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Abstract: Food safety is closely related to human health. Therefore, named entity recognition tech‑
nology is used to extract named entities related to food safety, and building a regulatory knowledge
graph in the field of food safety can help relevant authorities to regulate food safety issues and mit‑
igate the hazards caused by food safety problems. However, there is no publicly available named
entity recognition dataset in the food safety domain. In contrast, the non‑standardized Chinese short
texts generated from user comments on the web contain rich implicit information that can help iden‑
tify named entities in specific domains (e.g., food safety domain) where the corpus is scarce. There‑
fore, in this paper, named entities related to food safety are extracted from these unstandardized
texts on the web. However, the existing Chinese named entity identification methods are mainly for
standardized texts. Meanwhile, these unstandardized texts have the following problems: (1) their
corpus size is small; (2) there are various new and wrong words and noise; (3) and they do not fol‑
low strict syntactic rules. These problems make the recognition of Chinese named entities for online
texts more challenging. Therefore, this paper proposes the ERNIE‑Adv‑BiLSTM‑Att‑CRF model to
improve the recognition of food safety domain entities in unstandardized texts. Specifically, adver‑
sarial training is added to the model training as a regularization method to alleviate the influence of
noise on the model, while self‑attention is added to the BiLSTM‑CRF model to capture features that
significant impact entity classification and improve the accuracy of entity classification. This paper
conducts experiments on the public dataset Weibo NER and the self‑built food domain dataset Food.
The experimental results show that our model achieves a SOTA performance of 72.64% and a good
performance of 69.68% for F1 values on the public and self‑built datasets, respectively. The validity
and reasonableness of our model are verified. In addition, the paper further analyses the impact of
various components and settings on the model. The study has practical implications in the field of
food safety.

Keywords: food safety supervision; named entity recognition; pre‑trained language model; ERNIE;
adversarial training; BiLSTM‑CRF; self‑attention

1. Introduction
Food is the material basis for human survival, and food safety is closely related to hu‑

man health. Especially in recent years, food safety problems (such as dyed steamed buns,
expired meat, tainted bean sprouts, etc.) have occurred frequently. Some food safety in‑
cidents (e.g., the “melamine” milk powder, the “poisoned ginger”, and the “smelly feet
salt”) were not brought to the attention of the public until they were exposed on the Inter‑
net and finally resolved. The issue of food safety has attracted a lot of public attention and
has been a hot topic in the society. Food safety is not only related to people’s health and
safety but also has a significant impact on social stability and the credibility of the govern‑
ment. Although the state from the legislation to the supervision of all levels attach great
importance to this topic, food safety issues such as excessive pesticide residues, genetically
modified issues with melamine, Sudanese red pigment, “lean meat essence”, “gutter oil”,
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plasticizers, and other prohibited issues have occurred repeatedly, stinging people’s sen‑
sitive nerves. These are a reflection of the many food safety supervision problems that
still exist.

With the rapid development of the Internet era, a huge amount of information is also
being generated. People are used to expressing their various opinions through socialmedia
(e.g., Weibo) and e‑commerce platforms (e.g., Jingdong). These short, unregulated texts
generated from user comments imply a wealth of useful information that has not yet been
fully explored. There are parts of this information that are critical to the management of
food safety issues.

With the increasing standard of living of the people, people are eager to enhance their
physical health and improve their medical care. However, in reality, intelligent healthcare
in China is still in its infancy [1]. Artificial intelligence technology can be applied to health
management to achieve intelligent health management [2–4]. By obtaining information
about food safety from internet users’ comments and analyzing them using AI technology,
risks that may lead to diseases (e.g., food‑borne diseases) can be identified, and reference‑
able risk prevention measures can be provided.

By building a knowledge graph for food safety, the following functions can be achieved:
1. To assist the relevant authorities in making rapid decisions and risk warnings;
2. To inform and alert the relevant authorities to take timely measures to reduce the

probability of diseases caused by food safety problems;
3. To help the general public obtain food safety information from a large amount of

cluttered and redundant data and to take suitable precautions in advance.
Named Entity Recognition (NER) technology can quickly and accurately acquire im‑

plicit information related to food safety in internet users’ comments. It is used as data
support for comprehensive research and judgment, intelligent decision‑making, and dy‑
namic early warning of food safety risk situations.

NER aims to identify predefined semantic types (e.g., names of people, places, organi‑
zations, and domain proper names) from text [5]. NER is one of the most fundamental and
essential aspects of natural language processing (NLP), which has a wide range of applica‑
tions in many scenarios, such as information extraction, question and answer systems, and
machine translation. Named entities (NEs) are classified into generic classes (e.g., names
of people, places) and domain‑specific classes (e.g., proteins, drugs, diseases). The NER
task is usually regarded as a sequence annotation task and is solved by statistical or neural
network approaches [6].

With the rapid development of neural networks, deep learning‑based methods [7]
are widely used in NER tasks [8–11] and achieve state‑of‑the‑art results. Deep learning‑
based methods do not rely on the manual construction of features and can automatically
obtain models by training large amounts of data. Among them, based on the excellent
sequence‑modeling ability of one‑way Long‑Short Term Memory (LSTM) models, many
methods use LSTM‑conditional random field (CRF) as the main framework of NER tasks
and the fusion of various relevant features on this basis. BiLSTM‑CRF [8] is the most com‑
mon method. In [12,13], state‑of‑the‑art performance was achieved with this method as
the main framework. In the low‑resource domain, to improve entity recognition for the
NER task, adversarial training is added to make the model more robust and improve the
generalization ability during the training process [14,15].

Compared with English, there are no natural boundaries in Chinese. The blurred
boundaries of unitary vocabulary, complex entity structures, anddiverse expressionsmake
Chinese NER more difficult. In the field of Chinese NER, a distinction between words
and characters exists in Chinese. A character‑based tagging strategy is generally used to
tag named entities [16,17]. Compared with word‑based and character‑word union‑based
methods, the character‑based method can avoid the problem of word separation error
transmission and generally have superior performance [18,19]. However, the character‑
based Chinese NER methods have a general problem: they cannot characterize the pol‑
ysemy of words. It means that the same word expresses different meanings in different
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scenarios, but the representation of the word vector is the same, which is not consistent
with the objective fact.

In recent years, pre‑trained languagemodels have become a critical fundamental tech‑
nology in NLP, especially the Bidirectional Encoder Representations from Transformers
(BERT) [20] model proposed by Google. BERT utilizes the multilayer self‑attention bidirec‑
tional modeling capability of Transformer [21] to achieve state‑of‑the‑art (SOTA) results in
several NLP tasks by predicting masked characters. Pre‑trained Language Models can be
used for character representation. This is because better character representations not only
contain rich syntactic and semantic information but also allow themodeling of polysemous
words. However, the modeling objects of BERT are mainly focused on original language
signals and less on the use of semantic knowledge units for modeling. This problem is
particularly evident in Chinese. For example, BERT is modeled by predicting Chinese
characters, and it is difficult for the model to learn the intact semantic representation from
the larger semantic units. Therefore, Baidu improved the Chinese direction of BERT by
proposing the Enhanced Representation from Knowledge Integration model (ERNIE), a
semantic representation model for knowledge enhancement [22]. It empowers the model
to learn the hidden knowledge implied in a large amount of text. As shown in Figure 1,
the ERNIE enables the model to learn the semantic representation of complete concepts
by masking semantic units such as words and entities. Compared to BERT, ERNIE di‑
rectly models priori semantic knowledge units to enhance the semantic representation of
the model.
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Figure 1. Comparison of learning methods between BERT and ERNIE model. ERNIE learns the se‑
mantic representation of complete concepts by masking Chinese characters and entities (“苹果” and
“农药味”), while BERT learns the semantic representation bymasking individual Chinese characters
(“果” and “农”).

The NER mission has penetrated various areas, such as healthcare, finance, and law.
However, there is no publicly available dataset in the food safety domain. Therefore, in
domains where corpus resources are scarce, few‑shot learning has emerged as an effec‑
tive entity extraction method. [23] constructed a food recognition classifier based on few‑
shot learning by limiting the training samples. However, compared to standard news‑like
canonical texts, named entity recognition based on the content of Internet users’ comments
has the following main challenges:
• The corpus is small and contains many types of entities;
• Users write comments as they wish, with frequent new words and mistakes, contain‑

ing noise such as Internet phrases and emoticons;
• The text does not follow strict syntactic rules [24].

These challenges make it difficult for few‑shot learning to achieve good entity recog‑
nition results. Therefore, to obtain as many practical features as possible from the noisy
mixed small‑scale corpus to improve the recognition performance of food‑safe named en‑
tities in unstandardized Chinese texts, this paper proposes the ERNIE‑Adv‑BiLSTM‑Att‑
CRF model.

Our work has the following contributions:
1. We mine food safety‑related information in unstandardized texts by building a food

safety domain dataset to train a food safety domain NER model. Mining food safety‑
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related information in unstandardized texts helps build a regulatory knowledge graph
in the food safety domain;

2. We use ERNIE, amodel pre‑trained by a large‑scale corpus, to generate context‑based
word vectors so that the model learns the semantic representation of complete con‑
cepts and enhances the semantic representation of the model. We are adding self‑
attention to the BiLSTM‑CRF sequence annotation model to capture the most critical
semantic information in sentences and improve the entity recognition performance
of unstandardized texts;

3. We added adversarial training as a regularization method to the model training to
make the model more robust and improve the model’s generalization ability.
In Section 4.2, the ERNIE‑Adv‑BiLSTM‑Att‑CRF model will improve NER tasks’ per‑

formance with the unstandardized Chinese. As can be seen from the experimental results,
our model outperforms other SOTA models on the public dataset Weibo NER with an F1
value of 72.64% and outperforms other baselinemodels on a self‑built food domain dataset
with an F1 value of 69.68%.

2. Related Work
Adeep learning‑based approach is used for unstandardizedChineseNER in ourwork.

Collobert et al. [8] proposed a CNN‑CRF model based on a convolutional neural network
(CNN), which obtained competitive performance compared to various best statistical mod‑
els. Huang et al. [9] proposed a BiLSTM‑CRF model to solve the text sequence labeling
problem as a benchmark model. Ma et al. [25] and Chiu et al. [11] infused character fea‑
tures extracted by CNN to enhance the word‑level representation based on the BiLSTM‑
CRF framework. In the low‑resource domain, Zhou et al. [16] enhanced the robustness of
NER models by adding adversarial perturbations to the original samples. In the Chinese
NER task, Dong et al. [26] composed a sequence of word roots for each character and used
LSTM networks to obtain the root information of Chinese characters. Zhang et al. [27]
proposed the Lattice‑LSTM method by replacing the traditional LSTM cells with a lattice
LSTM. It cleverly encodes the Chinese characters and all the potential wordsmatchedwith
the lexicon. Based on the Lattice‑LSTM,Wei et al. [28] proposed the word‑character LSTM
(WC‑LSTM) model to alleviate the impact of word separation errors by adding word in‑
formation to the start and end characters of a word.

Chinese characters, as pictographs, contain potential glyph information. Ref. [29] pro‑
posed the fused glyph network FGN to extract the interaction information between dis‑
tributed representations of characters and glyph representations through a fusion mecha‑
nism. Ref. [30] proposed the FLAT model by converting the Lattice structure into a planar
structure composed of spans. This model makes full use of Lattice information and has
good parallelization capability based on the power of the Transformer and well‑designed
positional encoding. The SLK‑NER model proposed in [31] uses global semantic informa‑
tion to fuse lexical knowledge through an attention mechanism to integrate more infor‑
mative words into a character‑based model and alleviate lexical boundary conflicts. In
NER domain research, introducing extra knowledge is a common way to improve model
performance. Ref. [32] proposed an AESINER model that efficiently uses attention inte‑
gration to encode and fuse different types of syntactic information (e.g., lexical annota‑
tion, constituent syntactic information, and dependent syntactic information) to help the
model identify named entities. In social media such as Weibo and Twitter, many short
texts generated by users contain various types of entities. Some entities are not written
following standard syntactic conventions (e.g., abbreviated by users at will), resulting in
a small probability of such entities showing sparsity, making recognizing such entities
more difficult. In response to this question, previous studies have used domain informa‑
tion (e.g., gazetteers and embeddings trained onprominent socialmedia texts) and external
features (e.g., lexical tags) to help improve the performance of NER on social media [33,34].
However, these methods require extra work to obtain this information, and there is noise
in the results. For example, training embeddings in the social media domain can bring
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many unique expressions to the vocabulary. Therefore, [35] proposed the SA‑NER model
to enhance the recognition of named entities with semantic expansion. However, the F1
value of this model only reached 69.8% on the Weibo dataset.

However, most of the studies in the literature above are based on canonical texts and
large‑scale corpora. In contrast, the food safety domain corpus is scarce, and the implicit
information in non‑canonical texts on the web is not fully utilized. In addition, the above
papers rarely enhance the entity recognition performance based on the features of the ir‑
regular Chinese text.

Therefore, to better represent syntactic semantic information in different contexts, we
use ERNIE, a pre‑trainingmodel more suitable for the non‑standardized Chinese text NER
task. ERNIE is based on character representation word vectors. Inspired by the attention‑
based BiLSTMmodel proposed in [36] for the relationship classification task, self‑attention
is added to the sequence annotation model BiLSTM‑CRF for the NER task mechanism
to obtain the most critical features for entity classification. The difference is that we use
character‑level feature vectors for entity classification instead of sentence‑level features.
Meanwhile, to improve the robustness and generalization of themodel, we train themodel
adversarially by adding appropriate adversarial perturbations to the original samples.

3. Methods
In this section, we will introduce the ERNIE‑Adv‑BiLSTM‑Att‑CRF model in detail,

as shown in Figure 2, which consists of six main parts:
• Input layer: Input samples in terms of sentences into the model;
• Embedding layer: The input sentences are represented using the ERNIE pre‑training

model to obtain a context‑based word vector that contains rich implicit information;
• Adversarial training: Creating adversarial samples by adding an adversarial pertur‑

bation to the word embedding layer to train the model adversarially;
• BiLSTM layer: Using the BiLSTM network to learn the dependencies on the observed

sequences and selectively picking higher‑order features to integrate;
• Attention layer: Generates a weight vector and multiplies the weight vector with

the state of the hidden layer at each moment of BiLSTM to obtain the feature vector
after self‑attention;

• CRF layer: Output the best‑predicted label sequence.

Appl. Sci. 2023, 13, 2849 5 of 16 
 

information (e.g., gazetteers and embeddings trained on prominent social media texts) 

and external features (e.g., lexical tags) to help improve the performance of NER on social 

media [33,34]. However, these methods require extra work to obtain this information, and 

there is noise in the results. For example, training embeddings in the social media domain 

can bring many unique expressions to the vocabulary. Therefore, [35] proposed the SA-

NER model to enhance the recognition of named entities with semantic expansion. How-

ever, the F1 value of this model only reached 69.8% on the Weibo dataset. 

However, most of the studies in the literature above are based on canonical texts and 

large-scale corpora. In contrast, the food safety domain corpus is scarce, and the implicit in-

formation in non-canonical texts on the web is not fully utilized. In addition, the above papers 

rarely enhance the entity recognition performance based on the features of the irregular Chi-

nese text. 

Therefore, to better represent syntactic semantic information in different contexts, we 

use ERNIE, a pre-training model more suitable for the non-standardized Chinese text NER 

task. ERNIE is based on character representation word vectors. Inspired by the attention-

based BiLSTM model proposed in [36] for the relationship classification task, self-attention 

is added to the sequence annotation model BiLSTM-CRF for the NER task mechanism to 

obtain the most critical features for entity classification. The difference is that we use char-

acter-level feature vectors for entity classification instead of sentence-level features. Mean-

while, to improve the robustness and generalization of the model, we train the model ad-

versarially by adding appropriate adversarial perturbations to the original samples. 

3. Methods 

In this section, we will introduce the ERNIE-Adv-BiLSTM-Att-CRF model in detail, 

as shown in Figure 2, which consists of six main parts: 

• Input layer: Input samples in terms of sentences into the model; 

• Embedding layer: The input sentences are represented using the ERNIE pre-training 

model to obtain a context-based word vector that contains rich implicit information; 

• Adversarial training: Creating adversarial samples by adding an adversarial pertur-

bation to the word embedding layer to train the model adversarially; 

• BiLSTM layer: Using the BiLSTM network to learn the dependencies on the observed 

sequences and selectively picking higher-order features to integrate; 

• Attention layer: Generates a weight vector and multiplies the weight vector with the 

state of the hidden layer at each moment of BiLSTM to obtain the feature vector after 

self-attention; 

• CRF layer: Output the best-predicted label sequence. 

 

Figure 2. ERNIE-Adv-BiLSTM-Att-CRF model framework for named entity recognition. The model con-

sists mainly of an input layer, an embedding layer, adversarial training, BiLSTM-CRF and self-attention. 
Figure 2. ERNIE‑Adv‑BiLSTM‑Att‑CRF model framework for named entity recognition. The
model consists mainly of an input layer, an embedding layer, adversarial training, BiLSTM‑CRF
and self‑attention.
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3.1. Word Embedding
As with BERT, ERNIE uses a multi‑layer Transformer as the primary encoder. A sen‑

tence s = {w1, w2, · · · , wt} containing t tokens (characters) is connectedwith unique token
CLS and SEP, where CLS denotes the beginning of the sentence and SEP denotes the end
of the sentence. As shown in Figure 3, for each token in the sentence, ERNIE represents it
as Embeddings constructed by summing Token Embeddings, Segment Embeddings, and
Position Embeddings through the embedding layer, i.e., Ewi = Etoken + Eseg + Epos. The
sentence is vectorized into emb = {Ew1 , Ew2 , · · · , Ewt} and input to the bidirectional Trans‑
former for feature extraction. The contextual information of each token in the sentence is
captured using the Self‑Attention Mechanism of the Transformer to generate a sequence
vector x = {x1, x2, · · · , xt} containing rich semantic features. In other words, the rich
text features are extracted using the pre‑trained model ERNIE to obtain a batch_size ∗
max_seq_len ∗ emb_size output vector, used as the classification task’s sequence representa‑
tion. Where batch_size is the batch size of the processed data, max_seq_len is themaximum
length of the input sentences, and emb_size is the embedding dimension of each character.
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3.2. Bidirectional LSTM Network
The Long Short Terms Memory (LSTM) unit contains three specially designed gates

(input gate, forgetting gate and output gate) for controlling the information transmission in
a sequence. It can well solve the gradient disappearance and gradient explosion problems
in the training process of traditional recurrent neural networks (RNN); at the same time, it
has good sequence modelling ability and can better model long‑range dependencies.

The Bidirectional Long Short Terms Memory (BiLSTM) network is a modification of
RNN. It contains two sub‑networks, forward and reverses LSTM, which can process con‑
textual information simultaneously. The BiLSTM layer acts as a sequence encoder in NER
tagging and inputs theword vector sequence of the input x = {x1, x2, · · · , xt} sentence into
the BiLSTM network for feature extraction. The probability of each token corresponding
to the tag sequence y = {y1, y2, · · · , yn} is output, and n is the number of tags. Specifi‑
cally, ERNIE’s word vector sequence output is encoded using the BiLSTM network. The
forward LSTM network obtains the hidden forward state (historical features), and the re‑
verse LSTM network obtains the backward hidden state (future features). The output of
the hidden layer of the BiLSTM network is represented as:

h =
−−−−−−−→
LSTM(x) +

←−−−−−−−
LSTM(x) (1)

The corresponding values between the forward and backward hidden states obtained
by BiLSTM are summed to obtain h, where h = {h1, h2, · · · , ht} is the hidden representa‑
tion of the character. Input h into theAttention layer and use self‑attention to obtain further
the features that have the most significant impact on entity classification.
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3.3. Attention Mechanism
The attention mechanism is a selection mechanism used to allocate limited informa‑

tion processing power, which is essentially a weighted summation, i.e., assigning higher
weights to essential characters and smaller weights to other characters. The pre‑trained
model ERNIE uses a multi‑layer Transformer as the primary encoder. The multi‑headed
attentionmechanism in the Transformer structure can extract features of the text itself from
multiple perspectives and levels. However, the “degree of influence” between the output
information obtained from each time point of the LSTM is the same. In order to highlight
the most critical part of the output information for entity classification, this paper adds
self‑attention after the BiLSTM network to capture the most critical semantic‑level infor‑
mation in the sentence and automatically focus on the features that have a decisive impact
on entity classification.

Thematrix H is composed of the hidden state vector h output by the BiLSTM. Assume
that w is the matrix parameter to be trained and wT is the transpose of w, satisfying the
following equation:

M = relu(H) (2)

α = so f tmax
(

wT M
)

(3)

r = HαT (4)

where H ∈ Rdw×T . dw is the word vector dimension in the sentence. α is the attention
weight coefficient. The output h of the BiLSTM is weighted and summed to obtain r. The
dimensions of w, α, and r are dw, T, and dw, respectively. After self‑attention, we obtain
the sentence representation vector containing the most critical information:

h∗ = relu(r) (5)

3.4. CRF Layer
Conditional Random Field (CRF) is a class of discriminative models best suited for

prediction tasks. It is widely used in sequence labelling problems. Although the BiLSTM‑
Att network can handle long‑range textual information and obtain more critical features
for entity classification, the dependencies between neighboring tags are not effectively han‑
dled. TheCRF layer is used as a sequence decoder for theNER tagger. The standardViterbi
algorithm obtains a globally optimal labeled sequence in the final decoding stage.

All outputs of the BiLSTM‑Self‑Attention (BiLSTM‑Att) network are input to the CRF
layer as a score matrix P. For a sequence of predicted tags y = {y0, y1, · · · , yn+1}, and the
score is defined as:

x = ∑n
i=0 Ayi ,yi+1 + ∑n

i=1 Pi,yi (6)

where P is a matrix of size t ∗ n, Pi,j corresponds to the score of the ith word in sen tence
x = {x1, x2, · · · , xt} corresponding to the jth label. A is a matrix of transferred scores, and
Ai,j represents the scores transferred from label i to label j. The prediction sequence of y0
and yn+1 are the two tags start and end that mark the beginning and end of the sentence,
so A is a square matrix of size n + 2.

CRFuses potential functions to estimate the conditional distributionprobability P(x|w)
of the output tag sequence y for sequence x. The formula is shown below:

P(y|x, w) =
exp

(
wT φ(x, y)

)
Z(w, x)

(7)

where φ(x, y) is the feature vector and w is the parameter vector. Z(w, x) is the cumulative
sum of the conditional distribution probabilities P(y|x, w) for all possible tags y.

Training the model utilizing the maximum conditional likelihood function:

x = argmaxwP(y|x, w) (8)
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The CRF layer learns some constraints from the training dataset, which reduces the
sequence of invalid predicted tags and ensures that the final output tag sequence is valid.
When decoding the sequences, the tag sequence with the highest prediction score is se‑
lected as the best answer:

x = argmaxyP(y|x, w) (9)

3.5. Regularization
In NLP tasks, adversarial training is no longer used to defend against gradient‑based

malicious attacks but more to strengthen the regularization of classification models. Ad‑
versarial training can be generalized to the followingmaximumminimization formulation:

min
θ

E(x,y) ∼ D
[
max
∆x∈Ω

L(x + ∆x, y; θ)

]
(10)

where inside the middle brackets is a maximization. D, x and y denote the training set,
input samples and sample labels, respectively; θ, L(x, y; θ) and ∆x are the model parame‑
ters, the loss of individual samples and the adversarial perturbation superimposed on the
input, respectively; and Ω is the perturbation space. The perturbation space is generally
small to avoid damage to the original input samples. max(L) is the optimization objective,
i.e., finding the perturbation that maximizes the loss of a single sample. Meanwhile, the
model parameters θ of the neural network are optimized using the outer layer E(x,y) to
minimize them. When the perturbation is fixed, the model has a minor loss of the training
data. In simple terms, the sample loss should be as significant as possible after adding the
perturbation. In contrast, the model loss should be as small as possible, thus making the
model more robust and avoiding the bias of the model inference results caused by small
perturbations on the samples.

In this paper, we borrow the Fast Gradient Method (FGM) from [37] for the text clas‑
sification task and add an adversarial perturbation ∆x to the word embedding to train the
model adversarially, with ∆x defined as follows:

x = ϵ·(g/ ∥ g ∥2) (11)

where g = ∆xL(x, y, θ) is the gradient of the input sample and ∥ g ∥2 is the L2 parametriza‑
tion of g.

Compute∆x from the gradient of theword embeddingmatrix and add it to the current
embedding, which is equivalent to:

xadv = x + ∆x (12)

Compute its forward loss, backpropagate to obtain the adversarial gradient, accumu‑
late to the original gradient, recover the embedding, and update the parameters based on
the gradient with the accumulated adversarial gradient.

4. Experiments
In Sections 4.1 and 4.2, the data set used for the experiments, the settings of the rele‑

vant parameters, and the evaluation standard settings are presented. The proposed model
in this paper is compared with some SOTAmodels, and the main experimental results are
presented in Section 4.3. To verify the effectiveness of the components in our model, a se‑
ries of ablation experiments are performed in Section 4.4. Our model is tested three times
on each dataset, and this is used to calculate the average values of Precision (P), Recall (R),
and F‑score (F1). The bolded numbers in tables represent the better performance of our
model over the comparison model.
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4.1. Dataset and Experimental Setup
• Datasets: This paper constructed a food safety domain dataset for Food to conduct

experiments. To ensure the fairness of the experiments, a widely used public dataset,
Weibo NER, is chosen to validate the validity and reasonableness of our model. Both
datasets use standard BIO annotation to represent the named entity tags of tokens in
the input sentences.

TheWeibo NER dataset is generated based on historical data filtered from SinaWeibo
between November 2013 and December 2014. It contains 1890 microblog messages, anno‑
tated based on the annotation standard of DEFT ERE of LDC2014. The entity categories in
this dataset are divided into four categories: Person, Organization, Address, and Geopolit‑
ical entity; and each category can be subdivided into specific (NAM, e.g., “张三” labelled
as “PER.NAM”) and generic (NOM, e.g., “NOM” for “男人”).

The Food dataset was generated by filtering negative reviews about food (fruit cat‑
egory) from the sentiment/opinion/review propensity analysis dataset online_shopping_
10_cats of the Chinese Natural Language Processing Language Resources Project (https:
//github.com/liuhuanyong/ChineseNLPCorpus (accessed on 20 August 2021)) and manu‑
ally annotated using the NER annotation tool YEDDA [38]. First, food‑safe named entities
were extracted from the sentences, as shown in Figure 4; then, as shown in Figure 5, the
sentences were processed into sequence labels to feed into the NER model for training.
These reviews come from the Jingdong e‑commerce platform and contain 1914 messages.
Under the guidance of food safety‑related experts, based on the content of the review, we
assessed consumer evaluations about a particular type of fruit sold by a store on an e‑
commerce platform with a particular problem and the appearance of a specific symptom
by consumers after consumption; the entity categories of this dataset are divided into five
categories: type of fruit (FRU), description of the risk present (SIG), e‑commerce platform
sold (ECP), store sold (MER), and symptoms appeared (SYM).
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Figure 5. Sequence annotation instance. According to the BIO labeling scheme, B indicates the begin‑
ning of an entity, I indicates an intermediate entity, andO indicates a non‑entity. The Chinese word “
苹果” indicates the apple, labeled as “B‑FRU, I‑FRU,” and the Chinese characters “好大一股农药味”
describing apples with a strong pesticide smell is a food safety risk description and is labeled as
“B‑SIG, I‑SIG, I‑SIG, I‑SIG, I‑SIG, I‑SIG, I‑SIG”. The rest of the Chinese characters are marked as “O”.

https://github.com/liuhuanyong/ChineseNLPCorpus
https://github.com/liuhuanyong/ChineseNLPCorpus
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The training, validation and test sets of the two datasets segmented according to the
number of sentences are shown in Table 1. The Weibo NER dataset is its initial segmenta‑
tion [33] and has not been changed in this paper.

Table 1. Dataset segmentation statistics.

Dataset Train Set Dev Set Test Set

Weibo NER
Food

1350 270 270
1500 200 214

Furthermore, the named entity labels for both datasets are shown in Table 2.

Table 2. Dataset label statistics.

Dataset Label

Weibo NER

PER.NOM

PER.NAM

LOC.NOM

LOC.NAM

GPE.NOM

GPE.NAM

ORG.NOM

ORG.NAM

Food

FRU

SIG

ECP

MER

SYM

• Hyper‑Parameter Setting: The experiments use ERNIE1.0, a knowledge‑based aug‑
mented Chinese pre‑trainingmodel released by Baidu, to train the word vectors. This
pre‑training model is improved on the Chinese direction of Google BERT and can
be handled in the same way as BERT when used in downstream tasks and model
transformation. According to the default configuration, the output vector size of each
character is set to 768, and the dropout rate of ERNIE is 0.1. The LSTM is set as a
bidirectional network, the hidden layer size is 768, the number of layers is 1, and the
dropout rate of LSTM is set to 0.5. The initial learning rate is a critical parameter that
needs to be adjusted according to the target task. AdamW is used as an optimizer for
pre‑training model fine‑tuning and NERmodel training, both of which have different
learning rates. For pre‑training model fine‑tuning, the initial learning rate is 3 × 10−5
for theWeibo NER dataset and 8× 10−5 for the Food dataset; for NERmodel training,
the LSTM learning rate is 2 × 10−5 for both datasets 2 × 10−2 for CRF. The differ‑
ence between the optimal learning rates of ERNIE and BERT is extensive and requires
a higher initial learning rate. Since the models’ weights are randomly initialized at
the beginning of training, choosing a more extensive learning rate at this time may
bring instability (oscillation) to the model. In order to stabilize the model, the warm‑
up learning rate is chosen to make the model converge faster and better. The initial
warm‑up step number is set to 80.
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4.2. Evaluation Standard Setting
In this paper, three experimental results of precision, recall, and F1 value are used as

performance measurement criteria. Their calculation equations are as follows:

Pi =
TPi

TPi + FPi
(13)

In the precision (P) calculation Equation (13), TPi denotes the number of positive
classes correctly predicted by the model and FPi denotes the number of positive classes
predicted by the model from the negative classes.

Ri =
TPi

TPi + FNi
(14)

In the recall (R) calculation Equation (14), TPi is the same as the above‑mentioned
equation and FNi denotes the number of negative classes predicted by the model from the
positive classes.

F1 =
P ∗ R ∗ 2

P + R
(15)

Since precision and recall are a pair of contradictorymetrics, in order to better evaluate
the performance of the classifier, the harmonicmean F1 score of precision and recall is used
as an evaluation standard to evaluate the comprehensive performance of the model.

4.3. Experimental Results
The results of the experiments on the datasets Weibo NER and Food are shown in

Tables 3 and 4. Comparisons are madewith other SOTAmodels on theWeibo NER dataset
and some baseline models on the Food dataset.

Table 3. Detailed statistics of our model on Weibo NER.

Model
Weibo NER

P R F1

FLAT N/A N/A 60.32

SLK‑NER 61.8 66.3 64.0

Locate and Label 70.11 68.12 69.16

AESINER N/A N/A 69.78

SA‑NER N/A N/A 69.80

BERT‑LMCRF 66.88 67.33 67.12

FLAT + BERT N/A N/A 68.55

FGN 69.02 73.65 71.25

Our Model 72.82 72.46 72.64

Table 4. Detailed statistics of our model on Food.

Model
Food

P R F1

ERNIE + Softmax 64.47 67.74 66.07
ERNIE + BiLSTM + CRF 66.37 69.12 67.72

Our Model 68.44 70.97 69.68

TheERNIE‑Adv‑BiLSTM‑Att‑CRFmodel proposed in this paper takes ERNIE‑BiLSTM‑
CRF as the baseline and adds adversarial training and self‑attention. In the SOTA model
shown in Table 3:
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1. Locate and Label uses a two‑stage entity recognizer that locates entities and labels
boundaries for nested NER;

2. SA‑NER uses semantic expansion to improve the performance of NER;
3. AESINER improves the named entity recognition ability of the model by introducing

extra knowledge;
4. SLK‑NER uses an attention mechanism to fuse lexical knowledge into character‑

based models;
5. FLAT without the pre‑trained model BERT uses Lattice information;
6. BERT‑LMCRF is a BERT model that uses BiLSTM‑CRF as a NER tagger;
7. FLAT + BERT is a SOTA model based on BERT;
8. FGN is a fused glyph network based on BERT.

Table 3 shows the data of each SOTAmodel are the experimental results in their orig‑
inal papers. Two baseline models are selected in Table 4 for comparison with the model in
this paper:
1. ERNIE‑based and using softmax for entity classification;
2. ERNIE‑based and using BiLSTM‑CRF as the NER sequence coder‑decoder.

As shown in Table 3, our model outperforms other SOTA models on the Weibo NER
dataset. Comparedwith the FLAT, SLK‑NER, Locate and Label, andAESINERmodels, the
F1 values obtained notable improvements of 12.32%, 8.64%, 3.48%, and 2.86%, respectively;
compared with the BERT‑LMCRF, FLAT + BERT, SA‑NER, and FGN, they also obtained
remarkable improvements in the F1 values, with 5.52%, 4.09%, 2.84%, and 1.39% improve‑
ment, respectively.

On the Food dataset, it can be seen from Table 4 that our model is significantly higher
than the other two baseline models in terms of the F1 value, which is 69.68%. The improve‑
ment is 3.61% and 1.96%, respectively. It can be seen that adding the BiLSTM‑CRF network
after ERNIE is better than directly classifying the output of ERNIE for prediction, with an
F1 value improvement of 1.65%. After adding adversarial training to the model training
process and self‑attention in BiLSTM‑CRF, the model is further improved with another F1
value improvement of 1.96%.

From this, we can see that our model can alleviate the impact of noise on NER perfor‑
mance in Weibo NER and Food, two small‑scale datasets with noise confounding. After
self‑attention, the featureswith a high impact on entity classification among all the features
output by BiLSTM get greater weights, making entity recognition better.

4.4. Ablation Experiments
To demonstrate that adding self‑attention and adversarial training can effectively im‑

prove the NER performance of small‑scale datasets with noisy interference based on the
ERNIE‑BiLSTM‑CRF as the baseline model, a series of ablation experiments are conducted
in this paper using the Weibo NER dataset as an example. As shown in Table 5, the ex‑
perimental results illustrate the effects of self‑attention and adversarial training on NER
performance.

Table 5. Performances of the various component on Weibo NER dataset.

Model P R F1

Baseline 67.49 72.71 70.00
Baseline + Attention 69.93 70.77 70.35
Baseline + Adversarial 69.05 72.22 70.60

Baseline + both 72.82 72.46 72.64

The experimental results show that the dataset Weibo NER has an F1 value of 70.00%
on the baseline model ERNIE‑BiLSTM‑CRF; only self‑attention is added to the baseline
model, and the F1 value is 70.35%, which is a mere 0.35% improvement. From this, it
can be concluded that even if self‑attention is added to the BiLSTM‑CRF model to assign
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greater weights to those features that impact entity classification, the noise still dramati‑
cally influences the model. Similarly, adding adversarial training to the baseline model
only, the F1 value is 70.60%, which is just a 0.60% improvement. Although adversarial
training can alleviate the effect of noise on entity recognition during model training, it
does not capture themost important featureswithout adding self‑attention for the BiLSTM‑
CRFmodel. Ultimately, it does not obtain good entity labeling performance. While adding
both simultaneously, themodel has a remarkable improvementwith an F1 value of 72.64%.
Compared with the three models mentioned above, the F1 values are improved by 2.64%,
2.29%, and 2.04%, respectively. This shows that adding both self‑attention and adversar‑
ial training can effectively improve the performance of small‑scale nonstandard Chinese
NERwith noise by assigningmoreweight to the features that help entity recognitionwhile
reducing the effect of noise. The validity of our model for unstandardized Chinese NER
is demonstrated.

Based on the above experiments, it can be seen that adding adversarial perturbation to
the original samples and adding the self‑attentionmechanism to the BiLSTM‑CRF network
can both alleviate the effect of noise on the model and capture the features that are benefi‑
cial to entity classification. In addition, this paper further analyzes the effects of different
pre‑training models and adversarial training methods on entity recognition, as detailed in
Tables 6 and 7.

Table 6. Performances of various Pre‑trained Language models on the Weibo NER dataset.

Pre‑Trained Model‑Type P R F1

BERT‑base 67.76 70.05 68.88
RoBERTa‑wwm‑ext 69.21 72.22 70.69

ERNIE 72.82 72.46 72.64

Table 7. Performances of various Adversarial Training on Weibo NER dataset.

Adversarial‑Type P R F1

FreeLB 68.47 73.43 70.86
PGD 71.50 71.50 71.50

FGM 72.82 72.46 72.64

• Pre‑trained Language Model: As shown in Table 6, the NER performance of differ‑
ent pre‑trained models is analyzed with the other settings of our model held con‑
stant. BERT‑base (https://github.com/google‑research/bert (accessed on 12 September
2021)) and RoBERTa‑wwm‑ext (https://github.com/ymcui/Chinese‑BERT‑wwm (ac‑
cessed on 21 September 2021)) are Chinese pre‑trained models. Google publishes the
former, and the latter is published by Xunfei Joint Lab of Harbin Institute of Technol‑
ogy. It should be noted that RoBERTa‑wwm‑ext is not the original RoBERTa model,
but only a BERT model trained in a similar way to Roberta training, i.e., RoBERTa‑
like BERT.

It can be seen that the BERT‑base‑based NER model is a minor performance, with
an F1 value of 68.88%, because the Chinese in BERT‑base is sliced at character granularity,
which does not consider Chinese word separation (CWS) in traditional NLP tasks. Instead,
RoBERTa‑wwm‑ext uses Chinese Wikipedia (both simplified and traditional) for training
and applies the Whole Word Masking (WWM) technique to Chinese. At the same time,
the LTP of Harbin Institute of Technology is used as a word‑splitting tool to Mask all Chi‑
nese characters that form the same word instead of being limited to Masking a single Chi‑
nese character in BERT‑base. The F1 value is 70.69%, 1.81% higher than the F1 value of
the BERT‑base.

The F1 value of the ERNIE‑based NER model is 72.64%, which is 3.76% and 1.95%
higher than the BERT‑base and RoBERTa‑wwm‑ext, respectively. Because the experimen‑

https://github.com/google-research/bert
https://github.com/ymcui/Chinese-BERT-wwm
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tal datasets, Weibo and Food, are annotated from the unstandardized text generated by
user comments on social media and e‑commerce platforms. However, BERT‑base and
RoBERTa‑wwm‑ext use Wikipedia data for training, and they are more effective in mod‑
eling canonical text. ERNIE adds web data such as Baidu Encyclopedia, Baidu News,
and Baidu Post, and it has advantages in modeling such unstandardized text. Therefore,
BERT‑base and RoBERTa‑wwm‑ext are not as effective as ERNIE for entity recognition in
our datasets.

• Adversarial Training: The Fast Gradient Method (FGM), the Project Gradient De‑
scent (PGD) [39], and the Free Large Batch Adversarial Training (FreeLB) [40] are
three adversarial training methods, i.e., three different adversarial perturbation gen‑
eration methods.

Table 7 shows the different performances of the three adversarial training modali‑
ties. The experimental results show that FGM outperforms the remaining two on the NER
task with an F1 value of 72.64%. 1.78% and 1.14% higher than FreeLB and PGD, respec‑
tively. That is to say, adding the perturbation generated by FGM to word embedding
can obtain higher accuracy of entity classification. FGM is more suitable for small sample
NER models.

5. Conclusions
In order to obtain as many practical features as possible from the noisy mixed small‑

scale corpus to improve the performance of named entity recognition of unstandardized
Chinese text, we propose the ERNIE‑Adv‑BiLSTM‑Att‑CRF model:
• ERNIE, a pre‑trained model with advantages for modelling unstandardized

Chinese text, is chosen to generate context‑based word vectors that retain rich
implicit information;

• Adversarial training is added to themodel training as a regularization tool to alleviate
the effect of dataset noise on the NER model;

• Self‑attention is added to the BiLSTM network to automatically focus on the features
that have a decisive impact on entity classification and encode them in sequence;

• Sequence decoding is performed in the CRF layer to obtain the best label correspond‑
ing to each token.
The experimental results show that our approach obtains SOTA performance on the

public datasetWeibo NERwith an F1 value of 72.64%. As shown in Table 3, our model out‑
performs other SOTA models on the microblog NER dataset. Compared with the FLAT,
SLK‑NER, Locate and Label, and AESINER models, the F1 values obtained significant im‑
provements of 12.32%, 8.64%, 3.48%, and 2.86%, respectively; compared with the BERT‑
LMCRF, FLAT + BERT, SA‑NER, and FGNmodels, our F1 values also obtained significant
improvements of improved by 5. 52%, 4.09%, 2.84%, and 1.39%, respectively. Good per‑
formance was also obtained on the self‑built in‑domain dataset Food, with an F1 value of
69.68%. As can be seen from Table 4, our model is significantly higher than the other two
baselinemodels in terms of F1 values, with improvements of 3.61% and 1.96%, respectively.
The effectiveness of our method in the non‑standardized NER task is fully demonstrated.
Moreover, the performance of different pre‑trained models and adversarial training meth‑
ods are discussed in the ablation experiments.

Based on the experiments in this paper, it is demonstrated that our model can extract
specific entity information from non‑standardized web texts. This is useful for NER tasks
in corpus‑poor domains, such as the food safety domain. To address the problem that there
is no publicly available NER dataset in the food safety domain, our approach can extract
named entities related to food safety from short non‑standardized Chinese texts generated
from web users’ comments. In this way, a regulatory knowledge graph in the food safety
domain can be constructed to help relevant authorities to regulate food safety issues and
mitigate the harm caused by food safety problems.
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