingyu Shen 1,2,3, Hanwen Zhang 1,2,3 and Yao Mao 1,2,3,*

1 Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: maoyao@ioe.ac.cn

Abstract: Recently, a layer-stacked ESN model named deep echo state network (DeepESN) has been
established. As an interactional model of a recurrent neural network and deep neural network,
investigations of DeepESN are of significant importance in both areas. Optimizing the structure
of neural networks remains a common task in artificial neural networks, and the question of how
many neurons should be used in each layer of DeepESN must be stressed. In this paper, our aim is
to solve the problem of choosing the optimized size of DeepESN. Inspired by the sensitive iterative
pruning algorithm, a neuronal similarity-based iterative pruning merging algorithm (NS-IPMA) is
proposed to iteratively prune or merge the most similar neurons in DeepESN. Two chaotic time series
prediction tasks are applied to demonstrate the effectiveness of NS-IPMA. The results show that the
DeepESN pruned by NS-IPMA outperforms the unpruned DeepESN with the same network size,
and NS-IPMA is a feasible and superior approach to improving the generalization performance of
DeepESN. The newly proposed method has broad application prospects in real-time systems.

Keywords: reservoir computing; deep echo state network; neuronal similarity-based iterative prun-
ing merging algorithm; chaotic time series forecast

1. Introduction

Recurrent neural networks (RNNs) represent a consolidated computational abstraction
for learning with variable-length time series data [1]. As a simplified paradigm of RNN, the
echo state network [2,3] (ESN) provides a prominent reduction in the computational cost
compared to other paradigms of RNNs (e.g., [4] (LSTM), [5] (GRU)), for which the hidden
layer of ESN is constructed by a randomly generated reservoir instead of independent
neurons and the output weights of ESN are trained by a simple linear regression rather
than a backpropagation algorithm. Thus, ESN has a successful application in various time
series prediction problems (e.g., [6–9]).

Deep neural networks [10] (DNNs) have the potential to learn data representations at
various levels of abstraction and are being increasingly stressed in the machine learning
community. Recently, a layer-stacked ESN model named deep echo state network (Deep-
ESN) was established and investigated, theoretically and experimentally, by Gallicchio
et al: the inherent characterization of the system dynamics developed at the different
layers of DeepESN is experimentally analyzed in [11] and theoretically explained in [12];
A theoretical foundation for the study of DeepESN from a dynamical system point of
view is introduced in [13]; further details on the analysis and advancements of DeepESN
could be found in [14]. As an interactional model of RNN and DNN, investigations of
DeepESN are of significant importance in both areas. On the one hand, DeepESN expands
our knowledge on how the information with memory attracted by RNN is extracted by
hierarchical neural networks; on the other hand, DeepESN helps us better understand
how the abstract intrinsic representations of time series extracted by DNN are recalled

Appl. Sci. 2023, 13, 2918. https://doi.org/10.3390/app13052918 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13052918
https://doi.org/10.3390/app13052918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1785-2018
https://doi.org/10.3390/app13052918
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13052918?type=check_update&version=1

Appl. Sci. 2023, 13, 2918 2 of 19

in reservoirs. Furthermore, DeepESN has richer nonlinear representation capacity, less
computational complexity, and better predictive performance than single-layer ESN [15].

Optimizing the structure of neural networks remains a common task in artificial neural
networks, and the same question of how many neurons should be used in each layer must
be stressed in all types of neural networks. If the neurons are too few, the architecture
does not satisfy the error demand by learning from the data, whereas if there are too many
neurons, learning leads to the well-known overfitting problem [16]. As far as we know,
minimal research has been carried out on optimizing the architecture of DeepESN. For
research that has already been carried out on DeepESN, the same number is commonly
assigned in each layer, which is acceptable but not optimal. In this paper, our aim is to
solve the problem of choosing the optimized size of DeepESN, especially the number of
neurons in different layers.

In 2014, a sensitive iterative pruning algorithm (SIPA) was proposed by Wang and
Yan [17] to optimize the simple cycle reservoir network (SCRN). The algorithm was used
to prune the least sensitive neurons one by one according to the sensitivity analysis, and
the results showed that the SIPA method can optimize the structure and improve the
generalization performance of the SCRN; meanwhile, pruning out redundant neurons
could contribute to reducing the calculation and improving the computing efficiency of
the network. Inspired by these advantages of SIPA, we wanted to apply a similar iterative
pruning approach to DeepESN. However, SCRN is a kind of minimal-complexity ESN
with a simple cycle topology, and the topology of DeepESN is much more complex than
SCRN. Pruning a neuron in the network will raise perturbations on adjacent neurons,
resulting in unstable network performance; in SIPA, the perturbations could be eliminated
by adjusting the input weights into the perturbed neurons to minimize the distance of its
input signal before and after pruning. Due to the hierarchical structure of reservoirs in
DeepESN, perturbation raised by pruning a neuron in the lower layer will propagate into
higher layers layer-by-layer, leading to greater instability of network performance and the
difficulty of perturbation elimination.

In order to overcome the above difficulty, a new neuronal similarity-based iterative
pruning merging algorithm (NS-IPMA) is proposed to iteratively prune out or merge the
most similar neurons in DeepESN. In NS-IPMA, a pair of the most similar twin neurons,
which are regarded as redundant neurons in the network, are selected out iteratively;
then, if they exist in different layers, the one in the higher layer will be pruned out, and if
they are in the same reservoir, they will be merged into one neuron, which works as the
substitution of antecedent twin neurons. Quantitative estimation of neuronal similarity
plays an essential role in determining the redundant neurons that should be pruned out.
Four neuronal similarity estimation criteria of NS-IPMA approaches were attempted,
including the inverse of Euclidean distance, Pearson’s correlation, Spearman’s correlation
and Kendall’s correlation. Reducing the network size is a directly effective approach to
improve the generalization performance of a neural network because pruning out neurons
will lead to a reduction in network size to verify the effectiveness of the NS-IPMA method.
The DeepESNs pruned by the NS-IPMA method were compared with unpruned DeepESNs,
whose number of neurons in each reservoir is the same. The pruned DeepESN and the
unpruned DeepESN were compared with an equal number of layers and equal number
of total neurons. The results of the experiment on two chaotic time series prediction
tasks showed that the NS-IPMA method has good network structure adaptability, and the
DeepESNs pruned by the NS-IPMA method has better generalization performance and
better robustness than the unpruned DeepESNs, indicating that the NS-IPMA method is a
feasible and superior approach to improving the generalization performance of DeepESN.
The NS-IPMA method provides a novel approach for choosing the appropriate network
size of DeepESN, and it also has application potential in other RNNs and DNNs.

Appl. Sci. 2023, 13, 2918 3 of 19

Our highlight contributions consist of:

• A new NS-IPMA that works effectively in improving the generalization performance
of DeepESN is proposed.

• The proposed method contributes to simplifying the structure of DeepESN and reduc-
ing computational cost.

This paper is organized as follows: DeepESN and entropy quantification of reservoir
richness are introduced in detail in Section 2, SIPA and the newly proposed NS-IPMA are
described in Section 3, experiments and results are presented and discussed in Sections 4
and 5, and Section 6 draws conclusions and highlights the future direction.

2. Deep Echo State Network
2.1. Leaky Integrator Echo State Network

A leaky integrator echo state network [18], (LI-ESN), as shown in Figure 1, is a
recurrent neural network with three layers: input layer u(t) ∈ RNu×1, hidden layer x(t) ∈
RNx×1, output layer y(t) ∈ RNy×1. t denotes time sequence order. The hidden layer is
regarded as a reservoir, which holds the memory of foregone information, and x(t) is
refreshed by the state transition function:

x(t) = αx(t− 1) + (1− α) tanh(Wiu(t− 1) + Wrx(t− 1)), (1)

where Wi ∈ RNx×Nu is the input weight matrix randomly generated before training, and
Wr ∈ RNx×Nx is the reservoir weight matrix previously given before training. α ∈ [0, 1] is
the leaky parameter. tanh(•) is the activation function of the hidden layer. The reservoir
weights in Wr must be initialized to satisfy the echo state property (ESP) [19,20], denoting
by ρ(•) the spectral radius operator (i.e., the largest absolute eigenvalue of its matrix
argument), and the necessary condition for the ESP is expressed as follows:

ρ((1− α)I + αWr) < 1. (2)

Accordingly, the values in matrix Wr are randomly selected from a uniform distribution
(e.g., U[−1, 1]), and then rescaled to satisfy the above condition in Equation (2).

... ...

u(t)

x(t)

reservoir

y(t)

Wi

Wr

Wo

Figure 1. Structure of LI-ESN.

The output y(t) can be calculated through a linear combination of reservoir states
as follows:

y(t) = Wox(t), (3)

where Wo ∈ RNy×Nx is the output weight matrix.
During training, the states of reservoir neurons are collected in a training

state matrix Xtrain = [x(1), x(2) . . . x(Ltrain)], and an output target matrix Ytrain =
[ŷ(1), ŷ(2) . . . ŷ(Ltrain)] is collected correspondingly, where Ltrain is the number of training
samples.

Appl. Sci. 2023, 13, 2918 4 of 19

The output weights in Wo can be calculated by ridge regression as follows:

Wo =
(
(XT

trainXtrain + λI)−1XT
trainYtrain

)T
, (4)

where (•)T represents matrix transpose, (•)−1 represents matrix inversion, λI is a regular-
ization term ensuring XT

trainXtrain is invertible.

2.2. Deep Echo State Network

DeepESN, as shown in Figure 2, was first introduced by Gallicchio [11,14], as a stacked
reservoir computing (RC) architecture, where multiple reservoir layers are stacked on top
of each other. The state transition functions of hidden layers in DeepESN are expressed as:{

x1(t) = α1x1(t) + (1− α1) tanh(Wiu(t− 1) + W1
r x1(t− 1)), l = 1

xl(t) = αlxl(t) + (1− αl) tanh(Wl−1
p xl−1(t− 1) + Wl

rxl(t− 1)), l ∈ [2, L]
(5)

where the superscript(1 and l) is the layer notation, with a total of L hidden layers in the
network. xl(t) ∈ RNl

x×1 represents the l-th hidden layer (i.e., reservoir(l)) with Nl
x neurons

inside, Wi ∈ RN1
x×Nu is the input weight matrix of the first hidden layer, Wl

r ∈ RNl
x×Nl

x

is the reservoir weight matrix of the l-th hidden layer, Wl−1
p ∈ RNl−1

x ×Nl
x is the propagate

weight matrix, which connects reservoir(l − 1) to reservoir(l).
As in the standard LI-ESN approach, the reservoir weights of a DeepESN are initial-

ized subject to similar stability constraints. In the case of DeepESN, such constraints are
expressed by the necessary conditions for the ESP of deep RC networks [13] described by
the following equation:

max
l∈[1,L]

ρ
(
(1− αl)I + αlWr

)
< 1, (6)

where the same leaky parameter (αl ≡ α) in each layer is considered in this paper.
The values in each reservoir matrix{Wl

r|l ∈ [1, L]} are randomly initialized from
a uniform distribution (e.g., U[−1, 1]); after that, each Wl

r is spectrally normalized by
its spectral radius and rescaled by the same reservoir scaling parameter γr to meet the
demands of Equation (6).

Wl
r ←

γrWl
r

ρ(Wl
r)

, l ∈ [1, L]. (7)

The values in input weight matrix Wi are randomly selected from a uniform distribution
U[−γi, γi], where γi is the input scaling parameter. The values in each propagate weight
matrix {Wl

p|l ∈ [1, L− 1]} are randomly selected from a uniform distribution U[−γp, γp],
where γp is the propagate scaling parameter.

The output equation and the training equation of DeepESN are formed by concatenat-
ing all hidden neurons in all reservoirs together, denoting x̃(t)T = [x1(t)T x2(t)T . . . xL(t)T]
and substituting x̃(t) for x(t) in Equations (3) and (4):

y(t) = Wo x̃(t), (8)

Wo =
(
(X̃T

trainX̃train + λI)−1X̃T
trainYtrain

)T
. (9)

Appl. Sci. 2023, 13, 2918 5 of 19

...u(t)

Wi

x1(t)

reservoir(1)

W1
r

W1
p

x2(t)

reservoir(2)

W2
r

W2
p

...

WL−1
p

W2
p

xL(t)

reservoir(L)

WL
r

...Wo

y(t)

Figure 2. Structure of DeepESN.

2.3. Architectural Richness of DeepESN

The components of the state should be as diverse as possible to provide a richer pool of
dynamics from which the trainable part can appropriately combine. From an information-
theoretic point of view, this form of richness could be measured by means of the entropy of
instantaneous reservoir states [1]. Here, an efficient estimator of Renyi’s quadratic entropy
is introduced: suppose that we have N independent and identically distributed samples
{v1, . . . , vN} for the continuous random variable V. An estimation of Renyi’s quadratic
entropy directly from the sampling data is defined as:

H2(V) = − log(
1

N2

N

∑
i=1

N

∑
j=1

Gκ
√

2(vj − vi)), (10)

Appl. Sci. 2023, 13, 2918 6 of 19

where Gκ
√

2(•) is a Gauss kernel function with standard deviation κ
√

2, and κ can be
determined by Silverman’s rule:

κ = σ(V)(4N−1(2d + 1)−1)
1

d+4 , (11)

where σ(V) is the standard deviation, and d is the data dimensionality.
Average state entropy (ASE) is obtained by time averaging the instantaneous Renyi’s

quadratic entropy estimation of reservoir neurons.

H(t) = H2(x̃(t)), (12)

ASE =
1
S

S

∑
t=1
H(t), (13)

where S is the sample number. ASE gives us a research perspective independent of the
learning aspect, and higher ASE values are preferable and denote richer dynamics in
reservoirs [1].

3. Pruning Deep Echo State Network with a Neuronal Similarity-Based Iterative
Pruning Merging Algorithm
3.1. Sensitive Iterative Pruning Algorithm to Simple Cycle Reservoir Network

The SCRN is a kind of minimum complexity ESN, which has a cycle topology in the
reservoir [21]. Every reservoir neuron is unidirectionally connected to its two adjacent
neurons. An SIPA method is introduced to choose the right network size for SCRN by
iteratively pruning out the least sensitive neurons [17].

The SIPA method is carried out in the following steps:

1. Establish an SCRN with a large enough reservoir and satisfactory performance.
2. Select a neuron to be pruned using the sensitive criterion [22] (assume xm is to be

pruned), as diagramed in Figure 3, and remove all weights connected to xm as follows:
Wi(m, :)←0

Wr(m, m− 1)←0

Wr(m + 1, m)←0

(14)

3. Establish a new link between two neighbors of pruned neurons, the link weight is
determined to eliminate the perturbation caused by pruning, denoting the input to
xm+1 before pruning Io = Wi(m + 1, :)u + Wr(m + 1, m)xm, the input to xm+1 after
pruning In = Wi(m + 1, :)u + Wr(m + 1, m− 1)xm−1, the perturbation is eliminated,
and the original reservoir behavior is maintained as long as In is set as close as possible
to Io, by solving the following optimization problem:

min
Wr(m+1,m−1)

||Io − In||2. (15)

4. Adjust the output weights by retraining the network, and then calculate the train-
ing error.

5. Repeat steps 2–4 until the training error or the reservoir size reaches an accept-
able range.

The key to a successful application of SIPA is Step 3. In Step 2, a reservoir perturbation
is triggered by pruning, making the performance of the pruned network unpredictable.
Thus, the essential task of Step 3 is to reduce the effects of perturbation so that the rest of
the neurons remain unchanged and the network performance is approximately as good
as before.

Appl. Sci. 2023, 13, 2918 7 of 19

xm+1

xm

xm−1

Wr(m,m− 1)

Wr(m+ 1,m)

Wr(m+ 1,m− 1)

...

...

x1

xNx

u
Wi(m, :)

xm+1

xm−1

...

...

x1

xNx

u

(a) (b)

Figure 3. Weight coefficient diagram of connections of neurons in the reservoir of SCRN before (a)
and after (b) pruning a neuron by SIPA.

3.2. Neuronal Similarity-Based Iterative Pruning Merging Algorithm to Deep Echo State Network

Due to the simple topology of SCRN, only one neuron (xm+1) receives input from the
pruned neuron (xm), and perturbation elimination in SCRN is easy to perform. However,
the topology of DeepESN is much more complicated, and more extensive perturbation will
be raised by pruning one neuron in DeepESN because, in a highly coupled reservoir, pertur-
bation at any neuron will be diffused to every neuron of the same reservoir. Furthermore,
in hierarchically stacked reservoirs, perturbation in the lower layer will be transmitted to
every higher layer above, and it is very difficult to eliminate all these perturbations.

The merging method is designed to solve this difficulty, and this coincides with Islam’s
idea [23], where two neurons are merged by averaging their input weights. Consider the
following ideal scenario: merging two identical twin neurons in the same reservoir will
derive a new neuron that is identical to two antecedent twins; this new burned neuron
could act as an equivalent substitution for two antecedent twins. Consequently, a neuron is
pruned without leading any perturbation through superimposing the output weights of the
merged twins as well. This ideal perturbation-free merging has the prerequisite that two
identical neurons have to be found in the same reservoir. The more similar the two merged
neurons are, the weaker perturbation that will be raised by merging. Neuronal similarity
could be assessed by some quantitative relations of the collected training state matrix.
Distance and correlation are commonly used to quantify similarity, and four similarity
estimation criteria are given in this paper, including the inverse of the Euclidean distance
(ED), Pearson’s correlation coefficient (PC), Spearman’s correlation coefficient (SC) and
Kendall’s correlation coefficient (KC) as follows:

Noting the total number of neurons in all reservoirs M = ∑L
l=0 Nl

x, recall the train state
matrix

X̃train =


x1(1) x1(2) . . . x1(Ltrain)
x2(1) x2(2) . . . x1(Ltrain)

...
...

. . .
...

xL(1) xL(2) . . . xL(Ltrain)


(M×Ltrain)

=


n1
n2
...

nM

, (16)

where Ltrain is the number of training samples, and ni is the historical state of the i-th
neuron state during training. The similarity of ni and nj is derived by:

Appl. Sci. 2023, 13, 2918 8 of 19

ED(i, j) =
1

‖ ni − nj ‖2
, (17)

PC(i, j) =
σninj√

σnini σnjnj

, (18)

SC(i, j) = 1− 6 ∑Ltrain
t=1 d2

t

Ltrain

(
Ltrain

2 − 1
) , (19)

KC(i, j) =
c− d

1
2 Ltrain(Ltrain − 1)

, (20)

where σninj represents the cross-correlation of ni and nj, and σnini and σnjnj represent the
autocorrelation of ni and nj. dt is the rank difference of ni(t) and nj(t), c is the number of
concordant pairs, and d is the number of discordant pairs in ni and nj. NS-IPMA based on
different similarity estimation criteria are named correspondingly; for instance, ES-IPMA
means NS-IPMA based on the inverse of Euclidean distance criterion, etc. The main process
of NS-IPMA is illustrated in Figure 4, and the NS-IPMA method is carried out in the
following steps:

1. Initially generate a performable DeepESN with large enough reservoirs by tuning
hyperparameters to minimize the average of training and validate error using the
particle swarm optimization (PSO) algorithm; please refer to Appendix A for more
details on hyperparameter tuning. This DeepESN is a primitive network to implement.

2. Washout the reservoirs, and activate the reservoirs using training samples to obtain
the training state matrix.

3. Quantify the similarity of every two neurons (using one criterion of Equations (17)–(20)),
and select a pair of the most similar neurons.

4. (a) If selected neurons are in the same reservoir (note as xl
i and xl

j), merge them.

As diagramed in Figure 5, xl
s is the son neurons merged as the substitute of

its parents xl
i and xl

j. l is the reservoir layer where xl
i and xl

j exist. The related

weight matrix Wl−1
p , Wl

p and Wl
r is refreshed as follows:

Wl−1
p (s, :)←

Wl−1
p (i, :) + Wl−1

p (j, :)

2

Wl
r(s, :)← Wl

r(i, :) + Wl
r(j, :)

2
Wl

r(:, s)← Wl
r(:, i) + Wl

r(:, j)

Wl
p(:, s)← Wl

p(:, i) + Wl
p(:, j)

(21)

if l = 1, Wi perform as Wl−1
p ; if l = L,Wl

p does not exist.
(b) If selected neurons are in different reservoirs (note as xm

i and xl
j), prune one in

a high layer (assume m < l). The related weight matrix Wl−1
p , Wl

p and Wl
r is

refreshed as follows: 

Wl−1
p (j, :)← 0

Wl
r(j, :)← 0

Wl
r(:, j)← 0

Wl
p(:, j)← 0

(22)

if l = 1, Wi perform as Wl−1
p ; if l = L,Wl

p does not exist.
5. Adjust the output weights by retraining the network, and then estimate the perfor-

mance of the current network.
6. Repeat steps 2–5 until the training error or the network size reaches an accept-

able range.

Appl. Sci. 2023, 13, 2918 9 of 19

Start:initialize a DeepESN

Estimate the similarity of each two neurons

Input washout samples

Input train samples

Select out a pair of most similar neurons

Test the pruned DeepESN, and calculate the testing error

Do the selected neurons exist in the same reservoir?

Is the end condition satisfied?

Test the DeepESN, and calculate the testing error

Set an end conditon: a desired network size or a desired test error

Merge the selected neurons Prune the one in higher layer

Retrain the pruned DeepESN

Y N

N

Y

End

Wash out initial transient

Train the deepESN, and collect train state matrixs

Input test samples

Figure 4. Flowchart of NS-IPMA.

Appl. Sci. 2023, 13, 2918 10 of 19

xl
i(t)

xl
j(t)

xl
N l

x
(t)

...

Wl−1
p (i, :)

Wl−1
p (j, :)

Wr(i, :)

Wr(:, j)

Wr(j, :)

Wr(:, i)

xl(t+ 1)

xl(t− 1)

xl−1(t) xl+1(t)

Wl
p(:, i)

Wl
p(:, j)

xl
s(t)

xl
N l

x
(t)

...

Wr(s, :)

xl(t+ 1)

xl(t− 1)

xl−1(t) xl+1(t)
Wl

p(:, s)Wl−1
p (s, :)

Wr(:, s)

(a) (b)

xl
1(t)

...

...

xl
1(t)

...

Figure 5. Weight coefficients diagram of connected neurons in reservoir (l) of DeepESN before (a) and
after (b) merging a neuron by NS-IPMA.

4. Experiments

Due to high nonlinearity and instability, forecasting chaotic time series has remained
a difficult task for the last few decades [24]. RC architectures, including ESNs, have
successfully been employed for multi-step-ahead prediction of nonlinear time series and
modeling chaotic dynamical systems at a low computational cost [25]; therefore, chaotic
time series prediction is an ideal task to estimate the performance of DeepESN.

4.1. Datasets
4.1.1. Mackey–Glass Chaotic Time Series

The Mackey–Glass time series [26] is a standard benchmark for chaotic time series
forecast models. The Mackey-Glass time series is defined in the following differential
equation:

dx
dt

= a
xτ

1 + xτ
c − bx, xτ = x(t− τ), (23)

where a = 0.1, b = 0.2, and c = 11 are constant parameters. The nonlinearity of the system
increases as the time delay parameter τ increases. The system shows chaotic behavior
when τ > 17. To generate the time series used here, τ is set to 31, and the integration
step size is set to ∆t = 0.002 s using the jitcdde Python engine to solve delay differential
equations at discrete equally spaced times. The data were then sampled by 4∆t to form
the Mackey–Glass (MG) dataset with 4000 data points. A Python library [27] was used to
implement this process.

4.1.2. Lorenz Chaotic Time Series

The second chaotic time series benchmark is derived from the Lorenz system [28],
which is given by the following equations:

dx
dt

= −a(x− y),

dy
dt

= −b(x− y) + xz,

dz
dt

= −cz + xy,

(24)

Appl. Sci. 2023, 13, 2918 11 of 19

where a = 34
3 , b = 298

11 , and c = 17
7 are the constant parameters. The time series is obtained

by numerical integration of the equation using odeint, a Python solver of the ordinary
differential equation system, where the solution is evaluated at times spaced ∆t = 0.08 s
apart, and the initial values are set to [x(0), y(0), z(0)] = [0.5, 0,−0.5], and the Lorenz z-axis
(LZ) dataset is obtained by taking the z-axis data from 4000 samples.

Before carrying out the prediction task, both datasets are shifted by their mean to
remove the DC bias.

4.2. Next Spot Prediction Task

In the next spot prediction experiment, the last four continuous spots were considered
the input and the next spot was considered the desired output, i.e., {u(t− 3), u(t− 2), u(t−
1), u(t)}was used to predict u(t + 1). The number of the train samples and the test samples
was 1800 and 2000, 200 samples before the first training sample was used to wash out
the initial transient (see Figure 6). The reservoir diversity was quantized by the ASE (see:
Section 2.3) of the combined training and testing neuron states activated by training and
testing samples. The predictive error performance was quantized by the normalized root
mean square error:

NRMSE =

√√√√ T

∑
t=1

| y(t)− ŷ(t) |2
T | y(t)− ȳ(t) |2 , (25)

where T is sample number, ŷ(t) is the desired output, y(t) is the readout output, and ȳ(t)
is the average of y(t).

Two different initial reservoir size conditions of DeepESN were performed on both
datasets. The first is four stacked reservoirs with 100 neurons in each reservoir (abbreviated
to: 4× 100), and the second is eight stacked reservoirs with 50 neurons in each reservoir
(abbreviated to: 8 × 50). All experiments were carried out under two different initial
conditions on two datasets, and model hyperparameters tuned by PSO were recorded in
Table A1.

0 500 1000 1500 2000 2500 3000 3500 4000
Time step

0.5

1.0

1.5 Washout Train Test

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
Time step

0

20

40

60

80
Washout
Train
Test1900 1950 2000 2050 2100

20
40

(b)
Figure 6. MG (a) and LZ (b) datasets.

Appl. Sci. 2023, 13, 2918 12 of 19

4.3. Ablation Experiment and Control Experiment

In order to demonstrate the effectiveness of different similarity estimation criteria, the
worst-case scenario of NS-IPMA, the iterative pruning merging algorithm (IPMA) without
neuronal similarity estimation, was investigated as an ablation experiment. In IPMA, the
similarity of each pair of two neurons was assigned by random values; thus, two random
neurons would be recognized as the most similar pair of neurons and would be pruned
(or merged).

To verify the effectiveness of the NS-IPMA method, the pruned DeepESNs were com-
pared with a control experiment. The unpruned DeepESN, whose number of neurons
in each reservoir is the same, the pruned DeepESN, and the unpruned DeepESN were
compared with an equal number of layers, equal number of total neurons and the same
hyperparameters because the unpruned DeepESN is a standard benchmark that identifies
the evolutionary characteristic of network performance by reducing network size. Ninety
percent of neurons of randomly initialized DeepESNs were continuously pruned using
different criterion-based NS-IPMA methods (ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA)
and non-criterion-based IPMA. During pruning, networks were silhouetted, and the per-
formance was evaluated once 10% of neurons had been pruned. These pruned groups
were compared with unpruned DeepESN. All experiments were repeated 20 times, and all
results were averaged through 20 independent replications.

5. Results and Discussion
5.1. Hierarchical Structure

The number of neurons remaining during pruning in each reservoir of DeepESN,
which was pruned by different similarity estimation criterion-based NS-IPMA methods, is
shown in Figure 7. As NS-IPMA goes on, we observed a significant reduction in the neuron
number in high layers at a later stage. The reason for this was the discard policy, in which
when a redundant pair of the most similar neurons were found in different reservoirs, the
one in the higher layer would be pruned out. Lower layer reservoirs are the foundation of
higher layer reservoirs, and too few neurons in lower layers bring the risk of insufficient
information presentation and extraction in higher layers; thus, the NS-IPMA methods have
good network structure adaptability.

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(ED)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(PC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(SC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(KC)
20

40

60

80

100

(a) MG : 4× 100

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(ED)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(PC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(SC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4

(KC)

20

40

60

80

100

(b) LZ : 4× 100
Figure 7. Cont.

Appl. Sci. 2023, 13, 2918 13 of 19

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(ED)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(PC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(SC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(KC)

10

20

30

40

50

(c) MG : 8× 50

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(ED)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(PC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(SC)

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(KC)

10

20

30

40

50

(d) LZ : 8× 50

Figure 7. The figure shows the number of neurons remaining in each layer of DeepESN, pruned
by different similarity estimation criterion-based NS-IPMA methods. The vertical axis indicates the
layer index, the horizontal axis indicates the percent of pruned neurons in the initial total number of
neurons, the mesh color indicates the number of remaining neurons, and the darker color indicates
more neurons remaining. (a): Initial 4 layer reservoirs with 100 neurons in each reservoir on MG
dataset; (b): Initial 8 layer reservoirs with 50 neurons in each reservoir on MG dataset; (c): Initial
4 layer reservoirs with 100 neurons in each reservoir on LZ dataset; (d): Initial 8 layer reservoirs with
50 neurons in each reservoir on LZ dataset.

5.2. Reservoir Diversity and Error Performance

Quantitative performance comparisons (ASE, training NRMSE, and testing NRMSE)
of unpruned DeepESN and DeepESN, which were pruned by IPMA and different similarity
estimation criterion-based NS-IPMA methods, are illustrated in Figure 8–10. The results
on the two datasets were similar but different. On the whole, as reservoir size reduced,
the ASE would decrease and training NRMSE would increase, confirming that the model
with more neurons has a better information representation ability and a better training
effect. Initially, testing NRMSE was greater than training NRMSE; this phenomenon is
called overfitting. As the reservoir size reduced, the training error went down, and the
overfitting was improved, confirming that reducing the network size is a directly effective
approach to improving the generalization performance of the network. There is no doubt
that pruning neurons will lead to a reduction in network size, which is the reason why
the unpruned DeepESN is tested as a benchmark, and a successful pruning algorithm
should outperform this benchmark. Furthermore, the minimum testing NRMSE condition
is chosen to compare the extreme generalization performance of each experiment group,
which was recorded in Table 1.

Appl. Sci. 2023, 13, 2918 14 of 19

400 360 320 280 240 200 160 120 80 40
Neuron number

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

AS
E

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(a) MG : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

AS
E

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(b) MG : 8× 50

400 360 320 280 240 200 160 120 80 40
Neuron number

−0.1

0.0

0.1

0.2

0.3

0.4

AS
E

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(c) LZ : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

−0.1

0.0

0.1

0.2

0.3

0.4

AS
E

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(d) LZ : 8× 50
Figure 8. ASE comparison of unpruned DeepESN and DeepESN pruned by IPMA, ED-IPMA, PC-
IPMA, SC-IPMA, KC-IPMA. (a): Initial 4 layer reservoirs with 100 neurons in each reservoir on MG
dataset; (b): Initial 8 layer reservoirs with 50 neurons in each reservoir on MG dataset; (c): Initial
4 layer reservoirs with 100 neurons in each reservoir on LZ dataset; (d): Initial 8 layer reservoirs with
50 neurons in each reservoir on LZ dataset.

400 360 320 280 240 200 160 120 80 40
Neuron number

0.026

0.028

0.030

0.032

0.034

0.036

0.038

N
RM

SE
tr
ai
n

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(a) MG : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.026

0.028

0.030

0.032

0.034

0.036

0.038

N
RM

SE
tr
ai
n

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(b) MG : 8× 50

400 360 320 280 240 200 160 120 80 40
Neuron number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
tr
ai
n

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(c) LZ : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
tr
ai
n

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(d) LZ : 8× 50
Figure 9. Training NRMSE comparison of unpruned DeepESN and DeepESN pruned by IPMA,
ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA. (a): Initial 4 layer reservoirs with 100 neurons in each
reservoir on MG dataset; (b): Initial 8 layer reservoirs with 50 neurons in each reservoir on MG
dataset; (c): Initial 4 layer reservoirs with 100 neurons in each reservoir on LZ dataset; (d): Initial
8 layer reservoirs with 50 neurons in each reservoir on LZ dataset.

Appl. Sci. 2023, 13, 2918 15 of 19

400 360 320 280 240 200 160 120 80 40
Neuron number

0.035

0.036

0.037

0.038

0.039

0.040

0.041

0.042

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(a) MG : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.035

0.036

0.037

0.038

0.039

0.040

0.041

0.042

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(b) MG : 8× 50

400 360 320 280 240 200 160 120 80 40
Neuron number

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(c) LZ : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(d) LZ : 8× 50
Figure 10. Testing NRMSE comparison of unpruned DeepESN and DeepESN pruned by IPMA,
ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA. (a): Initial 4 layer reservoirs with 100 neurons in each
reservoir on MG dataset; (b): Initial 8 layer reservoirs with 50 neurons in each reservoir on MG
dataset; (c): Initial 4 layer reservoirs with 100 neurons in each reservoir on LZ dataset; (d): Initial
8 layer reservoirs with 50 neurons in each reservoir on LZ dataset.

Similarly, from Figure 8, the DeepESN pruned by ED-IPMA maintained a minimum
ASE loss as the number of neurons decreases, and we suspect that there were some hidden
relationships between the Euler distance and Renyi’s quadratic entropy. From Table 1, the
unpruned DeepESNs had a greater standard deviation of the minimum testing NRMSE
compared to the pruned DeepESN, indicating that the NS-IPMA method has good robustness.

On the MG dataset: From Figure 10a,b, in the early stage, the testing error of DeepESN
pruned by SC-IPMA and KC-IPMA dropped rapidly; later, DeepESN pruned by ED-IPNA
and PC-IPMA performed best when the majority of neurons had been pruned. From
Table 1, although ED-IPMA achieved the best extreme generalization performance, the
pruned DeepESNs had no obvious improvement in the mean value of minimum testing
NRMSE compared to the unpruned DeepESN.

On the LZ dataset: From Figures 9c,d, 10c,d and Table 1, the training error, testing
error, and extreme generalization performance of pruned DeepESNs were all significantly
improved compared to unpruned DeepESN, and the diversity of different similarity esti-
mation criteria were not prominent. The noncriterion-based IPMA method performed as
well as criterion-based NS-IPMA methods.

In summary, all these experimental results showed that the NS-IPMA method is a
successful approach to improving the generalization performance of DeepESN, which
is specific, in almost all of our designed experiments, in that the DeepESN pruned by
NS-IPMA has better generalization performance than the standard unpruned DeepESN.

Appl. Sci. 2023, 13, 2918 16 of 19

Table 1. Minimum testing NRMSE condition of each experiment group.

Group Unpruned DeepESN Pruned DeepESN

Method - ED-IPMA PC-IPMA SC-IPMA KC-IPMA IPMA

NRMSEtest (Mean) 0.036 105 0.036 046 0.036 240 0.036 206 0.036 243 0.036 380
MG : 4× 100 NRMSEtest (Std.) 0.000 483 0.000 388 0.000 221 0.000 281 0.000 144 0.000 291

Neuron number 120 120 80 120 120 120

NRMSEtest (Mean) 0.035 544 0.035 238 0.035 350 0.035 516 0.035 427 0.036 030
MG : 8× 50 NRMSEtest (Std.) 0.000 699 0.000 346 0.000 516 0.000 533 0.000737 0.000 338

Neuron number 160 200 240 280 280 240

NRMSEtest (Mean) 0.184 285 0.148 812 0.152 775 0.164 455 0.140 930 0.155 667
LZ : 4× 100 NRMSEtest (Std.) 0.043 201 0.026 072 0.024 417 0.022 953 0.031 862 0.027 816

Neuron number 400 200 160 280 240 200

NRMSEtest (Mean) 0.251 535 0.198 581 0.189 230 0.210 376 0.193 678 0.186 933
LZ : 8× 50 NRMSEtest (Std.) 0.044 484 0.027 631 0.024 995 0.033 404 0.029 164 0.024 092

Neuron number 320 160 120 160 160 120
Red bold values indicate the best validation performance of all methods.

6. Conclusions and Prospects

In our research, a new iterative pruning merging algorithm was proposed to simplify
the architecture of DeepESN. As to which neurons should be pruned out, four different
similarity estimation criteria were attempted. The unpruned DeepESNs is a benchmark
that identifies the evolutionary characteristic of network performance by reducing network
size, and the effectiveness of the proposed method was experimentally verified by compar-
ing pruned DeepESNs with unpruned DeepESNs in the same network size. The results
showed that these NS-IPMA methods have good network structure adaptability, and the
DeepESNs pruned by the NS-IPMA method have better generalization performance and
better robustness than unpruned DeepESNs, indicating that the NS-IPMA method is a
feasible and superior approach to improving the generalization performance of DeepESN.
The NS-IPMA method provides a novel approach for choosing the appropriate network
size of DeepESN. One could start with a larger model than necessary for reservoir size and
then prune or merge some similar neurons to obtain a better DeepESN model. One could
select a simple architecture with small computation requirements while keeping the testing
error acceptable.

In many tasks, low computational cost and reliable performance cannot be achieved
at the same time. The experimental results showed that the newly proposed method could
better balance the computational cost and performance; therefore, it has broad application
prospects in real-time (RT) systems, including RT control, RT forecast, RT decision, etc.,
for example, RT control for modernized microgrids [29], intelligent Internet of Things
automatic irrigation control system [30], lower generation data prediction for wind power
plant [31], trading prediction and dynamic decisions for online trading systems [32], model
predictive control [33,34], predictive feedforward control for servo systems [35,36].

However, there are still some shortcomings in our work. First, the problem of how
to choose the redundant neurons to be pruned out or what the best neuronal similarity
estimation criterion should be, remains unsolved. Second, only the hierarchical structure,
the reservoir diversity, and the overall error performance are investigated, and more
evolutionary characteristics of different reservoirs, such as their spectral radius, resulting
from the NS-IPMA method, are not analyzed. Third, the effects of pruning and merging
are not clearly distinguished. Future research on the NS-IPMA method could focus on
the theoretical analysis of the above-unsolved problem or on practical applications where
high-performance computing is required.

Appl. Sci. 2023, 13, 2918 17 of 19

Author Contributions: Methodology, Q.S.; software, Q.S.; validation, Q.S.; investigation, Q.S.; re-
sources, Q.S.; writing—original draft, Q.S.; writing—review and editing, Q.S. and H.Z.; supervi-
sion, Y.M.; funding acquisition, Y.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China—grant
number: 62271109.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this research and relevant resources are available
upon request; please send your request message to shen99855@outlook.com.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RNN Recurrent neural network
ESN Echo state network
LSTM Long short-term memory
GRU Gated recurrent unit
DNN Deep neural network
DeepESN Deep echo state network
SIPA Sensitive iterative pruning algorithm
SCRN Simple cycle reservoir network
NS-IPMA Neuronal similarity-based iterative pruning merging algorithm
LI-ESN Leaky integrator echo state network
ESP Echo state property
RC Reservoir computing
ASE Average state entropy
ED Euclidean distance
PC Pearson’s correlation
SC Spearman’s correlation
KC Kendall’s correlation
ED-IPMA NS-IPMA based on the inverse of Euclidean distance criterion
PC-IPMA NS-IPMA based on the inverse of Pearson’s correlation criterion
SC-IPMA NS-IPMA based on the inverse of Spearman’s correlation criterion
KC-IPMA NS-IPMA based on the inverse of Kendall’s correlation criterion
IPMA Iterative pruning merging algorithm
PSO Particle swarm optimization
MG Mackey–Glass
LZ Lorenz z-axis
DC Direct component
NRMSE Normalized root mean square error
RT Real-time

Appendix A. Hyperparameter Tuning

As defined in Section 2.2, hyperparameters (α, γi, γr, γp and λ) play essential roles
in the performance of DeepESN, as well as in the successful application of NS-IPMA. α
and γr affect the stability of reservoirs, α = 0.92 and γr = 0.8 are set to satisfy Equation (6);
λ affects the generalization performance, a small regularization factor λ = 1× 10−10 is
chosen to make the output weights better fit the training samples. γi adjusts the strength
of the input signal into the first layer of DeepESN, γp adjusts the strength of the input
signal into higher layers of DeepESN; thus, γi is optimized on the LI-ESN, which is the
first layer of DeepESN. After that, γp is optimized on the DeepESN after higher layers are
hierarchically stacked on the original LI-ESN. The tuned results are recorded in Table A1.

Appl. Sci. 2023, 13, 2918 18 of 19

Table A1. Hyperparameters applied under different initial reservoir sizes on different datasets.

Dataset MG MG LZ LZ
Initial Size 4 × 100 8 × 50 4 × 100 8 × 50

α 0.92 0.92 0.92 0.92
γr 0.8 0.8 0.8 0.8
γi
∗1 0.373 84 0.253 14 0.096 31 0.064 94

γp
∗2 0.211 36 0.241 62 0.335 51 0.347 11

λ 1× 10−10 1× 10−10 1× 10−10 1× 10−10

*1 Tuned by the PSO in the range of [1× 10−5, 10]; *2 tuned by PSO in the range of [0.1, 5].

References
1. Gallicchio, C.; Micheli, A. Architectural richness in deep reservoir computing. Neural Comput. Appl. 2022, 8. [CrossRef]
2. Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science

2004, 304, 78–80. [CrossRef] [PubMed]
3. Zhang, S.; He, K.; Cabrera, D.; Li, C.; Bai, Y.; Long, J. Transmission Condition Monitoring of 3D Printers Based on the Echo State

Network. Appl. Sci. 2019, 9, 3058. [CrossRef]
4. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
5. Che, Z.P.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing

Values. Sci. Rep. 2018, 8, 6085. [CrossRef] [PubMed]
6. Xu, X.; Ren, W. Prediction of Air Pollution Concentration Based on mRMR and Echo State Network. Appl. Sci. 2019, 9, 1811.

[CrossRef]
7. Zhang, M.; Wang, B.; Zhou, Y.; Sun, H. WOA-Based Echo State Network for Chaotic Time Series Prediction. J. Korean Phys. Soc.

2020, 76, 384–391. [CrossRef]
8. Zhang, M.; Wang, B.; Zhou, Y.; Gu, J.; Wu, Y. Prediction of Chaotic Time Series Based on SALR Model with Its Application on

Heating Load Prediction. Arab. J. Sci. Eng. 2021, 46, 8171–8187. [CrossRef]
9. Zhou, J.; Wang, H.; Xiao, F.; Yan, X.; Sun, L. Network traffic prediction method based on echo state network with adaptive

reservoir. Softw. Pract. Exp. 2021, 51, 2238–2251. [CrossRef]
10. Baek, J.; Choi, Y. Deep Neural Network for Predicting Ore Production by Truck-Haulage Systems in Open-Pit Mines. Appl. Sci.

2020, 10, 1657. [CrossRef]
11. Gallicchio, C.; Micheli, A.; Pedrelli, L. Deep reservoir computing: A critical experimental analysis. Neurocomputing 2017,

268, 87–99. [CrossRef]
12. Gallicchio, C.; Micheli, A.; Silvestri, L. Local Lyapunov exponents of deep echo state networks. Neurocomputing 2018, 298, 34–45.

[CrossRef]
13. Gallicchio, C.; Micheli, A. Echo State Property of Deep Reservoir Computing Networks. Cogn. Comput. 2017, 9, 337–350.

[CrossRef]
14. Gallicchio, C.; Micheli, A. Deep Echo State Network (DeepESN): A Brief Survey. arXiv 2017, arXiv:abs/1712.04323.
15. Gallicchio, C.; Micheli, A. Why Layering in Recurrent Neural Networks? A DeepESN Survey. In Proceedings of the 2018

International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]
16. Thomas, P.; Suhner, M.C. A New Multilayer Perceptron Pruning Algorithm for Classification and Regression Applications.

Neural Process. Lett. 2015, 42, 437–458. [CrossRef]
17. Wang, H.; Yan, X. Improved simple deterministically constructed Cycle Reservoir Network with Sensitive Iterative Pruning

Algorithm. Neurocomputing 2014, 145, 353–362. [CrossRef]
18. Jaeger, H.; Lukoševičius, M.; Popovici, D.; Siewert, U. Optimization and applications of echo state networks with leaky- integrator

neurons. Neural Netw. 2007, 20, 335–352. [CrossRef]
19. Yildiz, I.B.; Jaeger, H.; Kiebel, S.J. Re-visiting the echo state property. Neural Netw. 2012, 35, 1–9. [CrossRef]
20. Gallicchio, C.; Micheli, A. Architectural and Markovian factors of echo state networks. Neural Netw. 2011, 24, 440–456. [CrossRef]
21. Rodan, A.; Tino, P. Minimum complexity echo state network. IEEE Trans. Neural Netw. 2011, 22, 131–144. [CrossRef]
22. Castellano, G.; Fanelli, A.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural Netw.

1997, 8, 519–531. [CrossRef]
23. Islam, M.M.; Sattar, M.A.; Amin, M.F.; Yao, X.; Murase, K. A New Adaptive Merging and Growing Algorithm for Designing

Artificial Neural Networks. IEEE Trans. Syst. Man Cybern. Part (Cybern.) 2009, 39, 705–722. [CrossRef]
24. Shahi, S.; Fenton, F.H.; Cherry, E.M. Prediction of chaotic time series using recurrent neural networks and reservoir computing

techniques: A comparative study. Mach. Learn. Appl. 2022, 8, 100300. [CrossRef] [PubMed]
25. Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R., Other Recurrent Neural Networks Models. In Recurrent

Neural Networks for Short-Term Load Forecasting: An Overview and Comparative Analysis; Springer International Publishing: Cham,
Switzerland, 2017; pp. 31–39. [CrossRef]

26. Mackey, M.C.; Glass, L. Oscillation and chaos in physiological control systems. Science 1977, 197, 287–289. [CrossRef]

http://doi.org/10.1007/s00521-021-06760-7
http://dx.doi.org/10.1126/science.1091277
http://www.ncbi.nlm.nih.gov/pubmed/15064413
http://dx.doi.org/10.3390/app9153058
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1038/s41598-018-24271-9
http://www.ncbi.nlm.nih.gov/pubmed/29666385
http://dx.doi.org/10.3390/app9091811
http://dx.doi.org/10.3938/jkps.76.384
http://dx.doi.org/10.1007/s13369-021-05407-y
http://dx.doi.org/10.1002/spe.2950
http://dx.doi.org/10.3390/app10051657
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://dx.doi.org/10.1016/j.neucom.2017.11.073
http://dx.doi.org/10.1007/s12559-017-9461-9
http://dx.doi.org/10.1109/IJCNN.2018.8489368
http://dx.doi.org/10.1007/s11063-014-9366-5
http://dx.doi.org/10.1016/j.neucom.2014.05.024
http://dx.doi.org/10.1016/j.neunet.2007.04.016
http://dx.doi.org/10.1016/j.neunet.2012.07.005
http://dx.doi.org/10.1016/j.neunet.2011.02.002
http://dx.doi.org/10.1109/TNN.2010.2089641
http://dx.doi.org/10.1109/72.572092
http://dx.doi.org/10.1109/TSMCB.2008.2008724
http://dx.doi.org/10.1016/j.mlwa.2022.100300
http://www.ncbi.nlm.nih.gov/pubmed/35755176
http://dx.doi.org/10.1007/978-3-319-70338-1_4
http://dx.doi.org/10.1126/science.267326

Appl. Sci. 2023, 13, 2918 19 of 19

27. Maat, J.R.; Malali, A.; Protopapas, P. TimeSynth: A Multipurpose Library for Synthetic Time Series in Python. 2017. Available
online: https://github.com/TimeSynth/TimeSynth (accessed on 22 February 2023).

28. Chao, K.H.; Chang, L.Y.; Xu, F.Q. Smart Fault-Tolerant Control System Based on Chaos Theory and Extension Theory for Locating
Faults in a Three-Level T-Type Inverter. Appl. Sci. 2019, 9, 3071. [CrossRef]

29. Yan, S.R.; Guo, W.; Mohammadzadeh, A.; Rathinasamy, S. Optimal deep learning control for modernized microgrids. Appl. Intell.
2022. [CrossRef]

30. Saini, S.S.; Soni, D.; Malhi, S.S.; Tiwari, V.; Goyal, A. Automatic irrigation control system using Internet of Things(IoT). J. Discret.
Math. Sci. Cryptogr. 2022, 25, 879–889. [CrossRef]

31. Ozkan, M.B.; Karagoz, P. Data Mining-Based Upscaling Approach for Regional Wind Power Forecasting: Regional Statistical
Hybrid Wind Power Forecast Technique (RegionalSHWIP). IEEE Access 2019, 7, 171790–171800. [CrossRef]

32. Liu, Z.; Luo, H.; Chen, P.; Xia, Q.; Gan, Z.; Shan, W. An efficient isomorphic CNN-based prediction and decision framework for
financial time series. Intell. Data Anal. 2022, 26, 893–909. [CrossRef]

33. Zhang, B.; Sun, X.; Liu, S.; Deng, X. Tracking control of multiple unmanned aerial vehicles incorporating disturbance observer
and model predictive approach. Trans. Inst. Meas. Control 2020, 42, 951–964. [CrossRef]

34. Xing, X.; Lin, J.; Wan, C.; Song, Y. Model Predictive Control of LPC-Looped Active Distribution Network With High Penetration
of Distributed Generation. IEEE Trans. Sustain. Energy 2017, 8, 1051–1063. [CrossRef]

35. Benrabah, M.; Kara, K.; AitSahed, O.; Hadjili, M.L. Constrained Nonlinear Predictive Control Using Neural Networks and
Teaching-Learning-Based Optimization. J. Control. Autom. Electr. Syst. 2021, 32, 1228–1243. [CrossRef]

36. Wang, Y.; Yu, H.; Che, Z.; Wang, Y.; Zeng, C. Extended State Observer-Based Predictive Speed Control for Permanent Magnet
Linear Synchronous Motor. Processes 2019, 7, 618. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/TimeSynth/TimeSynth
http://dx.doi.org/10.3390/app9153071
http://dx.doi.org/10.1007/s10489-022-04298-2
http://dx.doi.org/10.1080/09720529.2022.2068597
http://dx.doi.org/10.1109/ACCESS.2019.2956203
http://dx.doi.org/10.3233/IDA-216142
http://dx.doi.org/10.1177/0142331219879858
http://dx.doi.org/10.1109/TSTE.2016.2647259
http://dx.doi.org/10.1007/s40313-021-00755-4
http://dx.doi.org/10.3390/pr7090618

	Introduction
	Deep Echo State Network
	 Leaky Integrator Echo State Network
	Deep Echo State Network
	Architectural Richness of DeepESN

	Pruning Deep Echo State Network with a Neuronal Similarity-Based Iterative Pruning Merging Algorithm
	Sensitive Iterative Pruning Algorithm to Simple Cycle Reservoir Network
	Neuronal Similarity-Based Iterative Pruning Merging Algorithm to Deep Echo State Network

	Experiments
	Datasets
	Mackey–Glass Chaotic Time Series
	Lorenz Chaotic Time Series

	Next Spot Prediction Task
	Ablation Experiment and Control Experiment

	Results and Discussion
	Hierarchical Structure
	Reservoir Diversity and Error Performance

	Conclusions and Prospects
	Appendix A
	References

