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Abstract: Document-level event extraction (DEE) aims at extracting event records from given doc-
uments. Existing DEE methods handle troublesome challenges by using multiple encoders and
casting the task into a multi-step paradigm. However, most of the previous approaches ignore
a missing feature by using mean pooling or max pooling operations in different encoding stages
and have not explicitly modeled the interdependency features between input tokens, and thus
the long-distance problem cannot be solved effectively. In this study, we propose Document-level
Event Extraction Model Incorporating Dependency Paths (DEEDP), which introduces a novel multi-
granularity encoder framework to tackle the aforementioned problems. Specifically, we first designed
a Transformer-based encoder, Transformer-M, by adding a Syntactic Feature Attention mechanism
to the Transformer, which can capture more interdependency information between input tokens
and help enhance the semantics for sentence-level representations of entities. We then stacked
Transformer-M and Transformer to integrate sentence-level and document-level features; we thus ob-
tained semantic enhanced document-aware representations for each entity and model long-distance
dependencies between arguments. Experimental results on the benchmarks MUC-4 and ChFinAnn
demonstrate that DEEDP achieves superior performance over the baselines, proving the effectiveness
of our proposed methods.

Keywords: document-level event extraction; dependency path; multi-granularity encoder; Transformer;
syntactic feature attention

1. Introduction

Event extraction (EE) is a crucial and challenging task for Information Extraction
(IE), which aims to identify events of pre-defined types and extract arguments to fill the
corresponding roles from plain texts. In recent years, EE has received growing attention in
many domains, such as Finance, Public Safety, Intelligent Operations, and Maintenance,
because it can produce valuable structured event knowledge to facilitate critical incident
handling in these domains. Most existing approaches [1–6] mainly explore sentence-level
EE (SEE), which detects and extracts events from a single sentence within the given docu-
ment. Moreover, the evaluation work of these approaches is mainly based on a manually
annotated benchmark, ACE-2005 [7], which labels only event arguments within a sentence
scope. However, there may be more than one event described in a real-world text, and
the arguments for an event record may distribute in multiple sentences. Therefore, the
SEE performs poorly when extracting events across sentences. To this end, document-level
event extraction (DEE) is proposed to address the aforementioned problems.

Compared with SEE, DEE focuses on two vital challenging tasks: arguments-scattering
and multi-events. Arguments-scattering refers to the arguments of an event that may be
distributed in different sentences in a document. As illustrated in Figure 1, the arguments of
Equity Overweight (EO) scatter across four sentences ([S5] to [S8]), and the extraction cannot
be completed within a single sentence. In this scenario, the DEE model needs to understand
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the whole document comprehensively and capture long-distance interaction information
among arguments distributed in different sentences. Multi-events indicates that a document
may describe several correlated events. The two events, Equity Underweight (EU) and EO,
are interdependent and there is no obvious textual boundary between them. To tackle this
challenge, DEE models need to integrate local and global information, fill the event roles
of a pre-defined type with relevant arguments that scatter across sentences, and identify
multiple events simultaneously. However, in real-world applications, these challenges are
often coupled, which makes the DEE task more difficult and complicated.
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To address the two aforementioned challenges, previous studies [8–13] employed a 
multi-Transformer [14] or Long Short-Term Memory (LSTM) [15] encoder to obtain sen-
tence-level and document-level representations for entities and sentences, ignoring the 
feature loss problem while performing mean pooling and max pooling operations, and 
without the ability to model long-distance dependencies between arguments. Yang et al. 
[16] noted the latter issue, and proposed the application of a multi-turn and multi-granu-
larity Transformer encoder to model local and global interaction, which can capture de-
pendencies between arguments and help to understand the entire document comprehen-
sively. Although this approach is promising, it overlooks the feature loss problem, and 
the input token features they used are limited. 

In this work, to overcome the aforementioned shortcomings of previous methods and 
address the troublesome challenges in DEE, we propose a novel end-to-end model, the 
Document-level Event Extraction Model Incorporating Dependency Paths (DEEDP). 
DEEDP introduces a novel multi-granularity encoder framework that can model long-
distance dependencies and capture more sentence-level syntactic features to facilitate 
DEE. In detail, we first designed a Transformer-based encoder, Transformer-M, by adding 
a Syntactic Feature Attention mechanism to the Transformer, which can capture more in-
terdependency information between input tokens and help enhance the semantics for sen-
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Figure 1. An example document from ChFinAnn proposed by Zheng et al. [8]. In the document, only
four sentences (S5–S8) are shown, the lists Equity Underweight (EU) and Equity Overweight (EO)
are extracted events, and the bold-faced and coloured words are event arguments with specific roles.

To address the two aforementioned challenges, previous studies [8–13] employed
a multi-Transformer [14] or Long Short-Term Memory (LSTM) [15] encoder to obtain
sentence-level and document-level representations for entities and sentences, ignoring the
feature loss problem while performing mean pooling and max pooling operations, and with-
out the ability to model long-distance dependencies between arguments. Yang et al. [16]
noted the latter issue, and proposed the application of a multi-turn and multi-granularity
Transformer encoder to model local and global interaction, which can capture dependen-
cies between arguments and help to understand the entire document comprehensively.
Although this approach is promising, it overlooks the feature loss problem, and the input
token features they used are limited.

In this work, to overcome the aforementioned shortcomings of previous methods
and address the troublesome challenges in DEE, we propose a novel end-to-end model,
the Document-level Event Extraction Model Incorporating Dependency Paths (DEEDP).
DEEDP introduces a novel multi-granularity encoder framework that can model long-
distance dependencies and capture more sentence-level syntactic features to facilitate
DEE. In detail, we first designed a Transformer-based encoder, Transformer-M, by adding
a Syntactic Feature Attention mechanism to the Transformer, which can capture more
interdependency information between input tokens and help enhance the semantics for
sentence-level representations of entities. We then stacked Transformer-M and Trans-
former to integrate sentence-level and document-level features; we thus obtained semantic
enhanced document-aware representations for each entity and modeled long-distance
dependencies between arguments.
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To verify the effectiveness of the proposed DEEDP, we performed experiments on
MUC-4 and ChFinAnn, two widely used DEE benchmarks, and reported the experimental
results of the standard evaluation metrics. Significantly, our method achieved +1.3 and
+2.1 improvements over the current state-of-the-art (SOTA) model on the MUC-4 and the
ChFinAnn dataset, respectively.

Our contributions can be summarized as follows:

1. We proposed a novel DEE model, DEEDP, which introduces a novel multi-granularity
encoder framework to effectively tackle the unique challenges of DEE.

2. We designed a Transformer-based encoder, Transformer-M, which can explicitly model
the dependency between input tokens to avoid feature loss and enhance the semantic
representations for arguments.

3. We performed extensive experiments on the widely used DEE benchmarks, and the
experimental results demonstrated the superiority of DEEDP.

2. Related Works
2.1. Sentence-Level Event Extraction

Most previous EE approaches focus mainly on the sentence level and evaluate their per-
formance on the expert-annotated benchmark ACE-2005 [7]. In the early years, researchers
concentrated mainly on utilizing hand-designed features to conduct trigger and argument
extraction. Li et al. [17] developed a joint EE framework based on structured prediction
that can incorporate global features to jointly extract triggers and arguments. Li et al. [18]
utilized the knowledge encoded in the Abstract Meaning Representation (AMR) to capture
the deeper semantic information of trigger words and then used these features to extract
the triggers. With the development of neural network theory and an increase in computing
power, some studies have applied neural-based methods to automatically capture local
and global features for trigger and argument extraction [19]. Recent studies focus mainly
on utilizing more knowledge such as document context information [20,21], dependency
tree information [13,22], and external knowledge incorporation [23,24]. These methods
have achieved great success on SEE; however, these extractions are conducted on the
sentence level.

2.2. Document-Level Event Extraction

In many real scenarios, several event records may be described in a document, and
arguments for a record may be scattered. Consequently, DEE has attracted increasing atten-
tion, and many promising techniques have been developed. To evaluate their performance,
two benchmark datasets, MUC-4 [16] and ChFinAnn [8], were constructed. MUC-4 is
a document-level template-filling task that aims at identifying event arguments for filling
the corresponding pre-defined roles with associated role types from a document. Re-
searchers on EE have proposed a variety of advanced approaches to improve performance
on this task. Recent studies have explored the extraction of role fillers utilizing manually
designed linguistic features [25] and neural-based contextual representations [26–28].

For arguments-scattering and multi-events, the real challenges for DEE, previous
studies focus mainly on the ChFinAnn task. DCFEE [9] proposed a key event detection
model for DEE that extracts events from the central sentence and searches for missing
arguments from the surrounding ones. Doc2EDAG [8] treated DEE as a table-filling task and
utilizes multiple Transformer encoders to capture sentence and document features to obtain
document-aware entities and sentence representations, and then performs triggered event
records construction with a tracker. GIT [11] proposed a heterogeneous graph interaction
framework to model global information interactions among sentences and entities, and
adopted an improved tracker to construct detected event records. DE-PPN [12] proposed
an encoder-decoder model to obtain document-aware representations and generate events
in parallel. MMR [16] transforms DEE into a machine reading comprehension (MRC) task
with a multi-granularity reader framework. Although these methods have improved the
performance of DEE, they ignore the feature loss problem caused by mean pooling and max
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pooling operations or neglect the interdependency between local semantic information and
global semantic information, which limits performance improvement.

3. Preliminaries

We first clarify a set of key notions: (1) entity mention: some consecutive words
within a sentence that refers to a specific entity object; (2) event role: a pre-defined field
of an event type; (3) event argument: an entity that can fill a specific event role field for
an event; (4) event record: an entry corresponding to a specific pre-defined event type
and its associated event roles. For example, Figure 1 presents two event records, where
the entity “Xiaoting Wu” plays an Equity Holder role in event EO, i.e., “Xiaoting Wu” is an
entity mention that refers to a person and this entity is taken as an event argument to fill
the Equity Holder role for the event EO.

Following Xu et al. [11], we first introduce the formalization of the DEE task, and then
describe our proposed approaches in the following sections. Specially, we denote T andR
as the set of pre-defined event types and role categories, respectively. Given a document
with Ns sentences, D = {Si}Ns

i=1, where each Si contains a sequence of tokens, we denote

it as Si =
{

wi,j
}l

j=1, where l is the length of the sentence. The DEE task aims to extract

possible event records Y = {yi}k
i=1, where each yt

i corresponds to a pre-defined event
type t, and contains several event roles

(
r1

i , r2
i , · · · , rn

i
)

filled by corresponding arguments(
a1

i , a2
i , · · · , an

i
)
. The variable k represents the number of events described in a document,

and n is the number of pre-defined roles for event type t, t ∈ T , and r ∈ R.

4. Methodology

In this section, we first present the overall architecture of DEEDP. We then introduce
the detailed implementations of every module that consists of DEEDP.

4.1. Model Architecture

Figure 2 depicts the overall architecture of DEEDP, composed of four stacked modules:
(1) the sentence-level encoder responsible for capturing basic features, like lexical and
syntactic features, from the tokens of the input sentences, and projecting the tokens into
a continuous low-dimension space, after which we can obtain their sentence-level repre-
sentations, which are fed into a conditional random field (CRF) layer to perform named
entity recognition (NER); (2) the document-level encoder responsible for encoding the
representations of entities and sentences at the sentence-level into a united feature space,
so that we can obtain their document-level representations; (3) the sentence-document
feature fusion module designed and responsible for capturing more lexical and syntactic
features, enhancing the document-level representations of entities and sentences; (4) the
event record module responsible for organizing the candidate entities to construct event
records included in the input documents. The implementation of each module is introduced
in the following subsections.

4.2. Sentence-Level Encoder

Transformer Encoder. Following most pre-training language models, such as BERT [29],
MBERT [30], MLRIP [31], SpanBERT [32], and document-level event and event element
joint extraction models such as Doc2EDAG [8] and MMR [16], we applied Transformer [14]
as our basic encoder, which utilizes a multi-head attention and masking strategy to cap-
ture the lexical and syntactic information for each token in the input sequence, and the
corresponding contextual representation for each token can be generated.

Input Embeddings. Modelling more features of the input tokens facilitates down-
stream tasks. Compared with Doc2EDAG, MMR, and DEEB-RNN [33], we modeled
a part-of-speech (POS) feature, entity type feature, and document topic feature to represent
each token of the input sentence, rather than using only the token and position features.
Formally, given a document D = {Si}Ns

i=1 containing Ns sentences, sentence Si can be
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denoted as a sequence of tokens [wi,1, wi,2, · · · , wi,l ], where l is the length of the sentence,
and wi,j ∈ Rd denotes the representation for the jth token of the Si. The representations of
the token sequence were fed into the Transformer Encoder, TF-1, and the final hidden state
Ci of the Si could be used for down-stream tasks, which can be calculated as follows:

Ci = TF− 1(wi,1, · · · , wi,l) (1)

where Ci = [ci,1, ci,2, · · · , ci,l ], ci,j ∈ Rd is the final hidden state for the jth token of Si and
Ci ∈ Rl×d is the final hidden state of Si. Then Ci was fed into a CRF layer for sequence
labelling. After that, we could obtain the candidate event arguments.
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record construction. 
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Figure 2. DEEDP model overview. For a given document, we first conduct NER with the sentence-
level encoder. Then we feed the sentence-aware representations of entities and sentences of the input
document to the document-level encoder to acquire their document-aware representations. To aggre-
gate both representations for each entity and enhance their semantic, we designed a Transformer-M
and stacked it with a Transformer. Finally, the fused representations of entities and document-
aware representations of sentences are fed into the event record extraction module for event
record construction.

Given a token, its input representation is the sum of the embeddings for token, seg-
ment, position, POS, entity type, and document topic. A visualization of the input embed-
ding is illustrated in Figure 3.

Entity Recognition. Entity recognition aims to extract all candidate elements for the
events described in a given document and is always taken as a sequence tagging task. In
this proposed work, we performed entity recognition at the sentence level and followed
GIT and Doc2EDAG, which added a CRF layer to the final Transformer Encoder to conduct
sequence tagging for the input sentences. To be specific, given a sentence s, we applied
a Transformer encoder (TF-1) to encode it and the final hidden states Ci = TF− 1(s) were
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fed into the CRF layer to conduct entity recognition with the BIO (Begin, Inside, Other)
schema. For training, we minimized the sequence tagging loss as follows:

L(ner) = − ∑
s∈D

log(P(ys|s)) (2)

where ys is the golden-label tagging sequence for s. With respect to inference, we applied
the Veterbi decoding algorithm to obtain the golden label sequence.
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4.3. Document-Level Encoder

Document-level contextualized representations for entities and sentences take advan-
tage of the global semantic of the document and can benefit DEE.

Entity & Sentence Embedding. To acquire the sentence-level representations of enti-
ties, we aggregated all word representations by performing a mean pooling operation over
consecutive tokens that mention ei. Specifically, given entity ei and its span in sentence
Si, which starts at the kth token and ends at the tth token, the representation for ei can be
represented as:

ce
i = MeanPool(ci,k, · · · , ci,t) (3)

where MeanPool(·) denotes the mean pooling operation and ce
i ∈ Rd denotes the represen-

tation for ei. The variables ci,k, ci,t ∈ Rd are tensors for the start token and end token of
entity ei, which were used to calculate the sentence-level representation for ei. Similarly, we
performed a mean pooling operation for all entities contained in document D, then obtained
a series of sentence-level entity representations [ce

1, ce
2, · · · , ce

Ne
], with Ne being the number

of entities contained in document D.
For sentences, we also performed a mean pooling operation over the tokens covering

a sentence and obtained the sentence-level sentence representations [cs
1, cs

2, · · · , cs
Ns
], where

cs
i ∈ Rd denotes the representation for sentence Si.

Document-level Encoding. To obtain the document-level contextualized representa-
tions for all sentences and entities, we applied a Transformer encoder, TF-2, to model the
information interaction between them, enabling the awareness of document-level contexts.
Following Doc2EDAG [8], we added sentence position embeddings to the sentence repre-
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sentation to inform the sentence order in the given document before feeding them into TF-2.
Document-aware representations could be obtained through document-level encoding:

[He, Hs] = TF− 2
(
ce

1, · · · , ce
Ne

; cs
1, · · · , cs

Ns

)
(4)

where TF-2(·) is used to obtain the document-level representations for entities and sentences
contained in the given document, which takes the sentence-level representations of entities
and sentences as inputs. The variable He ∈ RNe×d denotes document-level entity represen-
tation, and Hs ∈ RNs×d denotes document-level sentence representation. As entities may be
mentioned by different word spans in a document, we performed a max pooling operation
over all the mention embeddings referring to the same entity to obtain a fused embedding.

Then we acquired the distinct document-aware context representation He ∈ RN
′
e×d.

In this study, we performed event type classification tasks at the document-level
encoding stage. We first applied a mean pooling operation over Hs to obtain the document
representation Hd, and then fed Hd into multiple feed-forward networks (FFN) to perform
event type predictions. Concretely, the event t can be predicted by:

pt = so f tmax
(

Hd ·Wt
e

)
(5)

where pt indicates the probability for event type t, which is calculated by the softmax(·)
function. The variable Wt

e ∈ Rd×2 represents learnable parameters for predicting the event
type t. Variables t ∈ T and T denote the pre-defined event type set.

For training TF-2, we minimized the following loss function:

L(event) = −
|T |

∑
t=1

(
I
(

R̂t = 1
)

log pt + I
(

R̂t = 0
)
(1− log pt)

)
(6)

Equation (6) represents the application of multiple binary classification tasks to con-
struct the loss function, where R̂t represents whether event type t is contained in the
document, which is usually seen as Golden Label. I(·) is the indicator function.

4.4. Sentence-Document Feature Fusion

At this stage, we introduced a novel network to enhance document-aware representa-
tions for entities by integrating the sentence-document features. We stacked an advanced
Transformer encoder, named Transformer-M, and Transformer encoder, TF-3, together to
achieve this goal, where Transformer-M helped to extract more sentence-level features
and the TF-3 was applied to integrate different kind features. Figure 2 depicts the novel
network architecture.

Transformer-M. To explicitly model the syntactic features and aggregate sentence-
aware and document-aware representations for each entity, we designed a novel encoder
based on Transformer, named Transformer-M (TF-M). Figure 4d depicts the network architec-
ture of TF-M. We added a Syntactic Feature Attention mechanism, SF-ATT, to Transformer,
which was used to capture the syntactic features of the input sentences and enhance the
representations for each token contained in the sentences. In addition, we concatenated
the embeddings of each token used in TF-1 and the document-level representation of Si
as the input of TF-M, which helped us to make full use of the information of both the
document-level and local sentence to model the long dependency. Specifically, the input
embedding of the jth token can be calculated as:

w
′
i,j =

[
hs

i ; wi,j
]

(7)

where wi,j ∈ Rd is the jth token input embedding used in TF-1; hs
i ∈ Rd is the document-

level representation for Si; and w
′
i,j ∈ R2d represents the input embedding vector of the jth



Appl. Sci. 2023, 13, 2846 8 of 17

token for Si, which is fed into TF-M to obtain feature enhanced representation. [· ; ·] denotes
the concatenation operation.
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Transformer-M encoder. (a) We first use the dependency parser tool (Stanford core NLP) to perform
dependency analysis and obtain the dependency tree; (b) with the dependency tree, we can quickly
obtain the connection matrix for the input sentences; and (c) we then obtain the mask matrix; (d) the
overview of the Transformer-M is shown in (d), where the key component is the syntactic feature
attention, which is designed to model the syntactic features of the input sentences.

As shown in Figure 4a, for the given document and sentences D = {Si}Ns
i=1, we

first applied the Spacy tool to construct the dependency relation for each token wi,j ∈ Si
and its parent. We were then able to obtain the dependency paths and the link matrix could
be constructed with them. Subsequently, we were able to construct a syntactic feature mask
matrix for the input sentence, which was used in TF-M. To be specific, in the ith layer of
TF-M, the Syntactic Feature Attention and Multi-head Attention (MH-ATT) hidden states
were taken together to enhance the representations for each token in the input sentence; the
former mainly focuses on the syntactic relations of wi,j ∈ Si and its parent, and the latter
is responsible for modelling the whole lexical and semantic features for all tokens in the
sentence, which can be formalized as follows:

z(k)i,j,1 = MH − ATT
(

h(k−1)
i,1 , · · · , h(k−1)

i,l

)
(8)

z(k)i,j,2 = SF− ATT
(

h(k−1)
i,1 , · · · , h(k−1)

i,l

)
(9)

z(k)i,j = z(k)i,j,1 + z(k)i,j,2 (10)

where z(k)i,j,1 ∈ Rd and z(k)i,j,2 ∈ Rd denote the hidden state calculated after the kth layer of

MH-ATT and SF-ATT for the jth token of Si, respectively. The variables z(k)i,j ∈ Rd denote

the hidden state calculated with the kth layer. Then z(k)i,j,1 and z(k)i,j,2. z(k)i,j were integrated with
the hidden state calculated by the MH-ATT to enhance the representation for the token wi,j.

The inputs were fed into SF-ATT to capture their explicit syntactic features, and the
calculation can be formalized as follows:

zi =
l

∑
j=1

αi,j ·
(
wj ·Wv

)
(11)

αi,j =
exp
(
ai,j
)

√
d ·∑l

k=1 exp
(
ai,j
) (12)
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ai,j = Masking
((

wi ·Wq
)
·
(
wj ·Wk

)
, M
)

(13)

Mi,j =

{
0, wi ↔ wj

−∞, wi − wj
(14)

where zi ∈ Rd denotes the encoding vector of SF-ATT for token wi, which corresponds to
the z(k)i,j,2; l denotes the length of Si; αi,j and Wv are the attention weight of token wj and the
linear transformation of token embedding wj, which are used to calculate the attention
value for the token wi. The Masking function in Equation (13) restrains the dependency
relation among the input tokens. The equation indicates that only linked tokens and the
current token itself are involved to update the token embedding, and this is controlled by
the masking matrix Mi,j, where↔ represents that there is a dependency path between the
ith and jth token, and − represents none. Figure 4a illustrates the dependency paths for
the input tokens. Similar to Wv, Wq and Wk are independent linear transformations for
token embeddings.

Feature integration. As shown in Figure 2, the final hidden states of the TF-M and
the document-aware representations of entities were fed into TF-3. Then we were able to
obtain the multi-turn and multi-granularity representations for the entities. Formally, given
a sentence Si, TF-M encodes it to obtain C

′
i = [c

′
i,1, c

′
i,2, · · · , c

′
i,l ], where c

′
i,j ∈ Rd, then C

′
i and

He are fed into TF-3, and then we can obtain the integrated representations he, f used
i ∈ Rd

for each recognized entity in the input document.

he, f used
1 , · · · , he, f used

Ne
= TF− 3

(
he

1, · · · , he
Ne

; c
′
i,1, · · · , c

′
i,l

)
(15)

where he, f used
i ∈ Rd denotes the multi-granularity encoded document-aware and local

feature enhanced representation for entity ei. As the enhanced representation could model
more local features and long-distance dependency information, it would facilitate the event
expanding, which will be discussed in Section 4.5. We were able to obtain fused representa-

tions He, f used = {he,fused
i }

Ne
i=1 for each token and entity in the document using Equation (15).

4.5. Event Expanding

In realistic scenarios, the number of event records described in a document is unknown
in advance, thus we need to perform event detection as shown in Section 2.2 and then fill
arguments for each specific event roles as pre-defined in the event table. In this work, we
performed event expanding to fulfil the event roles filling task as previously described [8,16].
For each triggered event, the event expanding subtask can be formalized as a set of binary
classification tasks, i.e., predicting to expand (1) or not (0) for all candidate entities. The
expanded event path state information can distinctly guide the remaining event roles filling
task; thus, an event memory mechanism is designed to memorize the extracted event paths
and their arguments. To take advantage of the useful current states, such as the event path
state, processed contexts, and event role, the memory tensor m and fused entity tensor
He, f used were concatenated, and then a trainable event role indicator embedding was added
to form a new tensor for the next event role prediction. The tensor was fed into the fourth
Transformer module, TF-4, to facilitate the event path prediction. Finally, the context-aware
entity tensor er, the final hidden states of TF-4, was fed into a linear layer to conduct the
event expanding classification. Figure 5 illustrates the event expanding process, which can
be formalized as follows:

er = TF− 4
([

m; He, f used
]
+ rolei

)
(16)

Labelt,r = so f tmax(er ·Wrole) (17)

where m denotes the memory tensor, which is used to integrate the current path and history
contexts information. We initialized it with the document-level sentence tensor Hs and
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updated it when expanding by filling either the associated entity tensor or the zero-padded
one for the NA argument. er ∈ RNe×d denotes the enriched entity representations, which
were fed into a linear layer to conduct the path-expanding classification, and Wrole ∈ Rd×2

is a learnable parameter for role prediction.
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Figure 5. The overall workflow of event path expanding. For a triggered event, to enable the
awareness of the current path state, history contexts and the current event role, we first concatenate
the memory tensor m and the entity tensor ed, then add them with a trainable event role indicator
embedding, and encode them with the fourth Transformer module, TF-4, to facilitate the context-
aware reasoning. Finally, we extract the enriched entity tensor er from outputs of TF-4 and stack
a linear classifier over er to conduct the path-expanding classification.

4.6. Model Training

For event expanding, we calculated a cross-entropy loss for each prediction subtask,
then summed these losses as the final event record extraction L(record), which can be
calculated as:

L(record) =
Nt

∑
t=1

Nt,r

∑
r=1

CrossEntropy(Goden_Lablet,r, Labelt,r) (18)

where Goden_Lablet,r denotes the golden label for predicting role type r of event t, Nt is the
number of events detected from the input document, and Nt,r is the number of role types
pre-defined for event t.

During training, we summed the entity recognition loss, event detection loss, and
event expanding loss with different weights as the final loss La``:

La`` = λ1L(ner) + λ2L(event) + λ3L(record) (19)

where λ1, λ2, and λ3 are hyper-parameters. At inference, for a given document, we
first recognized all the entities and then detected event types. Finally, we constructed
event records with extracted entities and triggered event types.
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5. Experiments and Analysis

In this section, we introduce the implementation details of DEEDP, and verify its
effectiveness on two DEE benchmarks. Additionally, we perform ablation study on every
strategy and novel architecture proposed in this paper.

5.1. Datasets and Evaluation Metrics

We compared the performance of DEEDP with baselines on the following
two DEE benchmarks:

MUC-4. The MUC-4 dataset contains 1700 English documents and is mainly concerned
with terrorist events. We followed the standard dataset division and set the number of
documents for the train/dev/test set to 1300/200/200. Following previous work, we
reported results on MUC-4 with Precision (P), Recall (R), and F1-score for the macro
average for all event roles.

ChFinAnn. ChFinAnn is developed by [8], and widely used for evaluating DEE
models. ChFinAnn is constructed by using 32,040 Chinese financial documents. It mainly
concerns the following event types: Equity Freeze (EF), Equity Repurchase (ER), Equity
Underweight (EU), Equity Overweight (EO), and Equity Pledge (EP). It is a challenging
task because (1) there are 35 different event role types in total, (2) about 29% documents
contain multiple events, and (3) the arguments for an event record can be involved in about
six sentences. For more information, please refer to Doc2EDAG. To compare with previous
SOTA models [8,12,16], we adopted the same evaluation metrics used in those models.
Specially, for each given document, we selected, without replacement, one most similar
ground-truth event record for each predicted event record to calculate role-level Precision
(P), Recall (R), and F1 score for each event type. Because an event type usually consists of
multiple roles, we calculated the micro-averaged scores of the role-level and took them as
the final DEE metric.

5.2. Implementation Details

For all documents to be processed, we denoted the maximum number of sentences as Ns
and the maximum sentence length as l and set them to 64 and 128, respectively. We employed the
basic Transformer, hidden size set to 768, and attention heads were set to 12 for each layer, as the
encoder architecture for the sentence-level encoder, document-level encoder, sentence-document
features fusion encoder and event expanding encoder. During training, we set λ1 = 0.05 and
λ2 = λ3 = 0.95, as suggested by [8], and adopted the AdamW optimizer [34] with the Dropout
0.1 and learning rate 2× 10−5. Notably, as the training datasets for both the benchmarks are not
very large, we set the training epoch to [80, 100, 150, 200] to prevent the model from overfitting,
and we found that the model achieved the best performance when the epoch was set to 100. As
a result, we trained the model for at most 100 epochs and saved the parameters that helped to
achieve the best validation score on the development set. The detailed hyper-parameters are
listed in Table 1.

Table 1. The hyper-parameter setting.

Hyper-Parameter Value Hyper-Parameter Value

Number of generated events 5 Layers of TF-M 4
Embedding size 768 Learning rate for TF-(1~4) 2 × 10−5

Hidden size 768 learning rate for TF-M 1 × 10−5

Tagging scheme BIO (Begin, Inside, Other) Optimizer AdamW
Layers of TF-1 4 λ1 0.05
Layers of TF-2 4 λ2, λ3 0.95
Layers of TF-3 4 Dropout rate 0.1
Layers of TF-4 4 Training epoch 100
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5.3. Results on MUC-4

Baselines. We conducted a comparison experiment to verify the effectiveness of our
method on the MUC-4 with the following baselines: pipeline-based or manual feature
engineering based methods. GLACIER [35] applied a sentential event recognizer to decide
which sentences should be selected for event extraction and then used multiple plausible
role filler recognizers to extract arguments as role fillers for formulating event records.
TIER [36] proposed a multi-stage approach for event extraction, which divided the process-
ing procedure into the following: identifying narrative document, detecting event sentence,
and noun phrase analysis. Cohesion Extract [37] first performed event arguments recog-
nition in the processing text and took them as candidate role fillers, and then a cohesion
sentence classifier was applied to refine the candidate set. MGR [38] formulized the DEE as
a neural seq-to-seq learning task and proposed a multi-granularity reader framework to
dynamically aggregate semantic information from local sentence to the whole document by
applying the advanced pre-trained language model BERT [29]. MMR [16] proposed a MRC
based event extraction framework for DEE, which can directly extract event records in
a machine reading manner without performing sentence-level event arguments extraction.

Main Results. Table 2 presents the main results on the benchmark MUC-4. From the
comparison results, we can observe the following: (1) compared with other baselines, MMR
achieved significant improvements, proving that the multi-granularity encoder benefits
DEE; and (2) our proposed method, DEEDP, achieved +1.77 and +0.84 F1-scores over MMR
for the head noun and extract match, respectively. This can be attributed to the semantic
enhancing strategy introduced by using TF-M encoder.

Table 2. Overall precision (P), recall (R) and F1 scores evaluated on the MUC-4 test set.

Models
Head Noun Match Extract Match

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

GLACIER 47.80 57.20 52.08 - - -
TIER 50.80 61.40 55.60 - - -

Cohesion Extract 57.80 59.40 58.59 - - -
MGR 56.44 62.77 59.44 52.03 56.81 54.32

MMR w/o contextualized embedding 63.95 58.71 61.19 60.66 55.34 57.87
DEEDP 65.42 61.57 62.96 61.34 56.29 58.71

In short, DEEDP effectively handles the long-distance dependencies problem between
arguments by using a multi-granularity encoder, which helps in tackling the challenge of
arguments-scattering for DEE. In addition, DEEDP introduces a novel Syntactic Feature
Attention mechanism to explicitly model the semantic information of interdependency
between tokens, which helps enhance the document-aware representations for each entity
and improves the performance on document-level role filling tasks.

5.4. Results on ChFinAnn

Baselines. We examined the effectiveness of DEEDP and the following baselines on
the ChFiAnn dataset: DCFEE [9] proposed a key event detection model for discovering
event mentions and a strategy for argument completion. Two variants were developed for
this model, i.e., DEFEE-O and DCFEE-M. DCFEE-O is a simple version that only produces
one event record from a document, while DCFEE-M produces multiple ones. Doc2EDAG
is an end-to-end model proposed by Zheng et al. [8]. Doc2EDAG combines different
Transformers [14] to perform event and event arguments recognition and transfers the
DEE as a table filling task. To verify the necessity of end-to-end, a greedy baseline of
Doc2EDAG, named GreedyDec, was proposed, which only applies recognized entity roles
to fill one event table entry for a document. DE-PPN is an encoder-decoder model for
DEE proposed by Yang et al. [12]. DE-PPN obtains document-aware representations by
using a document-level Transformer encoder, and then decodes using multi-granularity
non-autoregressive decoders in parallel. Similar to Doc2EDAG, there is also a single event
version of DE-PPN, DE-PPN-1. MMR [16] formulated the paradigm of DEE as a MRC
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task, and proposed a multi-turn and multi-granularity reader for DEE, which can help
extract events from given documents directly without conducting SEE. In addition, there
is a simple one-record decoding baseline of MMR, MMR-1. For fairness, we also present
a simple decoding version of DEEDP, DEEDP-O, which produces only one event record
with the recognized entity roles.

Main Results. Table 3 presents the overall performance for DEEDP and the baselines
on the benchmark ChiFiAnn. As we can see, the proposed method, DEEDP, consistently
outperforms all baselines and improves the F1-score by 0.4, 3.7, 2.2, 1.4, and 0.5 over the
SOTA method, DE-PPN, on EF, ER, EU, EO, and EP, respectively. These vast improvements
benefit from the multi-granularity encoder and explicitly model syntactic features of the in-
put sentences at the global-to-local feature aggregation stage. Because the multi-granularity
encoder applies more encoders to model the interdependency between sentence-level and
document-level features, and the strategy of explicitly modeling syntactic features helps
to capture more sentence-level features of the input sentences, both of these strategies
facilitate the DEE task. Additionally, the simple decoding baseline, DEEDP-O, achieves the
best performance compared with other simple baselines, such as DCFEE-O, GreedyDec,
DE-PPN-1, and MRR-1, which also demonstrates the advantages of our proposed strategies.

Table 3. Overall event-level precision (P), recall (R), and F1 scores evaluated on the ChFinAnn test set.

Models
EF ER EU EO EP

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DCFEE-O 66.0 41.6 51.1 84.5 81.8 83.1 62.7 35.4 45.3 51.4 42.6 46.6 64.3 63.6 63.9
DCFEE-M 51.8 40.7 45.6 83.7 78.0 80.8 49.5 39.9 44.2 42.5 47.5 44.9 59.8 66.4 62.9
GreedyDec 79.5 46.8 58.9 83.3 74.9 78.9 68.7 40.8 51.2 69.7 40.6 51.3 85.7 48.7 62.1
Doc2EDAG 77.1 64.5 70.2 91.3 83.6 87.3 80.2 65.0 71.8 82.1 69.0 75.0 80.0 74.8 77.3
DE-PPN-1 77.8 55.8 64.9 75.6 76.4 76.0 76.4 63.7 69.4 77.1 54.3 63.7 85.5 43.0 57.2
DE-PPN 78.2 69.4 73.5 89.3 85.6 87.4 69.7 79.9 74.4 81.0 71.3 75.8 83.8 73.7 78.4
MMR-1 81.2 48.7 60.9 82.9 73.2 77.8 81.2 45.1 58.1 75.5 45.8 57.0 84.3 50.8 63.4
MMR 78.4 65.5 71.3 89.3 88.1 88.7 79.5 66.4 72.4 83.5 71.4 76.9 82.3 74.1 78.0

DEEDP-O 83.5 50.1 62.9 77.3 65.2 70.7 80.5 58.7 67.9 84.1 62.6 71.8 84.9 54.3 66.2
DEEDP 79.6 68.9 73.9 92.5 89.7 91.1 82.1 71.8 76.6 81.3 73.5 77.2 82.6 75.5 78.9

5.5. Results on Single-Event and Multi-Event

Following previous works [8,11,12], and we performed experiments on a single-record
set (S·), in which only one event is described in a document, and a multi-record set (M·),
in which multi event records are embedded in a document. In other words, single-record
set refers to documents in this set containing only one event record, and multi-record
set refers to documents that contain multiple event records. The comparison results for
different scenarios are listed in Table 4. We can observe that (1) it is a more challenging
task for multiple event record extraction compared with single-record event extraction, and
as a result, the extraction performance of all models drops significantly; (2) however, our
model, DEEDP, still achieves a 23.2, 2.2, 2.6, 3.6 average Micro-F1 score over DCFEE-M,
DE-PPN, MMR, and Doc2EDAG, respectively; (3) DEEDP-O outperforms one event record
baselines on the single-record set, demonstrating the effectiveness of the strategies proposed
in this work; (4) but DEEDP-O only produces one event record and, as a result, it works
poorly in the scenario of a multi-record set, and the performance decreases significantly
compared with testing on the single-event set.

In conclusion, we find that a multi-granularity encoder can model more contextualized
information for multi-record event extraction than models that apply only sentence-level
and document-level encoders, such as Doc2EDAG and DE-PPN. In addition, explicitly
modeling the syntactic features of the input sentences can compensate or enhance some
features discarded in the mean pooling or max pooling operations, benefiting information
aggregation in the sentence-document feature fusion stage. Thus DEEDP achieves a higher
F1 score than MMR.
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Table 4. F1 scores for each pre-defined event type and the averaged ones (Avg.) on single-event (S.)
and multi-event (M.) sets.

Models
EF ER EU EO EP AVG

S. (%) M. (%) S. (%) M. (%) S. (%) M. (%) S. (%) M. (%) S. (%) M. (%) S. (%) M. (%) S.&M. (%)

DCFEE-O 56.0 46.5 86.7 54.1 48.5 41.2 47.7 45.2 68.4 61.1 61.5 49.6 58.0
DCFEE-M 48.4 43.1 83.8 53.4 48.1 39.6 47.1 42.0 67.0 60.0 58.9 47.7 55.7
GreedyDec 75.9 40.8 81.7 49.8 62.2 34.6 65.7 29.4 88.5 42.3 74.8 39.4 60.5
Doc2EDAG 80.0 61.3 89.4 68.4 77.4 64.6 79.4 69.5 85.5 72.5 82.3 67.3 76.3
DE-PPN-1 82.4 46.3 78.3 53.9 82.2 45.6 78.1 39.3 82.8 38.5 80.7 44.7 66.2
DE-PPN 82.1 63.5 89.1 70.5 79.7 66.7 80.6 69.6 88.0 73.2 83.9 68.7 77.9
MMR-1 79.2 52.1 88.2 49.3 70.3 49.4 74.2 44.7 87.4 45.2 79.8 48.1 63.4
MMR 81.2 61.8 89.8 70.1 77.9 65.4 80.8 71.7 86.2 72.6 83.2 68.3 77.4

DEEDP-O 80.2 52.3 79.4 51.3 78.6 48.6 76.4 45.5 86.9 47.9 80.3 49.1 67.8
DEEDP 82.8 66.4 93.6 73.7 82.4 68.4 81.7 71.9 87.5 74.1 85.6 70.9 79.5

5.6. Ablation Study

In this section, we describe the ablation tests performed to investigate the effectiveness
of the critical designs of DEEDP. To address this issue, we constructed the following
variants of DEEDP: (1) w/o RicFea, the input embedding at the sentence-level encoding
stage without using the document topic, POS, and entity type features; (2) w/o DocEnc, the
input embedding at the sentence-document feature fusion stage without using document-
aware sentence representations; (3) w/o SF-ATT, removing Syntactic Feature Attention from
the Transformer; and (4) w/o TF-M, removing TF-M encoder. Table 5 presents the result of
ablation tests on DEEDP, and we have the following observations: (1) compared with only
use token embedding and positional embedding, richer input features inject more useful
external features to enhance the semantic information for each token of the input sentences,
benefiting the following tasks accordingly, and a +0.7 F1-score on average contribution is
obtained by using the information of these rich features; (2) the use of document-aware
sentence representations contributes a +1.4 F1-score on average compared to when they
are not used; (3) the SF-ATT strategy that explicitly models the syntactic information
of input sentences facilitates enhancing the semantic information for each document-
aware representations of each entity, hence making great contributions, improving by
2.4 F1-score points on average; (4) the TF-M is a pivotal design for DEE that helps to
achieve a +2.7 F1-score improvement on average, indicating that the TF-M can aggregate
sentence-aware and document-aware features to improve the performance of DEE.

Table 5. F1 scores of ablation tests on DEEDP variants for all event types and the averaged ones (Avg.).

Model EF (%) ER (%) EU (%) EO (%) EP (%) AVG. (%)

DEEDP 73.9 91.1 76.6 77.2 78.9 79.5

w/o RicFea −0.9 −0.7 −1.1 −0.4 −0.3 −0.7

w/o DocEnc −2.3 −1.2 −1.9 −0.6 −0.8 −1.4

w/o SF-ATT −3.1 −2.7 −3.8 −1.1 −1.4 −2.4

w/o TF-M −2.9 −3.1 −4.2 −1.5 −1.7 −2.7

5.7. Effect of Different Transformer-M Layers

In this section, we describe experiments performed to verify the importance of the
feature integration encoder by setting different layers of TF-M encoder. To be specific, we
set the layers of the TF-M encoder to {0, 1, 2, 4}, where 0 represents that the TF-M encoder
is to be removed. The effect of different TF-M encoder layers is depicted in Figure 6, and
we can observe that the best average F1-score is achieved for our method when we set
the number of layers to 4. We conjecture that stacking more layers of the TF-M encoder
facilitates better aggregation of sentence-aware and document-aware information.
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6. Discussion

Experimental results and ablation studies have demonstrated the superiority of
DEEDP, but we wanted to determine the detailed advantages and disadvantages of our
model. Table 6 presents the results of this comparison.

Table 6. Model comparison results. T: Token, P: Position, POS: Part-of-Speech, ET: Entity Type,
DT: Document Topic, HGI: Heterogeneous Graph Interaction, SVM: Support Vector Machine, TF:
Transformer, TF-M: Transformer-M, GNN: Graph Neural Network.

Model Paradigm Techniques Input Features Trigger
Detection

Distant
Dependency

Feature
Enhanced

GLACIER pipeline Bayes, SVM lexical, syntactic,
entity Yes - -

TIER pipeline SVM lexical, semantic Yes - -

Cohesion Extract pipeline SVM lexical, discourse,
roll filler distribution Yes - -

MGR joint BERT, LSTM, CRF T, P No - -
DCFEE pipeline LSTM, CRF T, P Yes - -

Doc2EDAG joint TF T, P No - -
DE-PPN joint TF T, P No - -

MMR joint BERT T, P No global-to-local -
GIT joint TF, GNN, CRF T, P No HGI -

DEEDP joint TF, TF-M T, P, POS, ET, DT No global-to-local SF-ATT

We compared DEEDP with the most promising DEE models in terms of six metrics:
paradigm, techniques, input features, trigger detection, distant dependency, and feature
enhancement. From Table 6, we observe that (1) DEEDP is a joint DEE model that can
avoid fault propagation. (2) It models more input features, such as POS, entity type, and
document topic, and an ablation study has shown that richer input features can facilitate
DEE. (3) MMR, GIT, and DEEDP can model long-distance dependency information, which
is helpful for event expansion. However, compared to DEEDP, the dependency information
modeled by MMR and GIT is limited because of the feature loss problem caused by the
mean pooling or max pooling operation. (4) To address this problem, DEEDP proposes the
use of Transformer-M, which adds a novel SF-ATT module to the transformer, which helps
enhance the features. (5) Because DEEDP requires more input features, it is difficult to
perform model migration.

7. Conclusions

In this study, we have proposed a multi-granularity DEE model, DEEDP, for tackling
the troublesome challenges of arguments-scattering and multi-events. Multiple intrinsic
experiments and ablation tests revealed that the Transformer-M module and the aggregation
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of global and local features can help improve the performance of DEE. These findings will
serve as a basis for future studies and researchers can explore different feature fusion mod-
ules and multi-granularity feature extraction modules to further improve DEE performance.
In future work, we will explore other feature enhancing modules and test our model on
other domain-specific datasets to verify its performance.
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