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Abstract: In this study, the natural frequencies and roots (Eigenvalues) of the transcendental equation
in a cantilever steel beam for transverse vibration with clamped free (CF) boundary conditions are
estimated using a long short-term memory-recurrent neural network (LSTM-RNN) approach. The
finite element method (FEM) package ANSYS is used for dynamic analysis and, with the aid of
simulated results, the Euler–Bernoulli beam theory is adopted for the generation of sample datasets.
Then, a deep neural network (DNN)-based LSTM-RNN technique is implemented to approximate
the roots of the transcendental equation. Datasets are mainly based on the cantilever beam geometry
characteristics used for training and testing the proposed LSTM-RNN network. Furthermore, an
algorithm using MATLAB platform for numerical solutions is used to cross-validate the dataset
results. The network performance is evaluated using the mean square error (MSE) and mean absolute
error (MAE). Finally, the numerical and simulated results are compared using the LSTM-RNN
methodology to demonstrate the network validity.

Keywords: clamped free; finite element method; transcendental equation; roots (Eigen values); long
short-term memory; recurrent neural network

1. Introduction

Many engineering problems are approached and analyzed using mathematical models
developed based on the fundamental principles of engineering. Based on an analysis of the
response of the system to various operating loads, numerous systems with applications in
mechanical and civil engineering are designed structurally. The technique of conducting
a structural dynamic analysis involves solving the governing equations of motion to
determine how a system will respond to transient loads, such as the deformation of
the system over time and its natural frequencies. The vibrations among engineering
structures are amongst their most fundamental characteristics. There are infinite vibrational
frequencies and mode forms for every structure in nature [1–3].

Approximate and exact solution methods are used to evaluate natural frequencies.
Furthermore, differential equations are applied to these methods to calculate the structural
dynamic behavior [4,5]. However, due to the interdependence of these differential equa-
tions, numerous factors are encountered while solving them [6,7]. Hence, it is essential to
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solve the vibration-induced engineering problems for natural frequencies and mode forms
to analyze the vibration of structures [8–13].

Similarly, the literature mentioned in this paragraph provides an analysis of beams
with free vibration. For free vibrations with a large amplitude uniform beam, Gupta et al.
applied a simplified finite element model [14]. Ramtekkar et al. used a varied finite element
model to perform a free vibration study on delaminated beams [15]. Vidal et al. used
transverse normal stress and sinus finite elements to study the vibration of multilayered
beams [16]. Hong et al. performed an experimental analysis on the transverse vibration of
clamped-pinned-free beam with mass at the free end to find the transcendental equation
roots of the beam [17].

Although the methodologies mentioned above have been applied to the problems of
structural analysis, design and optimization using conventional approaches involve com-
plexity and time-consuming processes. Thus, during the past few decades, soft computing
techniques have been widely used in various scientific and engineering fields, particularly
in the study of vibration problems in engineering structures. Moreover, such approaches
make it easier to perform a vibration analysis of complicated structural systems. Machine
learning (ML), artificial neural networks (ANN) and evolutionary algorithms are some
well-known soft computing methods used in computational mechanics, especially beam
applications [18–20]. For instance, Mehdi et al. presented the natural frequency of the
beam using ANN and heuristic research [21]. Aktas et al. use an ANN approach for the
transcendental equation of longitudinal vibration [22]. Tekin et al. apply an ANN strategy
on the nonlinear vibrations of stepped beam [23]. In order to determine the depth of cracks
on a cantilever beam, Kazemi et al. used FEM to evaluate three natural frequencies of the
cantilever beam and then further applied an ANN technique trained using particle swarm
optimization [24].

Although ANNs and evolutionary techniques show promising performance for ana-
lyzing and predicting the beam’s natural frequencies, the approaches are implemented with
few datasets. Furthermore, the prediction performance evaluation is mainly performed
for the natural frequencies of the structural beams. Several traditional methods, such as
Newton–Raphson, Bisection, Iteration, etc., have been used to find the transcendental
equation roots [25]. However, the problems associated with such conventional methods
are as follows: (1) Techniques require numerical iterations for each frequency and root
values consequently need a longer computational time; (2) convergence is often slow; and
(3) the guess interval cannot be used if there are discontinuities. These issues thus limit the
applicability of roots findings, especially for a large number of mode shapes and its corre-
sponding root values. On the other hand, deep neural networks such as the long short-term
memory recurrent neural network, show superior capability in terms of performance and
their extensive dataset-handling capability in predicting the system parameters. Therefore,
this study proposes the LSTM-RNN model for approximating the transcendental equation
roots (Eigenvalues) for the first time. Hochreiter and Schmidhuber were the first to develop
this network model in 1997 [26]. LSTM-RNN deep neural networks are implemented in
numerous research topics, including neural computing, estimating transmission quality,
time series forecasting, textual and image recognition, etc. [27–31].

In general, LSTM-RNN contains a collection of layers that are connected to the blocks
known as memory blocks [32–35]. All the information is stored in these memory blocks,
which are connected with the memory cells and three input, output, and forget multiplica-
tive units. For the structural monitoring of cantilever beams, Vashisht et al. use Bayesian
and deep learning LSTM and convolutional neural network (CNN) techniques [36]. Rounak
et al. use LSTM-RNN neural networks for damage detection of the structure incorporated
into the cantilever beam [37]. Bukhsh et al. use LSTM-RNN neural networks to approximate
the polynomial roots [38].

The following are the objectives and sequence of this paper: (1) Throughout the analy-
sis, the first ten natural frequencies and corresponding transcendental roots (Eigenvalues)
of prismatic cantilever steel beam (with specifications in Table 1) subjected to clamped
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free (CF) boundary condition based on the conventional Euler–Bernoulli beam theory
are evaluated as an example; (2) datasets for natural frequencies and roots are generated
through FEM package ANSYS; (3) roots are then evaluated numerically with the help
of MATLAB programming for cross-validation of the generated dataset results; (4) the
proposed LSTM-RNN model is constructed to approximate the roots of the transcendental
equation for the transverse vibration of the prismatic cantilever beam with CF case; (5)
finally, for the validation of transcendental root values, the results are compared with the
FEM ANSYS (datasets), MATLAB (numerical) and LSTM-RNN model (predicted) values.
Moreover, network outputs are obtained by adjusting the input data and parameters of the
neurons and then further comparing these outputs to the predicted analytically obtained
results. Finally, a comparative analysis has been performed between ANSYS, numerical
analysis and the proposed network model for ten modes of the natural frequencies and
their corresponding transcendental root values.

Table 1. Mechanical parameters and properties of the prismatic cantilever beam.

Parameters (Symbol) Values (Units)

Length (l) 1.0 m
Breadth (b) 0.10 m
Height (h) 0.03 m

Area of Cross Section (A) 0.266 m2

Moment of Inertia (I) 2.25 × 10−7 m4

Number of Modes (n) 1~20,000
Young’s Modulus (E) 210 × 109 N/m2

Poisson’s Ratio (υ) 0.3
Density (ρ) 7850 kg/m3

The remaining paper is assembled as follows: Section 2 presents the mathematical
modelling, Section 3 elaborates on the fundamental concepts behind the LSTM-RNN
model, Section 4 compares analytical and experimental results with a brief discussion, and,
Section 5 includes several results and directions for future research.

2. Mathematical Modelling of the Problem

A beam without mass systems with commonly used boundary conditions at each
end and including spatial derivatives of up to the third order is shown in Figure 1. The
boundary conditions with the name at the top and results at the bottom of each case are
based on the Euler–Bernoulli beam theory, where w1 and w2 are the dimensionless left and
right deflections [3]. Similarly, the prime denotes differentiation with respect to the spatial
variable x [39].
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3. Conventional Analysis

This study presents a combination of case I and II boundary conditions, termed
clamped free (CF) boundary conditions, commonly used in prismatic cantilever beam
applications and evaluated as examples to approximate the transcendental roots using the
proposed methodology. A beam is a slender horizontal structural member that appears in
various forms and is used in various artifacts, such as supporting members in high-rise
buildings, railways, long-span bridges, flexible satellites, gun barrels, robot arms, airplane
wings, balconies and many other areas. Therefore, this section contains mathematical
modelling for CF boundary conditions using only a conventional approach based on the
work of S. S. Rao [3]. A general 3D view of the prismatic cantilever beam, with beam
geometric characteristics such as Young’s Modulus E, moment of inertia I, mass density ρ
with uniform cross-sectional area A, width W, length L and thickness t, is shown in Figure 2.

The equation of motion for transverse vibration of the prismatic beam with homoge-
nous material parameters and a constant cross-sectional area is derived using the Euler–
Bernoulli beam theory [3]:

ρA(x)
∂2ψ(t, x)

∂t2 +
∂2

∂x2

[
EI(x)

∂2ψ(t, x)
∂x2

]
= 0 (1)

where t is time and ψ is the transverse displacement.
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Equation (1) can be represented in the following simplified form:

∂2ψ

∂t2 (t, x) + γ2 ∂4ψ

∂x4 (t, x) = 0 (2)

where

γ =

√
IE
Aρ

(3)

Moreover, Equation (2) is solved by the separation of variables method, defined as:

ψ(t, x) = T(t)W(x) (4)

Substituting Equation (4) in Equation (2) after some mathematical reconfiguration yields

γ2

W(x)
d4W(x)

dx4 = − 1
T(t)

d2T(t)
dt2 = a = ω2 (5)

where a = ω2 can be demonstrated as a positive constant. Equation (5) can be represented
as two equations as:

d4W(x)
dx4 − β4W(x) = 0 (6)

d2T(t)
dt2 −ω2T(t) = 0 (7)

where

β4 =
ω2

γ2 =
ρAω2

EI
(8)

The solution to Equation (7) is given by

T(t) = A cos ωt + B sin ωt (9)

Initial conditions can be used to determine the constants A and B. Similarly, the
general solution of Equation (6) can be expressed as:

W(x) = Z1(cosh βl + cos βl) + Z2(cos βl − cosh βl)
+Z3(sinhβl + sin βl) + Z4(sin βl − sinhβl)

(10)

The function W(x) is known as the characteristic function or normal mode of the
beam, where Z1, Z2, Z3 and Z4 are the constants and can be determined based on different
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boundary conditions. The beam with the CF case is fixed at one end at x = 0 and free at
the other at x = l; hence, transverse deflection and its slope must be zero at x = 0, and
the bending moment and shear force must also be zero. Consequently, the CF boundary
condition is:

W(0) = 0 (11)

dW
dx

(0) = 0 (12)

EI
d2W
dx2 (l) = 0 (13)

EI
d3W
dx3 (l) = 0 (14)

Substituting boundary conditions given in Equations (11)–(14) into Equation (10),
respectively, results in:

Z1 = Z3 = 0 (15)

Z2(cosh βl + cos βl) + Z4(sinhβl + sin βl) = 0 (16)

Z2(sinhβl − sin βl) + Z4(cosh βl + cos βl) = 0 (17)

Then, solving and simplifying Equations (16) and (17) gives the transcendental equation:

cosh βl cos βl + 1 = 0 (18)

Hence, in Equation (18), βnl represents the nth roots (Eigenvalues) of the transcendental
or frequency equation, thus providing the natural frequencies (ωn) of the vibration:

ωn = (βnl)2

√
IE

Aρl4 , n = 1, 2, . . . (19)

Similarly, the natural frequency (ωn) of the beam in fn (Hz) can be found as follows:

fn =
ωn

2π
(20)

Finally, by manipulating Equations (10), (15) and (16), the corresponding nth mode
shape can be derived:

Wn(x) = (cosh βnx + cos βnx)− cosh βnl + cos βnl
sinhβnl + sin βnl

(sin βnx− sinhβnx) (21)

4. Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) Methodology

Deep neural networks (DNNs) with distinct attributes have played an essential role in
many applications. LSTM-RNN is a type of DNN that has a solid alternative for gradient
vanishing, as well as the regression, classification and prediction of problems because
of its capacity to execute tasks requiring nonlinear relationships compared to conven-
tional methods [40]. Similarly, to approximate the roots of the transcendental equation of
the prismatic cantilever beam, a multi-layered LSTM-RNN network with hidden layers
and hyper-parameters of backpropagation through time is implemented in the proposed
network model. An LSTM-RNN network depends on four primary modules, namely
a memory block and three logistic gates. Specifically, the memory block is an essential
component of the LSTM-RNN model and is used to store the data and this stored data
further flows inside the three (read, write, and forget) gates [38].

Moreover, LSTM operations depend on these gates that execute the functions on a
linear feature of the network inputs and hidden and prior output states. Although LSTM-
RNN can eliminate or add information, which is rigorously controlled by its distinct gates,
there is an alternate data maintenance method. Figure 3 is a block diagram of the LSTM-
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RNN network which depends on the hidden state ht−1 at the previous timestep t − 1 and
ht is the hidden state at the current timestep t, Xt is the input vector at the current time step
t, Ct−1 is the cell state at the previous timestep t − 1, and Ct is the cell state at the current
timestep t [34].
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4.1. LSTM-RNN Model Structure for the Problem

Model structures with multiple training hidden layers are intended to approximate
the roots (Eigenvalues) of the transcendental equation of the prismatic cantilever beam. The
first hidden layer is a 200-neuron LSTM-RNN layer, while the second layer consists of 100
nodes of a completely interconnected opaque layer. Furthermore, for learning parameters,
a tangent hyperbolic sigmoid (tanh sigmoid) is adapted as an activation function to be
computed and is less liable to saturate zero gradients for the network [41]. Input data for
the LSTM-RNN model include features like natural frequency (fn) and beam geometry
characteristics such as a Young’s modulus (E), moment of inertia (I), density (ρ), number
of modes (n) and cross-sectional area (A). In the meantime, the output layer uses the
evaluated roots (βnl) as target data output. In addition, an ADAM optimization algorithm
which combines the heuristics of both Momentum and RMSProp is adapted to enhance
the learning procedure of the network [42]. Similarly, for better accuracy of the predicted
values of target data, mean squared error (MSE) and mean absolute error (MAE) functions
are applied with value of 0.001 identity regression.

4.2. Datasets Generation for the LSTM-RNN Model

Natural frequencies and the corresponding mode shapes of structures must be ob-
tained to minimize the oscillation in the model design. Theoretical modal analysis is concise
for discrete systems but difficult for continuous or multidimensional structure systems.
Many engineering problems may be analyzed effectively using finite element programs
(FEM). For this purpose, the FEM ANSYS has been widely used to resolve complex engi-
neering problems more efficiently and with less time consumption. Therefore, in this study,
datasets are initially generated using ANSYS, which is further used in the LSTM-RNN
model to approximate the transcendental equation roots.



Appl. Sci. 2023, 13, 2887 8 of 16

For this aim, a total of n = 20,000, fn (Hz) datasets of the prismatic beam, having
properties as mentioned in Table 1 with CF boundary conditions, are initially generated.
Afterward, using Equation (19), roots (βnl) of the transcendental equation are numerically
computed based on the obtained fn datasets. Finally, these (fn, βnl) datasets, including beam
parameters (A, I, E, ρ, n) as described in the analysis mentioned above, are used as input
and output target values for the LSTM-RNN model.

Table 2 illustrates the head of input and output datasets used in the proposed LSTM-
RNN model to train and calculate the roots (βnl) approximations for n = 1~10 as an example.
The latter section shows the associated mode forms of the beam transverse vibration for
the first ten natural frequencies.

Table 2. Input and output head datasets for training the LSTM-RNN network for approximating
transcendental roots.

Input Head Datasets Output Head
Datasets

n fn (Hz) γ=
√

EI
ρA

βnl

1 25.1 4.756 1.8764
2 156.6 4.756 4.6869
3 436.1 4.756 7.8213
4 847.6 4.756 10.9039
5 1386.9 4.756 13.9479
6 2141.1 4.756 17.3303
7 3005.3 4.756 20.6002
8 3935.6 4.756 23.4959
9 5035.8 4.756 26.4404
10 6421.1 4.756 30.0118
. . . .
. . . .
. . . .
. . . .

4.3. Evaluation Criteria

Empirical results show that the ADAM as an optimizer executes adequately in relation
to other stochastic optimization techniques [43]. Furthermore, the theoretical concurrence
characteristics of the network model are evaluated using the conventional mean absolute er-
ror (MAE) and mean squared error (MSE) functions [38,44]. Similarly, the network learning
process is not improved if the function value is too small. As a result, the regret constraints
on the convergence rate are equivalent to the results in the field of the optimization method.
Therefore, MAE and MSE functions are used to evaluate the adaptability of the LSTM-RNN
network model.

MSE =
1
n

n

∑
i=1

(
λN − λ̂N

)2
(22)

MAE =
1
n

n

∑
n=1
|λN − λ̂N | (23)

5. Results and Discussion

In this section, the corresponding mode shapes for the first six natural frequencies
of the beam are plotted using ANSYS. Afterward, MATLAB is used to cross-validate
the ANSYS-generated datasets for natural frequencies and root parameters. Finally, the
proposed LSTM-RNN methodology is implemented to approximate the roots of the tran-
scendental equation.



Appl. Sci. 2023, 13, 2887 9 of 16

5.1. FEM ANSYS Simulation

The generated datasets for fn through ANSYS are tabulated in Table 1. Its correspond-
ing modes shapes for the first six natural frequencies, i.e., n = 1~6, as an example, are shown
below. A 3D model of the bar is made first, and an FE model is subsequently generated. The
second step involves applying the CF boundary condition and defining analysis choices,
as illustrated in Figure 4. Later, as shown in Figure 5, the first six natural frequencies and
related modes (n) for the cantilever beam transverse vibration are established.
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5.2. MATLAB Simulation Analysis

This section aims to cross-validate the accuracy of the ANSYS-generated datasets
and numerically computed natural frequency (fn) and root (βnl) values. Although the
trigonometric frequency equation is derived analytically in section II, where the values
of the root need to be evaluated initially to find the values of natural frequencies (fn), the
development of an algorithm to solve the frequency equations based on a trial-and-error
method is proposed. The objective was to find out the roots of the transcendental equation
numerically with the help of the programming environment offered in MATLAB.

For this purpose, an approximate estimation of the lower and upper limits for an
interval comprising the first few roots, i.e., natural frequencies, can be obtained by visualiz-
ing the frequency equation. The roots can then be identified using an incremental search
strategy. The frequency equation can then be solved and the algorithm is derived based
on the change of sign of a function in the vicinity of a possible root. Finally, frequency
Equation (19) is utilized in the MATLAB code containing the root values and the beam
properties mentioned in Table 1; fn in Hz and rad/se are calculated. Moreover, root values
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are utilized for the corresponding theoretical mode shapes for the first six modes based on
Equation (21), as plotted in Figure 6.
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Figure 5. First six mode shapes (n = 1~6) of transverse vibration of a cantilever beam.

Calculated based on the technique mentioned above, the first ten fn and βnl values of
the prismatic beam are mentioned in Table 3. The results show that the natural frequency
(fn) and root (βnl) values are consistent with ANSYS datasets, thereby cross-validating
the results of the numerical approach and generated dataset. In fact, for evaluating the
proposed model performance, valid datasets are essential for testing and training the
model. Numerical results for roots (βnl) are also valid based on the theoretical values of the
transverse vibration of the CF beam case mentioned in [3].
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Table 3. Numerical results using MATLAB.

Modes (n) βnl Freq (rad/s) Freq (Hz)

1 1.8751 157.71 25.1
2 4.6941 987.09 157.1
3 7.8548 2763.34 439.8
4 10.9955 5415.47 861.9
5 14.1372 8952.27 1424.8
6 17.2788 13,373.12 2128.4
7 20.4203 18.678 × 103 2.9727 × 103

8 23.5619 24.867 × 103 3.9577 × 103

9 26.7035 31.941 × 103 5.0835 × 103

10 29.8451 39.898 × 103 6.3500 × 103

The generalized percentage (%) absolute error equation used for comparison purposes
is presented below:

%error =
∣∣∣∣XnSim − XnNum

XnNum

∣∣∣∣× 100 (24)

where XnNum represents the MATLAB numerical values of fn and βnl parameters. Similarly,
XnSim represents the simulated values of fn and βnl from the ANSYS and LSTM-RNN
model, respectively.

Table 4 presents the comparison results with an absolute % error of the first ten
natural frequencies between MATLAB (numerical) and ANSYS (datasets) simulated results.
Figure 7 shows the comparison results using graphical analysis. The results overlap
between each MATALB numerical analysis and ANSYS datasets, thus justifying the cross
validation of the results.
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Table 4. Comparison of MATLAB (numerical) and ANSYS results.

fn (Hz) fn (Numerical) fn (ANSYS) % Error

f 1 25.1 25.1 0.00
f 2 157.1 156.6 0.32
f 3 439.8 436.1 0.84
f 4 861.9 847.6 1.46
f 5 1424.8 1403.9 1.59
f 6 2128.4 2141.1 0.60
f 7 2972.7 3005.3 1.10
f 8 3957.7 3935.6 0.56
f 9 5083.5 5035.8 0.94
f 10 6350.0 6421.1 1.12
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5.3. LSTM-RNN Model Verification

An approximation of the transcendental equation roots of the prismatic cantilever
beam based on the datasets is performed in the proposed LSTM-RNN network. As de-
scribed above, a total of n = 20,000 datasets have been generated for evaluation purposes,
containing input and output data values. The input datasets depend on the parameters of
beams and natural frequencies (fn), while output target datasets contain roots (βnl) of the
transcendental equation. In this study, 80% of datasets are used in the training set, while
the remaining 20% is used for the testing stage.

Figure 8 shows the approximation of transcendental equation roots with 500 epochs.
The proposed model performance is examined in terms of both training accuracy and
training loss with respect to validation accuracy. Hence, from the results, it has been found
that the roots approximation of the prismatic cantilever beam has an accuracy of 96.25%
with a means squared error of 0.063% without an overfitting problem.

Similarly, Figure 9 demonstrates the model performance with 1000 epochs. In this
case, the training model and validation accuracy is over 98.55% with a mean squared error
of 0.042%, respectively.



Appl. Sci. 2023, 13, 2887 13 of 16

Appl. Sci. 2023, 13, 2887 13 of 17 
 

roots (βnl) of the transcendental equation. In this study, 80% of datasets are used in the 

training set, while the remaining 20% is used for the testing stage. 

Figure 8 shows the approximation of transcendental equation roots with 500 epochs. 

The proposed model performance is examined in terms of both training accuracy and 

training loss with respect to validation accuracy. Hence, from the results, it has been found 

that the roots approximation of the prismatic cantilever beam has an accuracy of 96.25% 

with a means squared error of 0.063% without an overfitting problem. 

Similarly, Figure 9 demonstrates the model performance with 1000 epochs. In this 

case, the training model and validation accuracy is over 98.55% with a mean squared error 

of 0.042%, respectively. 

In this study, simulations are performed on Intel Core i-7 with a 1.8 GHz CPU clock 

and 8 GB RAM. Moreover, the Python programming language version 3.7.4 has been used 

to implement the LSTM-RNN model. 

  

Figure 8. Validation accuracy vs. training loss and training accuracy results with 500 epochs. 

  

Figure 9. Validation accuracy vs. training loss and training accuracy results with 1000 epochs. 

5.4. Comparative Analysis 

In this section, a comparative analysis is performed to show the validity of the 

proposed methodology. The first ten transcendental equation roots (βnl) values, i.e., n = 

1~10, have been evaluated as an example. The following is the step-by-step procedure for 

comparative analysis: 

• Frequency (fn) datasets, based on the prismatic cantilever beam properties mentioned 

in Table 1, are generated using FEM ANSYS. 

Figure 8. Validation accuracy vs. training loss and training accuracy results with 500 epochs.

Appl. Sci. 2023, 13, 2887 13 of 17 
 

roots (βnl) of the transcendental equation. In this study, 80% of datasets are used in the 

training set, while the remaining 20% is used for the testing stage. 

Figure 8 shows the approximation of transcendental equation roots with 500 epochs. 

The proposed model performance is examined in terms of both training accuracy and 

training loss with respect to validation accuracy. Hence, from the results, it has been found 

that the roots approximation of the prismatic cantilever beam has an accuracy of 96.25% 

with a means squared error of 0.063% without an overfitting problem. 

Similarly, Figure 9 demonstrates the model performance with 1000 epochs. In this 

case, the training model and validation accuracy is over 98.55% with a mean squared error 

of 0.042%, respectively. 

In this study, simulations are performed on Intel Core i-7 with a 1.8 GHz CPU clock 

and 8 GB RAM. Moreover, the Python programming language version 3.7.4 has been used 

to implement the LSTM-RNN model. 

  

Figure 8. Validation accuracy vs. training loss and training accuracy results with 500 epochs. 

  

Figure 9. Validation accuracy vs. training loss and training accuracy results with 1000 epochs. 

5.4. Comparative Analysis 

In this section, a comparative analysis is performed to show the validity of the 

proposed methodology. The first ten transcendental equation roots (βnl) values, i.e., n = 

1~10, have been evaluated as an example. The following is the step-by-step procedure for 

comparative analysis: 

• Frequency (fn) datasets, based on the prismatic cantilever beam properties mentioned 

in Table 1, are generated using FEM ANSYS. 

Figure 9. Validation accuracy vs. training loss and training accuracy results with 1000 epochs.

In this study, simulations are performed on Intel Core i-7 with a 1.8 GHz CPU clock
and 8 GB RAM. Moreover, the Python programming language version 3.7.4 has been used
to implement the LSTM-RNN model.

5.4. Comparative Analysis

In this section, a comparative analysis is performed to show the validity of the pro-
posed methodology. The first ten transcendental equation roots (βnl) values, i.e., n = 1~10,
have been evaluated as an example. The following is the step-by-step procedure for
comparative analysis:

• Frequency (fn) datasets, based on the prismatic cantilever beam properties mentioned
in Table 1, are generated using FEM ANSYS.

• The Euler–Bernoulli Equation (19) is then employed to generate transcendental equa-
tion roots (βnl).

• For the cross-validation of datasets, fn and βnl values are calculated numerically using
the MATLAB programming platform.

• Based on the input and output target datasets, transcendental roots (βnl) values are
predicted using the LSTM-RNN model.

• Finally, the transcendental roots (βnl) values are compared among ANSYS (datasets),
MATLAB (numerical) and the proposed LSTM-RNN model.
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The predicted βnl parameter values based on the LSTM-RNN model are tabulated
in Table 5 with a comparative analysis in terms of absolute % error. The βnl results are
obtained based on 98.55% accuracy, described in the analysis mentioned above.

Table 5. Comparative analysis of the transcendental roots (βnl).

Modes
(n)

βnl
(Numerical)

βnl
(ANSYS) % Error βnl

(Numerical)

βnl
(LSTM-
RNN)

% Error βnl
(ANSYS)

βnl
(LSTM-
RNN)

% Error

1 1.8751 1.8764 0.07 1.8751 1.8505 1.31 1.8764 1.8505 1.38
2 4.6941 4.6869 0.15 4.6941 4.6265 1.44 4.6869 4.6265 1.29
3 7.8548 7.8213 0.43 7.8548 7.7406 1.45 7.8213 7.7406 1.03
4 10.9955 10.9039 0.83 10.9955 10.8565 1.26 10.9039 10.8565 0.43
5 14.1372 13.9479 1.31 14.1372 13.9674 1.20 13.9479 13.9674 0.14
6 17.2788 17.3303 0.30 17.2788 17.3113 0.19 17.3303 17.3113 0.11
7 20.4203 20.6002 0.88 20.4203 20.4141 0.47 20.6002 20.4141 0.85
8 23.5619 23.4959 0.28 23.5619 23.3825 0.34 23.4959 23.3825 0.48
9 26.7035 26.4404 0.99 26.7035 26.6837 0.82 26.4404 26.6837 0.92

10 29.8451 30.0118 0.56 29.8451 29.9538 0.36 30.0118 29.9538 0.19

Table 5 shows that % errors are minimal when a comparison is made between analytical
and ANSYS results. The lowest and highest % errors for βnl are 0.07% and 1.31% for n = 1
and 5, respectively. On the other hand, compared with analytical and ANSYS βnl results,
the proposed LSTM-RNN methodology shows a slightly higher % error, but the highest
error is still less than 1.5%.

In fact, it is a more complex and time-consuming process to find a large number
of transcendental roots for different beam modes (n) through conventional or analytical
methodologies. At the same time, the proposed LSTM-RNN methodology based on
ANSYS datasets provides an efficient and simple approach for approximating the roots
of the transcendental equation. From the results, it is also concluded that the model
accuracy can be further improved by increasing (1) the number of epochs and (2) input
and output datasets but at the cost of an increased execution time and a higher demand of
system resources.

6. Conclusions

In this study, the root (Eigenvalues) of the transcendental equation of the prismatic
steel beams under the clamped free boundary condition are approximated through the
proposed LSTM-RNN network. The conclusion of the paper is summarized below:

1. Based on the beam parameters and boundary conditions, natural frequencies (fn)
datasets are initially generated using the finite element method (FEM) ANSYS soft-
ware. Then, using the fundamental Euler–Bernoulli theory, transcendental root (βnl)
datasets are produced for implementation in the LSTM-RNN model.

2. An algorithm has been developed to cross-validate the datasets which uses the MAT-
LAB programming platform to find the roots and natural frequencies numerically.
The βnl parameter results show consistency with conventional theoretical values.
Moreover, the modes shapes for the first six natural frequencies, as an example, have
been plotted using ANSYS and MATLAB simulation software.

3. Finally, a comparative analysis between ANSYS (datasets), MATLAB (numerical) and
the proposed LSTM-RNN methodology has been performed in terms of percentage
(%) MAE and MSE. Although the result shows that the % error is slightly higher than
the numerical solution, the performance can be improved by increasing the number
of datasets and system resources.

4. The proposed LSTM-RNN method aims to develop an alternative way to find the
roots of transcendental or frequency equation based on datasets and beam parameters,
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thereby avoiding complexity and time loss in evaluating the beam system with a large
number of transverse modes n.

In future research, we will consider the case of finding the roots for the transcendental
equation under different beam characteristics and with different boundary conditions.
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