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Featured Application: The research offers a description of the nature of the excited vibrations of
rotors equipped with squeeze film dampers. The achieved results are particularly applicable in
the field of high-speed rotating machines.

Abstract: The article deals with the computational study of the rigid rotor coupled with squeeze film
dampers. Various techniques such as the method of computation of the synchronous response with a
circular centred orbit, the harmonic balance method, and the direct time integration method are used
to analyse the nonlinear behaviour of the rotor system. The results indicate that the rotor system can
exhibit both a synchronous circular response with a large orbit radius and a nonsynchronous response
with a quasiperiodic character. However, both responses are undesirable in rotating machinery and
should be avoided. The new results are presented to provide insight into the impact of initial
conditions on the vibration response via basins of attraction. The simulations show that: (i) the
basins of attraction are more sensitive to the choice of the initial velocities than displacements, (ii) the
basins of attraction are noticeably dependent on the rotor speed in the region of a nonsynchronous
response, and (iii) the border between the basins of attraction can be smooth or without a clear
structure. The research brings clear conditions defined by parameters such as the dimensionless SFD
constant, unbalance, and rotational speed for the suppression of undesirable nonlinear phenomena.
The results suggest that the damper can effectively improve the vibration response of high-speed
rotating machinery, but its design must be chosen appropriately.

Keywords: rigid rotor; short squeeze film damper; vibration stability analysis; basins of attraction;
origination of nonsynchronous response

1. Introduction

For many decades, squeeze film dampers (SFDs) have been successfully employed in
high-speed turbomachinery to reduce excessive vibrations caused by unbalance. In SFDs, a
thin lubricant film is squeezed between two non-rotating surfaces, creating pressure and a
resulting reaction force that dampens the vibrations of the rotor.

The SFD is equipped with an elastic suspension concept through the squirrel cage
springs. To maintain the position of the rotor journal in the centre of the damper clearance
during rest, a suitable preload is applied through a retaining spring. As a result of the
unbalance force generated by the rotor during operation, the precession motion can exhibit
a circular centred orbit. The arrangement of the squirrel cage springs, the operating
conditions of SFD, and its dynamic behaviour are investigated with various computational
methods based on the theory of lubrication and are also obtained by experimental works,
as described in [1,2].
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SFDs are the topic of numerous research works due to their nonlinear behaviour,
namely, jump phenomena, bistable operation, and nonsynchronous motion, which have
been investigated both theoretically and experimentally in [3–12]. The nonsynchronous
motion can accelerate rotor failure due to alternating bending stresses, while the bistable
operation can increase the transmitted forces to the foundation and the radiated noise. In
dampers with narrow clearance, abrupt changes in operational speeds or technological
forces can induce conditions for which the damper was not designed. As a consequence,
the vibration response may exhibit a large orbit and lead to contact between the journal
and the housing.

The researchers [1–20] have paid significant attention to the observation of various
types of nonsynchronous responses, such as subsynchronous, super-subsynchronous,
quasiperiodic, and chaotic, through both experimental and computational methods. The
nonlinear effects of SFD were studied by Chen et al. [16] that developed the mathematical
model of a rigid rotor with consideration of the fluid inertia influence. The bifurcation
behaviour of the rotor was analytically solved with the averaging technique and C-L
method only near the resonance. The three different regimes of the frequency response
curve were found. Similarly, the work [21] deals with the flexible rotor discretised with finite
elements. The steady-state and transient vibration response was numerically computed by
the time integration. The results, however, do not demonstrate the nonlinear phenomena
in the rotor response. Recent work [22] investigates a circular centred orbit with a small
amplitude of the finite length SFD. The pressure distribution is numerically computed, and
the achieved results are compared with the analytical predictions. A closed-form expression
of the oil forces using the momentum approximation method and the perturbation method
is employed in the work [23], by the same authors. Moreover, Chen et al. in paper [13]
consider harmonic base excitation in the computational model and showed that an increase
in frequency can change the synchronous response to an irregular one.

As a result of technological constraints or manufacturing imprecision, the rotor disc
may be mounted asymmetrically on the shaft, or varying support stiffness may be employed
at each support. This leads to the gyroscopic effect, which causes the splitting of rotor mode
shapes as the rotational speed increases. The bifurcation analysis using singularity methods
is conducted in the study [4], which focuses on the behaviour of a rigid rotor with an
asymmetrical spring stiffness support of SFD. The results directly provide the parameters
to avoid harmful phenomena caused by the nonlinear coupling between the translational
and precessional motion of the asymmetrical rotor. In contrast, the nonlinear vibration
response of a rotor system with a massless flexible shaft in [3] was determined using the
multiple harmonic balance method (HBM) and fourth-order Runge-Kutta method. The
study investigates the dynamics of a simplified aircraft engine rotor that is supported by
SFD and subjected to two harmonic forces.

The contribution [24] shows that undesirable subharmonic or quasiperiodic vibrations
can occur in the vibrational response of a rigid rotor with asymmetric stiffness of the
centralizing spring. The results are provided for a fixed value of the nondimensional
damper design parameter. Shaik and Dutta [25] proposed an analytical approach and
a simple iterative method for evaluating the stability threshold of rotors mounted in
hydrodynamic bearings with SFDs. The vibration stability of the rigid and flexible rotor
models was assessed with a linearized motion equation. The dependency of the viscosity
on temperature was considered and the hydraulic force was expressed with the short
bearing assumption. In the paper [26], the same authors present an analytical prediction for
the optimum passing through the bending critical speeds of the flexible rotor with the SFD.
Optimum damping parameters for the retainer spring, shaft stiffness, rotor and damper
mass has been found.

The new SFD design has been introduced [27–32] to improve vibration response and
mitigate undesirable nonlinear behaviour, however, it may still occur.

In this article, the rigid unbalanced rotor coupled with SFDs is studied by means of
numerical simulations. It addresses the issues of multiple responses and the presence of an
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isolated branch in the frequency response curve. Moreover, in the region of the isolated
solution, an undesirable vibration response can be induced due to the effect of hydraulic
forces. Particularly at high rotational speed, it can lead to large orbits and cause impacts in
a narrow damper clearance. As a result, additional stress is induced, which can significantly
reduce the lifespan of the rotor system. A preliminary investigation of these topics was
conducted by authors Li and Taylor in [33].

The achieved numerical results provide new insight into: (i) the basins of attraction
of the studied system, (ii) the circumstances of the arise of nonsynchronous vibration,
and (iii) the location specification of the isolated solution, as a function of design and
load parameter.

2. Equation of Motion for the Investigated Rotor

The studied rotor system consists of a massive shaft that is mounted at both ends
within two SFDs with centring springs. The configuration of the rotor system is illustrated
in Figure 1. The origin of the stationary coordinate system xyz lies in the centre of the rotor.
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Figure 1. Scheme of the rigid rotor mounted in SFDs.

The rotor is considered as absolutely rigid and rotates with a constant angular speed.
SFDs with squirrel cage springs are arranged symmetrically with respect to the central
plane. The rotor is excited by an unbalance force. The effect of gravity is mitigated by
prestressing the centring springs. In addition to SFD damping, the rotor is also affected
by external damping from the environment. It is assumed that the damping is linear and
proportional to the velocity. The damping force always acts in the opposite direction to the
oscillations.

By employing the Lagrange equations of the second kind and under the defined
assumptions, the lateral vibrations are governed by a set of two nonlinear equations
of motion

M
..
q + C

.
q + Kq = fD

(
q,

.
q
)
+ fA (1)

M =

[
m 0
0 m

]
, C =

[
b 0
0 b

]
, K = 2

[
k 0
0 k

]
, (2)

where M, C, and K are the mass, external damping, and stiffness matrix of the rotor system.
The elements of the matrices are specified by the parameters of the rotor mass m, damping
coefficient b, and stiffness k of the single squirrel cage spring.

The nonlinear force generated by SFD is represented by the horizontal FDy and vertical
FDz force components, which are arranged into the vector fD of the hydraulic damp-
ing forces

fD
(
q,

.
q
)
= 2

[
FDy
(
y, z,

.
y,

.
z
)

FDz
(
y, z,

.
y,

.
z
)]. (3)

The vector q is composed of the horizontal and vertical displacements, y and z

q =

[
y
z

]
,

.
q =

[ .
y
.
z

]
,

..
q =

[ ..
y
..
z

]
, (4)

where (·) and (··) denote the first and second derivatives with respect to time, respectively.
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The unbalance force, the gravity force, and the constant preload force FPS of the
centring springs are included in the vector fA of the applied forces:

fA =

[
meGω2 cos(γ + β)

meGω2 sin(γ + β)−mg + 2FPS

]
, (5)

where g is the gravity acceleration, ω is the angular speed of the rotor rotation, eG and β is
the eccentricity and phase shift of the rotor unbalance, respectively, and γ represents the
angular position of the line connecting the rotor and the journal centres.

The kinematic parameters of the rotor system under load are illustrated in a simplified
cross-section view in Figure 2. Point G denotes the centre of gravity of the rotor. Point O
denotes the centre of the damper sleeve and lies in the centre of the yz plane. The point OJ
is the centre of the journal with a radius of R, and it is located on the r-axis of the rotating
coordinate system tr, which have the origin located in point O. Additionally, a coordinate
system with XYZ axes is introduced for computation of the hydraulic forces in the oil film.
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Figure 2. Scheme of SFD geometry with the definition of reference frames.

The circular centred orbit of the synchronous precession motion is depicted in Figure 2
by the blue dashed line. In this case, the damper eccentricity e is a constant and the time
derivation of the angular position γ is equal to the angular speed of the rotor rotation.

3. The Hydraulic Forces in SFD

To express the components of the hydraulic forces in SFD, the following assumptions
are used:

1. the pressure distribution in the damper is governed by the Reynolds equation for the
short damper approximation, which is valid when the ratio of the damper length to
the damper diameter is less than 0.5 (meaning that the flow in the circumferential
direction is negligible),

2. the pressure distribution is axially symmetric,
3. the pressure boundary conditions are set to zero at the ends of the damper,
4. the computation of the hydraulic forces considers the phenomenon of cavitation,

using the π-film or Gumbel condition, and
5. the assumptions of the classical theory of lubrication (see [34]).

Under these assumptions, the pressure p in the thin lubrication film is described by
the relation

p(Z) =
6η

c2

[ .
ε cos(ϕ− γ) + ε

.
γ sin(ϕ− γ)

]
[1− ε cos(ϕ− γ)]3

(
Z2 − L2

4

)
, (6)

where η is the dynamic viscosity of an oil, L is the damper length. The axial coordinate
Z and circumferential position ϕ in the oil film is defined, as indicated in Figure 2. The
relative eccentricity ε is the ratio of the rotor eccentricity e and the width of the damper gap
c in the centric position
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ε =
e
c
=

√
y2 + z2

c
and

.
ε =

.
e
c
=

.
y cos(γ) +

.
z sin(γ)

c
. (7)

In the rotating frame, the radial FDr and tangential FDt components of the hydraulic
force are obtained by double integration of the pressure distribution (6) around the circum-
ference and along the axial direction of the lubrication layer. The literature [34,35] considers
the π-film cavitation and provides closed-form expression

FDr = −
ηRL3

c2

[
π

2
1 + 2ε2

(1− ε2)
5
2

.
ε +

2ε

(1− ε2)
2 ε

.
γ

]
, FDt = −

ηRL3

c2

[
2ε

(1− ε2)
2

.
ε +

π

2
1

(1− ε2)
3
2

ε
.
γ

]
. (8)

The force components (8) are inserted into the equation of motion set up in the
stationary reference frame (1) using a simple transformation stated in [6].

A summary of all the physical and geometric quantities used in the investigation is
provided in Table 1. The external damping coefficient b is listed in the description of the
relevant results.

Table 1. Parameters of the rotor and SFD.

Name Symbol Value Dimension

Rotor mass m 285 kg
Stiffness of the single squirrel cage spring k 25 MN

Balance quality grade according to ISO 1940-1 Q 6.3 -
Gravity acceleration g 9.81 m s−2

Dynamic viscosity of the oil ISO VG 46 η 0.03 Pa s
Damper length L 20 mm
Damper radius R 25 mm

Width of the damper gap c 100 µm
Dimensionless unbalance δ 0.3 -

Dimensionless SFD constant λ 0.0503 -

4. Methods Used to Solve the Equation of Motion

The nonlinear hydraulic force depends on kinematic parameters and couples the
vibration in the horizontal and vertical directions. As a result, the equation of motion (1)
cannot be analytically solved, and numerical approaches must be employed.

According to the literature, the numerical solution of the response curve may encounter
problems, as identified by other researchers [5–7,16–20] and through our own computa-
tional experiences. These problems are related to: (i) the presence of regions of multiple
solutions, (ii) the hysteresis phenomenon due to the dependence of the damping force
on the sweep direction of the rotational speed, (iii) the phenomenon of the disconnected
branch of the response curve (also called isolated solution [5]), (iv) the ability of the time
integration methods to compute both nonsynchronous [5,33] and stable synchronous [5–8]
solution, (v) the possibility to compute both stable and unstable solution branches with
methods using series approximation [6,7,36,37], and (vi) the sensitivity of the response to
the choice of initial conditions or initial estimates of the solution.

Various methods for the solution and analysis of the nonlinear equation of motion
(1) can be employed, each with its advantages, disadvantages, and limitations. To under-
stand the vibration response behaviour of the rotor equipped with SFDs, the method of
computation of the synchronous response with a circular centred orbit, HBM combined
with continuation technique, and the time integration method were employed.

In literature [7,38] the shooting method, the trigonometric collocation method, and
others are used to determine the steady-state solution.

4.1. Computation of the Synchronous Response with a Circular Centred Orbit

In the case of a rotor system, which is not subjected to a constant force and performs
a circular motion around the centre position at the same frequency as the rotor rotational
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speed, this method can be used. It is a powerful technique when applied to the rigid and
Jeffcott rotor models, as it requires minimal computational effort.

To determine the vibration response, the equations of motion (1) in the fixed coordinate
system are transformed into the dimensionless form [8] in the rotating coordinate system

ε′′ + 2ζε′ − εγ′2 + ε = δΩ2 cos(β) + FDr + FE sin(γ), (9)

εγ′′ + 2ζεγ′ + 2ε′γ′ = δΩ2 sin(β) + FDt + FE cos(γ). (10)

The relations for the damping ratio ζ, the dimensionless mass unbalance δ, the dimen-
sionless expressions for the external force FE, radial FDr, and tangential FDt component of
the damper force are introduced:

ζ =
b

2
√

2km
, δ =

eG

c
, FE =

2FPS −mg
mcω2

n
, FDr =

2FDr

mcω2
n

, FDt =
2FDt

mcω2
n

. (11)

The dimensionless speed Ω and time τ are defined with the natural frequency ωn

Ω =
ω

ωn
, τ = ωnt, ωn =

√
2k
m

, (12)

and the first (′) and second (′′) derivatives with respect to the nondimensional time have
the following form:

ε′ =
dε

dτ
=

.
e

cωn
, ε′′ =

..
e

cω2
n

, γ′ =
dγ

dτ
=

.
γ

ωn
, γ′′ =

..
γ

ω2
n

. (13)

By introducing the nondimensional SFD constant [8]

λ =
ηR√
2km

(
L
c

)3
, (14)

four parameters (η, L, R, c) describing the hydraulic force can be reduced into one. This
further simplifies the equations of motion in Equations (9) and (10) and reduces the number
of physical parameters. The value of the dimensionless SFD constant and unbalance of the
investigated rotor is listed in Table 1.

The following conditions for the steady-state motion are assumed: (i) the circular orbit
has a constant relative eccentricity ε = εC, hence ε′C = ε

′′
C = 0, (ii) the angular position

γ = γC = Ωτ, therefore γ′C = Ω and γ
′′
C = 0, and (iii) the damper is perfectly centred

FE = 0. As a result, the nondimensional equations of motion in Equations (9) and (10) in
the rotating frame are reformulated as a nonlinear algebraic equation(

ε2
C − δ2

)
Ω4 +

(
4ζ2ε2

C − 2ε2
C + 2εCFDr

)
Ω2 − 4ζεCFDtΩ + ε2

C − 2εCFDr + F2
Dr + F2

Dt = 0, (15)

where the dimensionless components FDr and FDt of the hydraulic force are a function of
the dimensionless parameters.

In the case of the short damper approximation, the components of hydraulic force
in Equation (8) are expressed in a closed form. The nonlinear algebraic Equation (15) can
be transformed into a fourth-order polynomial. The promise of this method lies in the
transformation of the differential Equations (9) and (10) into a polynomial with coefficients
that are functions of the relative eccentricity.

As outlined in Equation (15), the steady-state response is described by five parameters:
the relative eccentricity εC, damping ratio ζ, the dimensionless mass unbalance δ, speed
Ω, and SFD constant λ. The solution for Ω is found by determining the real roots of the
polynomial equation within the range of rotor eccentricity 0 < εC < 1. The clockwise and
counterclockwise directions of the rotor rotation are defined by the positive and negative
roots of the dimensionless speed.
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The set of trigonometric Equations (16) and (17) defines the phase shift of the unbalance
βC, which is expressed from the equations of motion (9), (10) under the assumption of a
circular orbit and steady-state motion

cos(βC) =
εC − εCΩ2 − FDr(εC, Ω, λ)

δΩ2 , (16)

sin(βC) =
2ζεCΩ− FDt(εC, Ω, λ)

δΩ2 . (17)

4.2. Harmonic Balance Method

The HBM uses truncated Fourier series for solving the nonlinear differential equations
by approximating the steady-state solution [36,37] with a finite number of harmonic terms
with amplitude coefficients and frequencies.

The HBM involves approximating [36] the vectors of unknown kinematic parameters
q,

.
q,

..
q, the vector of nonlinear hydraulic forces fD

(
q,

.
q
)
, and the vector of external forces

fA in the equation of motion (1) with the terms of Fourier series:

q(t) =
N

∑
n=1

~
qnei(nω/v)t, fD(t) =

N

∑
n=1

~
fDnei(nω/v)t, fA(t) =

N

∑
n=1

f̃Anei(nω/v)t, (18)

where
~
qn,

~
fDn, and

~
fAn are Fourier coefficients of the amplitude vector of the displacements,

hydraulic, and external forces. The number of harmonic terms is denoted N, the imaginary
unit is i, and the optional integer parameter v allows to accommodate possible subharmonic
multiples of the rotor rotational speed ω.

By substituting relations (18) into the equation of motion (1), a set of nonlinear alge-
braical equations is obtained:

~
K

~
qn =

~
fDn

(~
qn

)
+

~
fA, (19)

where the matrix of dynamical stiffness
~
K have the form

~
K =

[
−
(nω

ν

)2
M + i

nω

ν
C + K

]
. (20)

The nonlinear set of algebraical equations (19) is solved for the unknown Fourier
coefficients by the Newton-Raphson like method. In each iteration step, the Alternating
Frequency-Time Scheme [37] is used to approximate the displacements in the time domain
and evaluate the nonlinear force.

The stable and unstable vibration response is determined by means of the continuity
technique. The computational procedure uses a predictor-corrector method called the arc
length method.

In the corrector step, the nonlinear algebraical Equation (19) is parameterized with an
additional equation [38]

(q− q0)
T(q− q0) + (ω−ω0)

2 = s2, (21)

where s is the arc-length parameter, q and ω are values in the current step, and q0 and ω0 de-
note values from the previous continuation step. The predictor step uses a secant predictor,
where guess values for the following step are extrapolated from the two previous steps.

The set of nonlinear equations (19) and the parametrization condition, Equation (21),
often have elements with different orders of magnitude and appropriate scaling [37] should
be applied.

The vibration stability of the approximated solution in relations (18) is assessed by the
application of Floquet theory on the perturbed equations of motion [39,40]. The vector of
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nonlinear hydraulic forces fD
(
q,

.
q
)

is expanded into the Taylor series in the neighbourhood
of the phase trajectory with omitting the higher terms:

fD(q + ∆q, q̇ + ∆q̇) = fD(q, q̇) + JK∆q + JC∆q̇ (22)

JK
(
q,

.
q
)
=

∣∣∣∣∣∂fD
(
q,

.
q
)

∂q

∣∣∣∣∣q = ∆q,
.
q = ∆

.
q

, JC
(
q,

.
q
)
=

∣∣∣∣∣∂fD
(
q,

.
q
)

∂
.
q

∣∣∣∣∣q = ∆q,
.
q = ∆

.
q

, (23)

where JK, JC are Jacobi matrices of partial derivations and ∆q, ∆
.

q, are the vectors of
deviations of displacements and velocities, respectively.

From the perturbed equation of motion [40], one can subtract the equation of motion
of the unperturbed motion (1) and the final form of the kinematic deviations in the state
space is expressed in the form[

∆
..
q

∆
.
q

]
=

[
−M−1(C− JC) −M−1(K− JK)

I O

][
∆

.
q

∆q

]
(24)

where I, O are the unity and zeros matrices, respectively.
The elements of Jacobi matrices (23), assembled for the steady-state response are

periodic functions of time, the same as the state space matrix in Equation (24). As a
result, Floquet theory uses the concept of the transition matrix [38–41] to examine vibration
stability. If all eigenvalues of the transition matrix are located inside the unit circle, the
steady-state response is stable. The type of instability is determined by the location of the
eigenvalues crossing the unit circle [7,38].

For the calculation of the vibration response and its stability assessment, the authors
of the article developed original computational procedures, as described in the paper [42].
Procedures were verified on a small mechanical system with cubic nonlinearity and a rotor
system with SFDs with hundreds of degrees of freedom.

4.3. The Time Integration Method

The time integration methods are used to solve the nonlinear equations of motion
(1) for both transient and steady-state responses. Unlike the HBM, these methods do not
require assumptions about the frequency spectra of the computed response or the type of
journal motion. However, the time integration is more time-consuming than using other
presented methods.

In the rotor response, multiple solutions can coexist over a certain range of speeds and
the time integration can determine only the stable branch of a solution. The time integration
method can be employed to assemble basins of attraction, which describe the long-time
behaviour of the response for various sets of initial conditions.

The explicit Runge-Kutta (4,5) formula, implemented as the Dormand-Prince algo-
rithm in the MATLAB software [43], was used. The time integration was set to a level of
precision where reducing the time stepper to half did not result in a noticeable change
in the determined response. The steady-state response computed by other methods was
verified by the time integration method.

5. Computational Simulation Results and Discussion

The results are organized into four sections. The first section deals with the investiga-
tion of the effect of damping forces on the steady-state response under the assumption of
circular centred orbit. Both stable and unstable synchronous responses are identified. The
second section describes the nonsynchronous response and the conditions of its emergence.
The third section provides basins of attraction to demonstrate the effect of the choice of
the initial conditions on the response character. Finally, the fourth section deals with the
presence of isolated solutions in the frequency response and provides information on the
regions where they occur.
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5.1. The Synchronous Response and the Stability Assessment

The frequency response curve for the investigated rotor is depicted in Figure 3. The
response curve is composed of two discontinuous curves and shows the behaviour of the
system with stiffening properties. One can observe that the nonlinear hydraulic forces have
the dominant effect in the region of resonance. The resonant peak is shifted and bent in the
direction of increasing rotational speed. There are regions of multiple solutions for a single
rotational speed, indicating unstable branches of the frequency response curve. Hysteresis
behaviour is also present for the increasing/decreasing rotational speed.
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Figure 3. Frequency response curve (a) and detail of the isolated part (b); borders of regions are
denoted by the red dashed lines and u, m, and l denote the upper, middle, and lower branches.

The three critical points divide the response curve into four regions denoted as A,
B, C, and D. In Figure 3, the points are displayed as green circles. According to Floquet
theory [38], the bifurcation points are of the saddle-node type, see Figures 4 and 5.
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Figure 5. Dependence of the module of eigenvalues of the transition matrix on the different values of
the nondimensional SFD constant and unbalance.

In region A, the response of the rotor exhibits a circular orbit, and the vibration of
the rotor is stable, as determined by Floquet theory. In region B, three different circular
orbits are possible. Both orbits with the largest and smallest eccentricity are stable, while
the branch in between represents an unstable response and is marked by a dashed line.
The following region C has only a single stable solution. In the last region, denoted as D,
multiple solutions appear. The solution with large eccentricity is isolated and its detailed
view is depicted in Figure 3b. The isolated solution arises at the saddle-node point at a
certain angular speed value and has two branches. The vibration response is unstable for
the lower branch, denoted by the dashed line.

The blue curve in Figure 3 was obtained from the solution of the nonlinear algebraic
Equation (15) derived with the assumption of a synchronous circular orbit. The steady-state
response, marked with the “+“ symbol, was obtained by the direct time integration and
the red “x“ symbol denotes the solution provided by the HBM combined with the arc
length method.

The equations of motion (1) were solved using the MATLAB software environment.
The time integration was performed using the ode45 routine [43] with the relative and
absolute tolerance [43] set to 1·10−12 and 1·10−15, respectively. The calculation was done
with an upward and downward sweep of the rotational speed. In Figure 3, the direction
of the sweep is indicated by black and green arrows. The initial conditions for the current
sweep step were obtained from the previous step. The form of the obtained response curve
demonstrates that the direct time integration method is not suitable to compute unstable
branches, as depicted in Figure 3.

The HBM, combined with the use of arc length continuation, was able to identify
both stable and unstable regions. The isolated solution was identified by setting the initial
conditions near the searched solution. The response was explored using 8 harmonic terms,
a 10x oversampling factor, and an arc length parameter of 1 × 10−2. The norm of the
relative solution error was found to be less than 7 × 10−14 across the investigated range of
rotational speed.

It has been confirmed that all applied methods for identifying the response converge
to the same solution. However, the methods differ in terms of computational and time
effort, where time integration is the most expensive.

Figure 4 displays the dependencies of the real (Figure 4a) and imaginary (Figure 4b)
parts of the largest eigenvalue of the transition matrix on the nondimensional speed. The
saddle-node bifurcation was identified as the real part of the leading eigenvalue crossing
the unit circle in the location of the positive real axis. The variation of the maximum
module of the eigenvalues on the nondimensional speed is depicted in Figure 5a,b. It is
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evident that the unstable response occurred when the largest eigenvalue modulus exceeds
unity. Figure 5b illustrates the situation when the isolated solution almost connects to the
resonance peak. The actual connection occurs for the nondimensional unbalance value of
0.417315.

The qualitative changes in the response curves as a result of varying the nondimen-
sional unbalance are depicted in Figure 6a. The computations were carried out for SFD
with the nondimensional constant of 0.25. As the unbalance increases, the isolated solution
gets closer to the resonant peak, and at a value of 0.417315, it connects to the resonant
peak. In the vicinity of this point, the nonlinear forces have the strongest influence on the
response. In case of large unbalance, the journal can exhibit synchronous response with a
circular orbit with an eccentricity close to the damper clearance.
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In Figure 6b, the bent of the resonance peak towards the higher rotational speeds
is shown for the higher value of the dimensionless unbalance of 0.7. Additionally, the
shift of the isolated solution to much higher rotational speeds is demonstrated for a small
unbalance value of 0.2.

5.2. The Nonsynchronous Response

The simulations show that the rotor system with SFDs can exhibit not only a syn-
chronous response with a circular orbit but also a nonsynchronous response. The direct
time integration method of the equation of motion (1) must be used to compute this type of
response. In Figure 7, the blue curve denotes the nonsynchronous response computed at
the nondimensional angular speed of a value of 8.7. The black curve represents the contour
of the damper clearance, and the red curves illustrate the circular orbits.

The behaviour of the computed response is assessed with the Poincaré section, which
consists of intersection points of the trajectory with a section plane at the time period. These
points are determined at constant time intervals, corresponding to the period of excitation
force. In Figure 7, the points of the Poincaré section are drawn with a green colour. The
Poincaré section is constructed for the time history of displacements over 6000 times the
period of the excitation force and the region of the plotted trajectory is filled with a curve
of blue colour. The resulting set of intersection points in the Poincaré section appears as a
continuous closed curve. Therefore, it can be assumed that the nonsynchronous motion
has a quasiperiodic character.

The time history of the displacement in the horizontal direction of the nonsynchronous
motion at a nondimensional angular speed of 8.7 is shown in Figure 8. The dependence in
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Figure 8a is plotted for the time of 40 excitation periods and Figure 8b shows a detailed
view. The time dependences exhibit a typical quasiperiodic motion.
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Figure 8. Time history of the displacement in the horizontal direction of the nonsynchronous motion
(a) and the detailed view (b).

The frequency components calculated from the time history using the discrete Fourier
transform (DFT) are shown in Figure 9. The response includes the rotational frequency
f1 = 1 (in the nondimensional form), a subharmonic component f2 = 0.2974, and several of
their difference frequencies. The response is a combination of two independent motions,
with the ratio of their frequencies being an irrational number.

The trajectory in the state space with the Poincaré section is presented in Figure 10.
In Figure 10a, a case with a nondimensional speed of 8.5328 is shown, when the nonsyn-
chronous vibrations occur. Figure 10b depicts the case for a speed value of 10, which is at
the end of the investigated region. The kinematic parameters are plotted in the state space
for the duration 6000 times the excitation period long. The individual trajectories cannot
be clearly distinguished because the envelope of the trajectory is filled with blue curves in
Figure 10.
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Figure 10. The state space with the Poincaré section (denoted with green points) for the nondimen-
sional speed of 8.5327 (a) and 10 (b).

The frequency response curve and the bifurcation diagram of the nonsynchronous
response are drawn in Figure 11. The points of the bifurcation diagram are plotted with the
blue circle symbols.

The direct time integration with zero initial conditions was used for computing a
nonsynchronous response. The integration was performed with a very fine nondimensional
speed step in the vicinity of the origin of the nonsynchronous response. It was found
that the origin of the nonsynchronous response occurs in the interval 8.5322–8.5327 of
nondimensional speed and has a quasiperiodic character.

Contrary to the results of Li and Taylor [33], the occurrence of the nonsynchronous
vibrations was detected only in the D region of the frequency response curve (see Figure 3)
and was not detected in the C region.
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Figure 11. The frequency response of the synchronous motion and the bifurcation diagram (a) and
detail of the bifurcation diagram near the origin of the nonsynchronous response (b).

5.3. The Basins of Attraction

The solution type of the response is determined by the choice of initial conditions. The
response is calculated using the direct time integration method.

Unless otherwise specified, the initial conditions for velocities are set to zeros. The
initial displacements are selected from the set of points evenly distributed in the damper
clearance up to 98% of its size. Figures 12, 13b and 14b are constructed of approximately
8000 points of the initial displacement values. A comparison of a coarser and a finer mesh
of points for the construction of basins of attraction can be seen in Figures 12a and 13a.
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The influence of the initial displacements to characterize the long-time behaviour of
solutions is illustrated in Figure 12. The computed basins of attraction are composed of two
possible solutions. The set of points coloured red corresponds to a response with a circular
orbit of a smaller radius, and the green-coloured points correspond to a response with a
larger circular orbit.

The investigated nondimensional speeds are selected from within the B region on
the frequency response curve. At the nondimensional speed of 1.715, located near the
lower bifurcation point, the solution converges to the larger circular orbit in 68% of cases.
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Conversely, at the nondimensional speed of 1.838, the solution converges to the smaller
orbit in 82% of cases.

In the case of the nondimensional speed of 1.780, located almost in the middle section
of the unstable vibration response, the solution converges to the smaller orbit in 61% of
cases, and in 39% of cases to the larger one, as shown in Figure 13a. It was found that the
shape of basins of attraction also depends on the choice of initial velocities. Figure 13b
shows the basins of attraction for the chosen initial conditions of the velocity with the
assumption of a circular orbit. The solutions were attracted to the circular orbit with a
smaller radius in 31% of cases and to the larger radius in 69%.
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Three values of the dimensionless speed (7.1, 8.0, and 8.5) were chosen. The responses
were obtained through time integration, assuming zero initial velocities and using the
initial displacements from the grid of points shown in Figure 12. The basins of attraction
identified a single solution for these three rotational speeds.
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The origin of nonsynchronous response occurs at the nondimensional speed of 8.5327
located in the D region, as shown in Figure 11. For this reason, basins of attraction for
the initial velocities of zero and non-zero values were studied, and the results are shown
in Figure 14. When considering the zero initial velocities, two basins of attraction were
identified, see Figure 14a. The response with a smaller orbit radius occurs in 49% of the
cases and is marked by the red colour. A quasiperiodic response occurs in 51% and is
indicated by the blue colour. The long-time convergence to a given solution was determined
for the response after 500 times the period of the excitation force.

On the other hand, with nonzero initial velocities, three basins of attraction were
identified, depicted in Figure 14b. The non-zero initial velocities were specified with the
assumption of a circular motion. A synchronous response with a small orbit radius occurs
in 8% (marked by the red colour), a response with a large orbit radius in 21% (marked by
the green colour), and a nonsynchronous quasiperiodic response in 71% (marked by the
blue colour).

In summary, when the initial velocity is zero, two types of solutions can be observed,
and when the initial velocity is non-zero, three types of solutions can be observed.

Figure 15 shows the basins of attraction for the nondimensional speed of 9.0. In
Figure 15a, the initial velocities are set to zero and the initial displacements are taken from
solutions of the time-dependent quasiperiodic response. The distribution of the initial
displacements is determined by the number of samples selected from the quasiperiodic re-
sponse. The response was computed using the time integration for a duration of 1200 times
the excitation force period. The basins of attraction are determined with the last 600 periods,
containing approximately 10000 of the time samples.
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The non-zero initial velocities with the assumption of a circular motion were specified
for the computation of the basins of attraction depicted in Figure 15b. In the vicinity of
a border of the basins of attraction, two circular areas were selected for the recalculation
of responses, as seen in Figure 15b. It can be assumed that the border of the basins of
attraction between the different solutions is smooth, as shown in Figure 15b.

The initial conditions for the assessment of the basins of attraction in Figures 16 and 17
are based on the time history of the quasiperiodic response for a nondimensional speed of
9.0. The number of initial points used differs between Figure 16a and 16b. The basins of
attraction depict solutions for a small (red colour) orbit radius and a large (green colour)
orbit radius, as well as a nonsynchronous quasiperiodic response (blue colour).
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Figure 16. The basins of attraction for the nondimensional speed of 9.0 and the initial conditions,
based on a quasiperiodic response, with 10,000 (a) and 90,000 (b) time samples.
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Figure 17. Detail of the structure of basins of attraction for D1 (a) and D2 (b) regions.

It can be seen that the regions of the basins of attraction can contain one solution or
a combination of two solutions (as shown in Figure 17a). The border between the basins
of the attraction does not have a clear structure, as seen in Figure 17b. These results are
qualitatively different from results (see Figure 15b) obtained when using initial conditions
that assume circular motion.

5.4. The Conditions for Isolated Solution

A study was conducted to examine the effect of the dimensionless SFD constant and
unbalance on the response with an isolated solution. The results identified the conditions
and parameters that cause the presence of nonsynchronous response.

In Figure 18, the coloured region indicates the conditions for the presence of an
isolated solution in the frequency response curve. The contours are plotted for a range
of the nondimensional SFD parameter from 0.01 to 1.5, and unbalance from 0.05 to 0.95.
The coloured region in Figure 18 has an upper (denoted with the symbol u) and a lower
(denoted with the symbol l) boundary. The upper boundary is primarily determined by the
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value of unbalance and represents the point at which the resonance peak and the isolated
solution merge. The lower boundary is defined by the maximum permitted value of the
dimensionless speed, which is 20 in this case.
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Figure 18. The effect of the dimensionless parameters on the presence of an isolated solution for the
case without (a) and with (b) external damping.

The maximum permitted value of the nondimensional rotational speed was established
to ensure that the rotor does not suffer mechanical damage during operation. It affects
the size of the region where the isolated solution can originate. When a higher maximum
speed is allowed, the area in which the isolated solution can originate will be larger.

It was found that the external damping not only affects the resonance peak, causing it
to shift and decrease in amplitude, but also shifts the origin of the isolated solution to higher
speeds for a given unbalance, as demonstrated by the upper boundary in Figure 18a,b.
Furthermore, when the dimensionless SFD constant is less than 1.0, the range of unbalance
values for which an isolated solution can exist is larger. However, when the dimension-
less SFD constant is greater than 1.0, the range of unbalance values is reduced into a
narrow region.

This region defines a specific range of combinations of the dimensionless SFD constants
and unbalance values for the presence of the isolated solution in the frequency response.
The conducted numerical research shows that the nonsynchronous solution can arise only
in the frequency response region with the isolated solution. Operating the rotor above
the lower boundary region in Figure 18 poses a risk as it can result in nonsynchronous
oscillations or synchronous motion with the circular centred orbit with a large radius.

6. Conclusions

The article investigates the frequency response and vibration stability of the rigid
rotor with unbalance, coupled with SFDs. To analyse the rotor’s response, three methods
were used: the computation of the synchronous response with a circular centred orbit,
the harmonic balance method, and the direct time integration method. All three methods
accurately computed the frequency response curve, and the results were in good agreement.
The stability of the induced vibrations was evaluated by means of the Floquet theorem.
New computational procedures were developed to solve the equation of motion and assess
vibration stability.

The results of the computational simulations show that the nonlinear damping forces
greatly impact the motion of the rotor, particularly in the resonance region for high values
of the unbalance. It was verified that the frequency response curve is composed of four
regions with varying numbers of solutions, where multiple branches of the frequency



Appl. Sci. 2023, 13, 2864 19 of 21

response are unstable. Techniques such as time series analysis, Fourier transformation,
trajectory analysis in state space, Poincaré sections, and bifurcation diagrams were used to
study the nonlinear behaviour.

A substantial amount of the newly presented work focuses on illustrating how initial
conditions can affect the long-time behaviour of the response. The study presents basins
of attraction for various values of the nondimensional speed. It has been proven that the
basins of attractions are sensitive to the choice of initial velocity values. The regions of
attraction can contain more than one solution, and the borders between them can be either
smooth or without a clear structure.

The simulation results indicate that the nonsynchronous response has a quasiperiodic
character and occurs solely at rotational speeds that exceed the speeds where the isolated
solution originates. The nonsynchronous response is generally considered to be an undesir-
able behaviour. Therefore, a new range of parameters for the dimensionless SFD constant,
unbalance, and rotational speed was defined, which determines the conditions for the
appearance of an isolated solution.

The results of the carried-out research are highly valuable for contemporary inves-
tigations of nonlinear vibrations, particularly for high-speed rotating machines coupled
with SFDs.
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